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Abstract: A model-based fault detection algorithm for linear systems with uncertain
parameters is treated. An error system, bilinear in the uncertainties, generates the residual.
The residual is compared to a threshold, which is generated by a linear system with
the unknown uncertainty upper bounds as parameters. These unknown uncertainty upper
bounds can be substituted by design parameters and this article suggests an algorithm to
choose design parameter values such that the threshold is larger than the residual when
no fault is present. This parameter design algorithm is applied to a sensor fault detection
algorithm for a jet engine. Copyright c©2005 IFAC
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1. INTRODUCTION

A fault detection algorithm contains essentially two
parts, residual generator and residual evaluator. One
way to design the residual generator is to use dynamic
process models. Methods which have been used dur-
ing the years are e.g. state observers, (Frank 1997),
parity equations (Chow and Willsky 1984) and on-
line identification algorithms (Gustafsson 2000). To
determine if a fault is present, the residual evaluator
compares the residual, or a function of the residual, to
a threshold. The character of the threshold will depend
on the assumptions on the disturbances and uncertain-
ties. The case of stochastic disturbances are treated
in (Gustafsson 2000) while frequency domain uncer-
tainty is considered by (Emami-Naeini et al. 1988)
and (Frank and Ding 1994). Time-domain uncertainty
description are utilized in e.g. (Zhang et al. 2002),
(Ding et al. 2003), (Bask and Johansson 2004) and
(Johansson and Bask 2005). In the latter, the threshold
is generated by a linear system with the uncertainty
upper bounds, which are unknown, as parameters. The
upper bounds are substituted by a vector of parameters

which, so far, has been tuned manually in (Bask and
Johansson 2004) and (Johansson and Bask 2005). The
main purpose of this study is thus to provide an algo-
rithm to choose these parameters in an automatic way.

The class of systems considered in this paper are linear
with uncertain parameters and can be described by the
following system of bilinear differential equations

ẋ=Ax + N(π ⊗ x) + Bu + Eπ
y=Cx + Du + Fπ

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rl are the
state, known input and output vector, respectively. The
matrices A, N and C and the matrix valued functions
B(t),D(t), E(t) and F (t) are of appropriate dimen-
sions. Furthermore, it is assumed that rank(C) = l <
n. Disturbances and parametric uncertainties are rep-
resented in π(t) ∈ Rp which is bounded as |π(t)| ≤
Π. With this assumption it is easy to show that the
right hand side of (1) satisfies a Lipschitz condition
and thus (1) has a solution.



If a Luenberger observer is applied to (1) then the error
system will also have the form of (1) but no known
input signal will be present, i.e. B = D = 0. In this

case, x represents the estimation error and y
�
= r is the

residual.

A process where fault detection algorithms may be
a significant advantage is the jet engine in a single
engine aircraft where faults can have catastrophic con-
sequences. A fault detection algorithm with a dynamic
detection threshold for a sensor in a turbofan engine is
presented in (Johansson and Norlander 2003). There,
constant parameter uncertainties are assumed and the
uncertainty bound design parameters are tuned man-
ually. In (Johansson and Bask 2005) the approach
from (Johansson and Norlander 2003) is generalized
to allow time-varying parameter uncertainties but the
bounds are still tuned manually. In this paper, an
automatic method to determine the threshold design
parameters, substituting the upper bounds, is derived.
The design method is successfully tested on data from
a turbofan engine.

2. PRELIMINARIES

An inequality between two matrices X,Y ∈ Rn×m

is to be interpreted as element-wise. The notation
| · | means matrix modulus, i.e. element-wise absolute
value. The following inequalities for matrix operations
are trivial but included in order to increase readability
of the proofs in the sequel.

Property 1. Let A, B, and C be matrices of compati-
ble dimension.

(a) If A ≥ 0 and B ≥ C, then AB ≥ AC and
BA ≥ CA.

(b) |A + B| ≤ |A| + |B|
(c) |AC| ≤ |A||C|

Throughout the article the notation 1n represents a
column vector of ones of dimension n and In is the
identity matrix of size n. The pseudoinverse of a
matrix A ∈ Rn×m is denoted A+. If rank(A) =
n < m then AA+ = I since in this case A+ =
AT (AAT )−1.

Some properties regarding the Kronecker product ⊗
will be required further on in the article.

Property 2. Let A ∈ Rn×m, B ∈ Rp×q, C ∈
Rm×r and D ∈ Rq×s for arbitrary natural numbers
m,n, p, q, r, s. Then

(a) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
(b) A ⊗ (B ± C) = A ⊗ B ± A ⊗ C
(c) (x ⊗ A) = (x ⊗ Im)A = (Ip ⊗ A)(x ⊗ Im)

Proof. Part a and b can be found in (Lütkepohl 1996),
and c is straightforward to prove using part a. �

All signals are assumed to be causal. A star between
functions denotes convolution, i.e.

(F ∗ G)(t)
�
=

∫ t

0−
F (t − τ)G(τ)dτ

where F (t) ∈ Rn×q and G(t) ∈ Rq×m are matrix-
valued signals. Instead of writing the convolution with
a star it can be expressed as a linear operator written
with the symbol of the weighting function in bold-face

font, i.e. FG
�
= F ∗G. Some inequalities involving the

convolution are derived in (Johansson and Bask 2005)
and is also stated in Lemma 1 below.

Lemma 1. Let F (t) ∈ Rn×m and H1(t),H2(t) ∈
Rm×q then

a) F ≥ 0 and H1 ≥ H2 then F ∗ H1 ≥ F ∗ H2

b) |F ∗ H1| ≤ |F | ∗ |H1|

Proof. See (Johansson and Bask 2005). �

The modulus and inequalities of functions are in-
tended to be point-wise. Assume that F (t), G(t) ∈
Rn×q then the modulus |F | is defined by, |F |(t) �

=
|F (t)| for all t ≥ 0, and the inequality, F ≤ G means
that F (t) ≤ G(t) for all t ≥ 0.

3. INEQUALITIES FOR LINEAR SYSTEMS
WITH PARAMETER UNCERTAINTY

An inequality for the modulus of the state of a linear
system with a general input signal g(t) and uncertain
time-varying parameters π was given in (Johansson
and Bask 2005) as

Theorem 1. Consider the bilinear differential equation

ẋ=Ax + N(π ⊗ x) + g
x(0)=x0

(2)

where A ∈ Rn×n, N ∈ Rn×np, π(t) ∈ Rp and
g(t) ∈ Rp. Assume that |π(t)| ≤ Π for all t ≥ 0

and let G(t)
�
= eAt. Let H(t) ∈ Rn×n be a function

that satisfies H ≥ |GN |(Π ⊗ In). If ‖H‖ < 1 for
some induced operator norm ‖ · ‖ then (I −H)−1 is a
bounded operator and

|x| ≤ (I − H)−1(|Gg + Gx0|) (3)

Proof. See (Johansson and Bask 2005). �

In the special case (1) of (2) the input, g, is composed
of both known, u and unknown, π input signals lin-
early.

Corollary 1. Consider the uncertain system (1) and
define G(t) and H(t) as in Theorem 1. Let Γ(t) ≥
|G(t)| for all t ≥ 0, then

|y| ≤|C|(I − H)−1(|GBu| + Γ|E|Π + |Gx0|)
+|Du| + |F |Π (4)



Proof. The modulus of the output is

|y| =|Cx + Du + Fπ|
≤|C|(I − H)−1(|Gg + Gx0|) + |Du| + |F ||π|
≤|C|(I − H)−1(|GBu| + Γ|E||π| + |Gx0|)

+|Du| + |F ||π|
where the first inequality comes from Property 1a-1c
and Theorem 1. The second inequality results from
using g = Bu + Eπ in combination with Property
1b, Lemma 1, and the assumption |G| ≤ Γ. Utilizing
the assumption |π| ≤ Π completes the proof. �

4. THRESHOLD PARAMETER DESIGN

The residual evaluation algorithm is composed of a
threshold σ which is compared to the modulus of
the residual |r| and an alarm is raised at time t if
|r|(t) ≥ σ(t). The threshold is generated by a linear
dynamical system and depends on the upper bounds
on the uncertainties, Π which are unknown. So far the
thresholds have been designed by manually tuning a
set of parameters, π∗, see (Johansson and Bask 2005),
(Bask and Johansson 2004), such that the threshold
is larger than the residual for a set of test data. In this
section, an automatic way to determine the parameters
π∗ is suggested.

Assume that the fault detection residual can be de-
scribed as the output of an error system of the form
(1) with B = D = 0. Then an upper bound for
the modulus of the residual is given by Corollary 1,
i.e. |r| ≤ |C|(I − H)−1(Γ|E|Π + |Gx0|) + |F |Π.
This expression would be an ideal threshold but un-
fortunately Π is unknown. This problem is solved by
substituting Π with the design parameters π∗ in the
threshold. Another problem is finding H to satisfy
H ≥ |GN |(π∗ ⊗ In) which may be solved by finding
a realizable

Γ(t)
�
= CΓeAΓtBΓ ≥ |G(t)| (5)

and choosing

H∗(t)
�
=Γ(t)|N |(π∗ ⊗ In)
≥|G(t)||N |(π∗ ⊗ In)
≥|G(t)N |(π∗ ⊗ In)

(6)

The resulting threshold is

σ =|C|(I − H∗)−1(Γ|E|π∗ + |Gx0|) + |F |π∗ (7)

and the design parameter π∗ is chosen such that σ ≥
|r| when no fault is present. Later on, it will be
convenient to express the error system in transformed
coordinates which is enabled by Lemma 2.

Lemma 2. Assume the bilinear system is described by
(1) and let

z = Txx + Tππ (8)

then, assuming that the uncertainties are small so that
π ⊗ π may be neglected, the dynamics of z can be
expressed as

ż=AT z + NT (π ⊗ z) + BT u + ET πT

y=CT z + DT u + FT πT
(9)

where

AT =TxAT−1
x ET =

[
TxE − TxAT−1

x Tπ Tπ

]
BT =TxB NT =TxN(Ip ⊗ T−1

x )
CT =CT−1

x FT =
[
F − CT−1

x Tπ 0
]

DT =D πT =
[
π π̇

]T

(10)

Proof.

ż = Txẋ + Tππ̇
=Tx(Ax + N(π ⊗ x) + Bu + Eπ) + Tππ̇
=TxAT−1

x z + TxAT−1
x Tππ + TxN(π ⊗ (T−1

x z))
−TxN(π ⊗ (T−1

x Tππ)) + TxBu + TxEπ + Tππ̇
=TxAT−1

x z + TxN(Ip ⊗ T−1
x )(π ⊗ z)

−TxN(Ip ⊗ T−1
x Tπ)(π ⊗ π) + TxBu

+(TxE − TxAT−1
x Tπ)π + Tππ̇

where the second, third and fourth equality comes
from (1), (8) and Property 2a, respectively. The output
can be described as

y=Cx + Du + Fπ
=CT−1

x (z − Tππ) + Du + Fπ
=CT−1

x z + Du +
[
F − CT−1

x Tπ) 0
]
πT

=CT z + DT u + FT πT

where (8) was used. Utilizing the assumption that π ⊗
π can be neglected completes the proof. �

The design parameters, π∗, shall be determined such
that σ ≥ |r|. The purpose of the following theorem
is to recast the problem of finding π∗ into satisfying a
linear inequality condition.

Theorem 2. Let the residual r be generated by the
error system (1) with B = D = 0, r = y and assume
that |N |(Ip ⊗|C|+|F |) = 0. Define σ, Γ and H∗ as in

(7), (5) and (6), respectively, with G(t)
�
= eAt and let

Ω
�
=Γ|E| + |C|+|F | + Γ(|N |(Ip ⊗ |C|+|r|))

β
�
=|C|+|r| − |Gx0|

Choose π∗ such that

Ωπ∗ − β ≥ 0

then σ ≥ |r|.

Proof. Define the function ζ
�
= Ωπ∗−β ≥ 0. The last

term of Ωπ∗ can be written as

Γ(|N |(Ip ⊗ |C|+|r|))π∗=Γ ∗ |N |(Ip ⊗ |C|+|r|)π∗

=Γ ∗ |N |(π∗ ⊗ In)|C|+|r|
=H∗|C|+|r|



where Property 2c and (6) was used. Furthermore,

H∗|C|+|F | = Γ ∗ |N |(π∗ ⊗ In)|C|+|F |
=Γ ∗ |N |(Ip ⊗ |C|+|F |)(π∗ ⊗ Ip) = 0 (11)

where Property 2c was used in the second equality
and the last equality follows from the assumption that
|N |(Ip ⊗ |C|+|F |) = 0. Thus

0 =Ωπ∗ − β − ζ
=Γ|E|π∗ + |C|+|F |π∗ + H∗|C|+|r|
−H∗|C|+|F |π∗ + H∗|C|+|F |π∗

−|C|+|r| + |Gx0| − ζ

Some rearrangement yields

(I − H∗)|C|+|r| = Γ|E|π∗ + |Gx0| − ζ
+(I − H∗)|C|+|F |π∗ + H∗|C|+|F |π∗

Applying the operator (I − H∗)−1 results in

|C|+|r| = (I − H∗)−1(H∗|C|+|F |π∗ − ζ)
+(I − H∗)−1(Γ|E|π∗ + |Gx0|) + |C|+|F |π∗

Using (11) and multiplying with |C| form the left and
using the knowledge that |C||C|+ = I gives

|r| =|C|(I − H∗)−1(Γ|E|π∗ + |Gx0|) + |F |π∗

−|C|(I − H∗)−1ζ
=σ − |C|((I − H∗)−1 − I)ζ − ζ

Finally, since ζ ≥ 0 and the impulse response of (I −
H∗)−1−I is positive (see Lemma 3 in (Johansson and
Bask 2005)) it is concluded that σ ≥ |r|. �

Remark 1. In Theorem 2 it was assumed that |N |(Ip⊗
|C|+|F |) = 0. Since, by Property 2a, |N |(Ip ⊗
|C|+|F |) = |N |(Ip ⊗ |C|+)(Ip ⊗ |F |) this is true if
either of the following is true.

|N |(Ip ⊗ |C|+) = 0
|F | = 0 (12)

The latter can always be accomplished by the transfor-
mation described in Lemma 2 so that the new matrix
F becomes F−CT−1

x Tπ = 0. To achieve this, choose

e.g. Tπ =
[
FT 0

]T
and T−1

x =
[
C+ Λ

]
where Λ

is chosen such that Tx is invertible which is possible
since C+ ∈ Rn×l and rank(C+) = l.

4.1 Optimizing the threshold

When the vector π∗ is to be determined, using The-
orem 2, measurements without faults are required.
These measurements will be discrete in time and
consequently the conditions in Theorem 2 may be
checked at the time instances kh where h is the sam-
pling interval and k is the sample number. Since it
is also desirable that (I − H∗)−1 is stable, the set

of admissible parameters is defined as D = {π∗ ≥
0|Σπ∗ ≥ ς, (I − H∗)−1 is stable} where

Σ=
[
Ω(h)T Ω(2h)T · · · Ω(Mh)T

]T

ς=
[
β(h)T β(2h)T · · · β(Mh)T

]T

and M is the total number of time instances. It is
desirable to write the criterion that π∗ ∈ D as simple
as possible. Therefore, the condition that (I − H∗)−1

is stable, will be approximated by a linear inequality
in π∗, see Lemma 3.

Lemma 3. Let H(t) = CeAtB ≥ 0. Then (I −H)−1

is stable if

−CA−1B1n − 1n ≤ 0 (13)

Proof. The small gain theorem states that if ‖H‖ < 1
then (I − H)−1 is stable. The norm ‖H‖ is any
induced operator norm, e.g. the ∞-norm defined by
‖H‖∞ = maxi ‖Hi‖1 where Hi(t) is the i:th row of
the impulse response of H and ‖ · ‖1 is the 1-norm for
signals. Thus

‖Hi‖1=
∫ ∞

0

|Hi(τ)|1ndτ =
∫ ∞

0

eT
i |H(τ)|1ndτ

=eT
i

∫ ∞

0

|H(τ)|dτ1n = eT
i

∫ ∞

0

H(τ)dτ1n

=−eT
i CA−1B1n

where ei is column i of an identity matrix. The
last equality is easy to show by taking the Laplace
transform of the impulse response and using the
final value theorem. Thus ‖H‖∞ < 1 if and
only if −eT

i CA−1B1n < 1 ∀i or equivalently
−CA−1B1n < 1n �

By using Lemma 3, a stability criterion for (I−H∗)−1

can be defined as −CΓA−1
Γ BΓ|N |(π∗ ⊗ In)1n <

1n which using Property 2c may be written as
−CΓA−1

Γ BΓ|N |(Ip ⊗ 1n)π∗ < 1n.

In conclusion, the criterions on π∗ can be expressed
as linear inequality conditions. An optimal choice of
π∗ can be found by minimizing Ωπ∗ − ς with respect
to some norm. When the 1-norm is used then this is
equivalent to minimizing

∑Mn
i=1 Σiπ

∗ where Σi is the
i:th row of Σ. The linear optimization problem to find
π∗ can thus be stated as

min{
Σ∗π∗ ≤ ς∗

π∗ ≥ 0

Ψπ∗ (14)

where

Ψ= 1T
MnΣ, ς∗=

[
ςT 1T

n

]T

Σ∗=
[
ΣT (CΓA−1

Γ BΓ|N |(Ip ⊗ 1n))T
]T

Equation (14) can be solved by linear programming
and the global minimum can be found.



5. APPLICATION TO JET ENGINE FAULT
DETECTION

5.1 Jet engine process model

The temperature at the compressor inlet (T25), in a
turbofan engine, is modelled by the following linear
time-varying, first order differential equation,

ẋ(t)=a(t)x(t) + b(t)
y(t)=x(t) + πy(t) (15)

where x(t) and y(t) are the T25 temperature and the
measurement of T25, respectively. The signal πy is
measurement noise while a(t) and b(t) are nonlinear
functions of other measurements in the jet engine, but
the functions in detail are omitted here. The functions
a and b are uncertain and it is thus assumed that a =
â + πa and b = b̂ + πb where hat signifies the known
nominal value. The uncertainties can be collected into
one vector as π =

[
πa πb πy

]

5.2 Residual generation

As residual generator a linear observer with integral
action and time-varying feedback is chosen. The ob-
server is

˙̂x=âx̂ + b̂ + ι + Kx(y − ŷ)
ι̇=Lι(y − ŷ)
ŷ=x̂

(16)

By choosing Kx(t)
�
= â(t) + Lx, the estimation error

dynamics becomes time-invariant. The initial condi-
tions, x̂(0) and ι(0) are chosen to be zero. Due to the

integral action the residual, r
�
= y − ŷ, will converge

to zero even in the presence of the uncertainties π.
The integral action introduces high-pass filtering of
the residual, which is desirable since increased sensor
noise is to be detected by the fault detection algorithm.

The dynamics of the estimation error, x̃ = x − x̂ and
the integral state can be written as

˙̃x=−Lxx̃ + πax − ι − Kxπy + πb

ι̇=Lι(y − ŷ) = Lιx̃ + Lιπy
(17)

This system will not fulfill |N |(Ip ⊗ |C|+|F |) = 0,
see Remark 1, so it needs to be transformed which can
be accomplished using Lemma 2. In (Johansson and
Norlander 2003) another parametrization was used
and will also be chosen here. A new state variable is
introduced as ξ = πax− ι for which the dynamics are

ξ̇ =πa((â + πa)x + b̂ + πb) + π̇ax − Lι(y − ŷ)
=πa(ây + b̂ + πb + ι) + πaξ − πaâπy

+π̇a(y − πy) − Lιx̃ − Lιπy

(18)

where ι was added and subtracted in the first paren-
theses to get the equality. Products between uncertain-
ties, πaaπy , πaπb and π̇aπy are assumed to be small

and are therefore neglected. The transformed system
together with the residual, r = y − ŷ, can thus be
written as

ξ̇=−Lιx̃ + πaξ + HξπT
˙̃x=−Lxx̃ + ξ + HxπT

r=x̃ + HrπT

(19)

where

Hξ=
[
ây + b̂ + ι 0 −Lι y

]
Hx=

[
0 1 −Kx 0

]
Hr=

[
0 0 1 0

]
πT =

[
πa πb πy π̇a

]
By defining the new state vector z =

[
ξ x̃

]T
the error

system can be written in the form (1) with

A
�
=

[
0 −Lι

1 −Lx

]
N

�
=

[
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]
B

�
=0

E
�
=

[
Hξ

Hx

]
C

�
=

[
0 1

]
D

�
=0 F

�
=Hr

(20)

It is then straightforward to show that |N |(Ip ⊗
|C|+) = 0 which, according to Remark 1 implies that
|N |(Ip ⊗ |C|+|F |) = 0, which is a prerequisite for
Theorem 2.

5.3 Uncertainty level derivation

The threshold for the detection algorithm is (7). The
observer is assumed to have converged before using
the detection algorithm and therefore the initial value
x0 is assumed to be zero. The threshold can thus be
written as

σ = C(I − H∗)−1Γ|E|π∗ + Fπ∗

where H∗(t) = Γ(t)|N |(π∗ ⊗ I2). In the threshold,
an upper bound Γ(t) for the modulus of the impulse
response matrix G(t) = eAt is required. It is straight-
forward to show that a suitable Γ, expressed in the
Laplace domain, is

(LΓ)(s)=
1

s2 + Lxs + Lι


s + Lx Lι

1
sLx/2 + Lι√

L2
x/4 − Lι




Furthermore, a vector of parameters, π∗, needs to
be obtained which can be done by using (14). The
functions β and Ω in Theorem 2 are

Ω=ΓE + |C|+F + Γ|N |(I4 ⊗ |C|+|r|)
β=|C|+|r|

where |C|+ =
[
1 0

]T
.

5.4 Experimental result

The fault detection algorithm has been tested on data
collected from an turbofan engine. The observer pa-
rameters are

Lx = 5, Lι = 2
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Fig. 1. A part of the identification data set is shown
in figure a. Figure b shows the validation data
set without any fault and c the validation data
set with a white noise disturbance added to the
measured T25 signal from t = 60s.

which were tuned manually in order to obtain an
observer residual resembling white noise.

The total identification data set, from which π∗ is
obtained using (14), is 450 seconds and a part of the
this data set is shown in Figure 1a. A validation data
set where no fault in the temperature sensor is present
is shown in Figure 1b. The third figure, Figure 1c,
shows the residual and the threshold when a fault is
simulated by adding a disturbance to the measured
signal, y(t), from time t = 60. The disturbance is a
white noise signal with standard deviation 0.85. The
residual exceeds the threshold and an alarm is raised
at 1.1 second after the fault has occurred.

6. CONCLUSIONS AND FUTURE WORK

A model-based fault detection algorithm for linear
systems with parameter uncertainty is presented. The
residual is the output of a bilinear system with the
uncertainties as input. The modulus of the residual
is compared to a threshold which is generated by a
linear system with upper bounds on the uncertainties
as parameters. These bounds are in general unknown
and are therefore replaced by a vector of parameters
that has, so far, been tuned manually. In this paper, an

automatic way to determine them by linear optimiza-
tion is presented.

A fault detection algorithm to identify faults in a
temperature sensor in the turbofan engine is developed
using the presented algorithm and tested successfully
with measured data.
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