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Abstract: In this paper a double integrator system with delayed input controlled
by a sub-optimal second order sliding mode control law is considered. The case
when the system is affected by a bounded, uncertain dissipative drift term is
investigated. It is proven that, due to the input delay, the limit system trajectories
are periodic. Moreover it is shown that the amplitude of the limit cycle is reduced
by the presence of the disturbance. These results are exploited to synthesize a
new control law which guarantees the simultaneous reduction of the amplitude of
the oscillations and the reaching time of any neighbourhood of the limit cycle.
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1. INTRODUCTION

In recent years both the engineering and mathe-
matical communities have paid a great attention
to the research area of systems with time delays
(TDS). This increasing interest is motivated by
several factors. From one side the technological
progress allows the enhancement of the systems
performances, nevertheless the analysis and con-
trol of systems requires the availability of more
and more precise mathematical models. In this
sense the previously neglected time delays must
now be taken into account when modeling the
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systems dynamics. Furthermore communication
networks and information technologies are rapidly
spreading and, considering this kind of systems,
delays play an important role.

From the control point of view, the effects of the
time delays result in two main forms, either the
evolution of the control systems is governed by
equations of retarded type (delay in the state vari-
able), or the time delays are introduced through
the control channel (delay in the input variable).
This second kind of delay can be caused by either
the actuators, or the measurement devices, or
both (Choi and Hedrick, 1996; Kolmanowskii and
Myshkis, 1999). In this paper a class of uncertain
second order control systems with delayed input
is considered.



Classical control methods performances can be
substantially deteriorated by delays, thus specific
controllers have to be designed (for a survey see
e.g. (Richard et al., 2000)).

When considering control systems, important as-
pects, such as robustness with respect to external
disturbances, have to be taken into account. The
design of sliding mode control (SMC) for TDS has
been studied in view of exploiting its properties.
Many of these results consider delays in the state,
where the SMC “philosophy” does not change, but
the sliding surface must be suitably chosen.

The nature of the problem is instead completely
altered if the effect of an input delay in a relay-
type controller is considered. In this case the delay
induces oscillations around the sliding surface.
First order relay control systems with input delay
are considered in (Fridman et al., 2000; Fridman
et al., 2002). It is shown that the resulting motions
are oscillatory and have finite limit frequency.
Moreover zero limit frequency solutions coincide
up to time shifts and the property of zero limit
frequency is stable, while faster oscillations result
in instability. In (Shustin et al., 2003) the authors
consider second order relay control with time de-
lay. In this case it is still possible to prove that
periodic slowly oscillating solutions exist and the
property of zero limit frequency is stable. How-
ever, the wider variety of these solutions results in
a more complicated structure. For example orbital
asymptotic stability can be guaranteed only when
the uniqueness of slowly oscillating solutions holds
and this requires additional assumptions.

In the first part of this paper a double integrator
with delayed input controlled according to a par-
ticular second order sliding mode control method
(Bartolini et al., 1997) is introduced. The effect of
an input time delay on the closed loop system has
been studied in (Levaggi and Punta, 2004) and
(Levaggi and Punta, 2003a). It has been shown
that, whenever the control modulus is constant
throughout the evolution, for any choice of the
control parameters and for any fixed constant
input delay, the limit state evolution is periodic,
thus giving rise in the phase plane to a limit cycle.
Moreover this limit periodic trajectory is unique
and it is globally attractive. The relevant results
about this case are briefly presented in Section 2.

In Section 3 a bounded dissipative nonlinear term
of the type —F'sign y»(t) acting on the control sys-
tem is introduced. It is assumed that the modulus
F' is uncertain but a bound Fjs for F' is known.
It is proved that in this case, once the control
action is chosen to dominate the drift term, the
system reaches a limit cycle. The amplitude and
frequency of the oscillations of both position and
velocity are uniquely determined by the control
parameters, the delay 7 and the drift modulus F'.

Moreover it is shown that, for any fixed feasible
choice of the control parameters, the resulting
limit cycle is smaller than the one obtained in
the unperturbed case. Note that in (Levaggi and
Punta, 2004) and (Levaggi and Punta, 2003a) it
has been shown that if the control law is of a non-
constant intensity, the amplitude and periodicity
of the oscillation of position and velocity can de-
pend on the starting point. Although in this case
too the acceleration modulus is non-constant, the
limit cycle is in contrast unique and stable.

In Section 4 a modification of the control algo-
rithm in Section 2 is proposed. As in (Levaggi
and Punta, 2003b) a time-dependent, piecewise
constant control modulus is defined, which guar-
antees a step by step reduction of the size of
the limit cycle. Due to the presence of the dis-
turbance, the control modulus still has to satisfy
some constraints. This implies that the lower limit
for the size of the attainable limit cycle is non-
zero. Therefore the asymptotic behaviour of the
closed loop system is still a persisting oscillating
one. Nonetheless the proposed control algorithm
assures a faster damping of the oscillations of
both position and velocity. These features are
illustrated by simulation results.

2. A DOUBLE INTEGRATOR WITH
DELAYED INPUT

The control system considered in this section is
the following

g1 = Y2
{y2 =u(t—7), u(d)=ue(), 6e€l[-70] (1)

which is a simple double integrator with scalar
control w, with input subject to a fixed delay
7 > 0. This delay can be interpreted as either
a delay in the actuators or in the sensors in the
case of feedback control.

The following control law for system (1) is defined.
Algorithm 1:

Let U > 0, v € (0,1). When t = 0, set y1,, =
y1(0).

For t € [0,00) repeat the following steps:

if y2(t) = 0 set y1,, = y1(t);
next apply the control

u(0) = —Usign (y1(6) — Y1) (2)

The controlled system (1)-(2) has been studied
in (Levaggi and Punta, 2003a), (Levaggi and
Punta, 2003b): it is shown that the asymptotic
behaviour of both position and velocity is a per-
sisting oscillating one. The resulting limit cycle is



globally attractive and stable. In this section the
relevant results for this case are briefly presented.

The control law (2) is defined through the evolu-
tion of the trajectory’s intercepts with the y; axis,
which can be interpreted as a discrete dynamical
system. Assume that at the initial time the posi-
tion is zg = y1(0) and the velocity is zero; set
§=U7?,

a=2y—1, B=2/61-0q).

For k = 0,1,2,... the following discrete dynami-
cal system is generated

2y = azp —sign(zg) (6 + ﬂ\/@) (3)

Zp+1 = 2k + 0sign (zx) max{0,sign (zx2x)}-

The elements z; represent the useful intercepts
with the y; axis : given 2 the next null-velocity
point is 2;. We skip it if sign (25 2) = —1, since it
is not relevant for the convergence of the sequence.
It can be proven that for all choices of the control
parameters and any delay 7 there exists ko > 0
such that zp2, < 0 for all k > kqg. Therefore for
k > ko we have

zht1 = —sign (zx) f(|2k ),

f(z) = —az+ Bz +0,

which describes the sequence of the intercepts, af-
ter the finite transient to get to kq. It is shown that
the sequence {|zx|} is either eventually monotone
or contractive and thus convergent.

Theorem 2.1. For all choices of the control param-
eters, any delay 7 and any initial value zg, the
sequence

ziaa] = F(l2xl) = £ (Jz0l), (4)

with f(2) = —az + B/z + §, converges to the
unique fixed point of f

63—a+2\/2(1—a)‘ )

(a+1)°

zZ =

Therefore for k tending to infinity the sequence
bounces from the point Z to its symmetric —Z.
The solution of the closed loop (1)-(2) shows a
limit cycle in the phase plane which is centered at
the origin and symmetric with respect to the axes.
The lengths of the intersections with the axes y;
and y» are respectively

dy =UT? g(a), dy = Ut 24/29(0)
where
g(a) = ﬁ(s —a+2/2(0=a)).
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Fig. 1. The starting point is (10,0), up = 0. The
delay is 7 = .1 and the control parameters
are set to U = 1.25 and v = 0.6.

Proof. See Theorem 3.1 and Corollary 3.1 in
(Levaggi and Punta, 2003b).

In Figure 1 both the phase plane plots and the
evolution in time of position, velocity and control
are shown for the simulation of a specific example.
As proved, in the limit the evolution is periodic
and the limit cycle symmetric.

3. A DOUBLE INTEGRATOR WITH
DELAYED INPUT AND FRICTION

In the previous section it has been considered the
effect of an input delay on a double integrator
when controlled by means of a second order vari-
able structure control law. Whatever the choice
of the control parameters the system’s trajectories
are limited. Let us consider the case in which a dis-
sipative nonlinear term of the type —F'signys(t)
acts on the control system. What can be expected,
is that the system reaches a smaller limit cycle.
In this sense, once the control action is chosen
to dominate the drift term, it turns out that
the action of the disturbance can be exploited to
decrease the amplitude of the oscillations.

The considered control system is the following

91(t) = y2(t)
{ 92(t) = —Fsignys(t) + u(t — 7), (6)

with u(0) = ug(8), § € [-7,0], and F > 0. The
friction-like term — F'sign y»(t), which acts on the
system, is uncertain and is bounded, in modulus,
by a known constant Fiy > F'.



The control law for system (6) is still designed
according to Algorithm 1, under the control con-
straint

U > Fy. (7)

As in the unperturbed case the evolution of the
closed loop system depends on the distribution of
the following set of extremal points

{v2(t) : ya(t) = 0}.

Assume, without loss of generality, that at the
initial time the velocity is zero and y;(0) = 0.
Set ug(#) = —Usignzg, 8 € [—7,0]. For the closed
loop system (6)-(2) the next extremal point is
given by

L U(Q'y—l)—l—F_si - Ur2(U - F)
R Gy SIS
2UT+/2(1 — U-F
_sign o 7/2(1 = 7)o )

U+F

Now, if sign(zoZo) > 0, once the position &g
is reached, the control structure changes, and so
does the control sign. However, due to the input
delay, this change will really affect the system
after it has acquired a little velocity. The change
of sign in the acceleration will then annihilate it
and produce another extremal point, closer to zg.
As the behaviour of the closed loop is based on
the convergence of the sequence of intercepts, in
this case only the second one z; is significant

U-F
U+F

T = &g + sign zo max{0, sign (zo2o) }UT>

Recursing the process, the following sequence is
generated: given x let

F
§=Ur? r=_
T

1—r 2y —1+r
o0r =0 =
L 1+r
/BT‘ZQ 61"]-_(11‘),

and for £ =0,1,2,... define
Tr = apzp —signzy (0, + Br/|zk]) 8)

Tpt1 = &k + Op signzy, max{0,sign (zxEx)}-

Since the discrete dynamical system (8) has the
same structure as (3), the analysis of the sequence
of the extremal points in this case can be carried
out along the same lines. The final results follow.

Theorem 3.1. For all choices of the control param-
eters, any delay 7 and any initial value zg, there
exists k1 > 0 such that z,Z; < O for all &k > k;.
For k Z k‘l

Tpy1 = —sign (zx) fr(lzk]),

fr(x) =—-a, T+ ﬂr\/E+ 67'7
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Fig. 2. The starting point is (10,0) and wy =
0. The delay is 7 = .1 and the control
parameters are set to U = 1.25 and v = 0.6.
The drift modulus is F' = 1.

and the sequence
k1] = fr(lzxl) = £ (o)), 9)

converges to the unique fixed point of f,

a_cr=6(1_r)2+r—'y+2\/(1—'y)(1+r)

2(y +1)?

. (10)

Therefore for k£ tending to infinity the sequence
bounces from the point Z, to its symmetric —Z,.
The solution of the closed loop (6)-(2), under the
constraint (7), shows a limit cycle in the phase
plane which is symmetric with respect to the
origin. The lengths of the intersections with the
axes y; and y, are respectively

do = UT 24/29(r,7),

dy = Ur’ g(T', 7)7

where

2471 —v4+2/1-7)1Q+r)
g(r,v) - (1 T) (’Y + T)Q -
It is easy to prove that for fixed v € (0,1) the
function r — g(r,~y) is decreasing, since it is the
product of two non-negative decreasing functions.
Therefore g(r,v) < g(0,7), which means that the
amplitude of the oscillations in the unperturbed
case (r = 0) is greater than for r = F/U # 0.

Simulation results for an example are shown in
Figure 2. Note that, apart from the drift term, the
control parameters are chosen in accordance with
the example in Figure 1. Comparisons between
the two simulation results are also presented. In
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Fig. 3. Comparison between simulation results
in Figure 1 (solid) and Figure 2 (dotted).
The approaching of the limit cycle in the
unperturbed case is faster.
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Fig. 4. Comparison between simulation results in
Figure 1 (solid) and Figure 2 (dotted). The
time axis has been zoomed in to show the
different amplitude of the oscillations for the
two cases.

Figure 3, it is possible to notice that the approach-
ing of the limit cycle in the unperturbed case is
faster, while in Figure 4 is possible to appreciate
the different amplitude of the oscillations for the
two cases.

4. LIMIT CYCLE REDUCTION

The analysis briefly reported in Section 2 shows
that the delayed double integrator (1) cannot
be stabilized by applying the control law (2),
since the asymptotic behaviour of the closed loop
system is a persisting oscillating one.

A control law for the regulation of system (1)
that ensures asymptotic stability for any un-
known input delay 7 was proposed in (Levaggi
and Punta, 2003b). In the unperturbed case the
relevant parameters of the periodic motion are
uniquely determined by the choice of the control

modulus U and the size of the delay 7. The am-
plitude of the oscillations can thus be gradually
decreased by a step by step reduction of the in-
tensity of the control.

In this paper it is considered the case of a double
integrator perturbed by a dissipative drift term
which is bounded in modulus by a known con-
stant. The presence of the uncertain friction-like
action introduces some new elements which must
be taken into account when analysing the con-
trolled system (6)-(2). This time the control law
must satisfy the constraint (7) and this fact must
be considered in view of the limit cycle reduction.
Moreover the periodic motion is determined not
only by the choice of the control parameters U and
v and the size of the delay 7 but even by the mod-
ulus F' of the drift term which is uncertain. The
knowledge of the bound F)s allows to decrease
the amplitude of the oscillations; nevertheless the
step by step reduction of the intensity of the
control cannot be performed till the asymptotic
stabilization. In fact because of the presence of the
uncertainty, there exists a neighbourhood of the
origin which is outside the set of reachable points
of the closed loop system. The control algorithm
used for the reduction of the limit cycle which will
be here proposed, has to be compared with the
one in Section 3 with respect to the time needed
to reach a fixed point in the reachable set.

The control modulus U (#) will now be a piecewise
constant function of time. Fix a starting control
modulus Uy and choose p € (0,1). For I > 0,
set U1 = p(Ul — FM) + Fjr. The definition
could be given by performing the following steps:
let | = 0. Then set the control modulus to U
and keep it constant until the system is near
the limit cycle. In practice, a tolerance ¢ > 0
is fixed and the sequence of singular values is
checked to find a couple of consecutive points
being “almost” symmetric with respect to the
origin. The precision of course depends on . This
can be done because the limit cycle is unique
and thanks to the properties of the sequence
of singular points showed in Theorem 3.1. In
principle, once near the limit cycle, the control
modulus can be reduced by setting [ =1+ 1 and
recursing the procedure.

Algorithm 2:

When t = 0, set z9 = y1(0), kK = 0,1 = 0,
U =Uy>Fy.

For all t € [0,00), proceed as follows:
If y2(t) = 0 then
setk=k+1 and z, = y1(t);
set d = —sign (zx 2x41) | k] — 7]
If d € (0,¢) then
setl=1+1,U;=pU_1— Fy)+ Fu.
It is then applied the control
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Fig. 5. The starting point is (10,0), ug = 0. The
delay is 7 = .1 and the control parameters
are set to Uy = 2, v = 0.6, Fjy = 1.2 and
p = 0.5. The drift modulus is F' = 1.

L
25 30

L L
0 5 10

15
t [sec]

Fig. 6. Comparison between simulation results in
Figure 2 (dotted) and Figure 5 (solid).

u(t) = —U;sign (y1 (t) — v x)- (11)

In Figure 5 the simulation results obtained con-
sidering the system (6) and the control action
(11) are shown. The system parameters refer to
the example in Figure 2. Comparison between
simulation results in Figure 2 and Figure 5 are
presented in Figure 6. For the controlled system
(6)-(11) the approaching time of the limit cycle is
effectively reduced.

5. CONCLUSIONS
In this paper the coupled effect of an input delay

7 and an uncertain dissipative disturbance on a
sub-optimal second order sliding mode control

is analysed. The system trajectories converge to
a limit cycle, which is orbitally asymptotically
stable and globally attractive. The amplitude of
the oscillations of the periodic motions is shown
to be smaller than in the unperturbed case. It is
also proposed a modification of the sub-optimal
control strategy which guarantees a step by step
reduction of the size of the limit cycle, through
the choice of a time-dependent, piecewise constant
control modulus. Although the presence of the
uncertainty prevents the asymptotic stabilization
of the system, the proposed control algorithm
assures a faster damping of the oscillations of both
position and velocity.
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