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Abstract: In this paper, the investigational results for a robust adaptive vibration control 
of a translating tensioned beam with a varying traveling speed are presented. The 
dynamics of the moving beam are modeled as an Euler-Bernoulli beam, in which the 
tension applied to the beam is given as a nonlinear spatiotemporally varying function. The 
moving beam span is divided into two parts, i.e., a controlled span and an uncontrolled 
span, by a hydraulic touch-roll actuator that is located in the middle section of the beam. 
The transverse vibration of the controlled span part is suppressed by the actuator under 
unknown bounded disturbances exerted from the uncontrolled span. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

 
The control problem of axially moving continua 
occurs in such high performance mechanical systems 
as cranes, strips in a thin metal-sheet production line, 
and high-speed magnetic tapes. Dynamics analysis 
and control of axially moving beams have received 
particular and growing attention due to the 
emergence of new applications for deployable 
robotic manipulators (Romero and Vignjevic, 2002). 
Diverse research on the dynamics, stability, and/or 
active/passive controls for axially moving systems 
has been conducted in the last few decades (Yang et 
al., 2005; Choi et al, 2004; Chen et al., 2003; Li et 
al., 2002; Li and Rahn, 2000; Zhu and Li, 2000; Lee 
and Mote, 1999; Wickert and Mote, 1989). However, 
in practical situations, to achieve better control 
performance of the axially moving system, a novel 
point-wise controller incorporating spatiotemporally 
varying tension, time-varying traveling velocity, and 
unknown disturbances from the adjacent span should 
be investigated. 

Fig. 1 shows a typical schematic of a control strategy 
for axially moving continua using a hydraulic touch-
roll actuator. The axially moving beam is divided 
into two spans, i.e., a controlled span and an 
uncontrolled span, by a transverse force actuator as 
shown in Fig. 1. The main objective is to suppress 
the transverse vibration in the controlled span despite 
of unknown bounded disturbances from the 
uncontrolled span.  
 
The contributions of this paper are the following. The 
dynamics of the considered moving beam is modeled 
as an Euler-Bernolli beam, in which the tension 
applied to the beam is given as a nonlinear 
spatiotemporally varying function due to the varying 
traveling speed. To control the traveling beam 
through a hydraulic touch-roll actuator at the middle 
point, a robust adaptive vibration suppression scheme 
is proposed using the Lyapunov method. Since the 
proposed control law depends on the displacement 
and slope measurements on the controlled side of the 
actuator, the vibration suppression of the axially 



 

     

moving beam can be successfully implemented. 
Further, the control scheme proposed can be directly 
applied to axially moving strings 
 
 

2. PROBLEM FORMULATION 
 
In Fig. 1, the roll at 0=x  is assumed to be fixed. 
Also, assume that there is the eccentricity of the 
support roll at Tlx =  that causes a periodic excitation 
at the right boundary of the beam. The two touch 
rolls, where the control input (force) is exerted from 
the hydraulic actuator, are located at lx =  in the 
middle section of the beam. Note that the vibration 
energy of the uncontrolled span part cannot converge 
to zero due to the periodic excitation at Tlx = , 
however, uniform ultimate boundedness can be 
concluded, which will be proved in Section 3 
following. Such undesired vibration of the 
uncontrolled span gives an effect to the hydraulic 
actuator like an external force. The unknown but 
bounded external force applied to the actuator can 
then be treated as a right boundary disturbance on the 
controlled span part. 
 
Let t  be the time, x  be the spatial coordinate along 
the longitude of motion, )(tvs  be the varying axial 
speed of the beam, 0)( >tvs  for all t , ),( txw  be the 
transversal displacement of the beam at spatial 
coordinate x  and time t , and l  be the length of the 
controlled span part. Also, let ρ  be the mass per unit 
length, A  be the cross-sectional area, E  be the 
coefficient of elasticity, I  be the moment of inertia 
of the beam cross section, and ),( txTs  be the 
spatiotemporally varying tension applied to the beam. 
Let the mass and damping coefficients of the 
hydraulic actuator be cm  and cd , respectively. The 
control force )(tfc  is applied to the touch rolls to 
suppress the transverse vibrations of the axially 
moving beam. )(td  denotes the unknown but 
uniformly bounded external disturbance force 
exerting on the actuator due to the transverse 
vibration of the uncontrolled span. 
 
Now, Hamilton’s principle for translating continua 
(Yang et al., 2005) is utilized and then the following 
nonlinear equation of motion of the Euler-Bernoulli 
beam traveling at a varying velocity )(tvs  between 
two support rolls separated by a distance l  is 
obtained: 
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The boundary conditions are given as 
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The term )23( 2
xs EAwT +  in (1) is often called a 

nonlinear tension. 
 
Remark 1: In this paper, ),( txTs  in (1) is given as  

  ))((),( 0 sTs vegxlATtxT &−−−= ρ , (4) 
where 0=e  for the horizontally translating beam, 

1=e  for the vertically translating beam, and g  and 

0T  denote the gravitational acceleration and the 
initial tension applied to the beam, respectively.  
Remark 2: Provided that there is no big disturbance 
in the system, ),( txTs  can be assumed to be 
continuous and uniformly bounded, as follows: 
 max,min,     ),(  0 sss TtxTT ≤≤< , max,)(    )( tsts TT ≤ , 
 and max,)(    )( xsxs TT ≤ , (5) 
for all ],0[ lx ∈ , 0≥t , and some a priori known 
constants min,sT , max,sT , max,)( tsT , and max,)( xsT , where 

sTts vxlAT &&)()( −=ρ  and )()( sxs vegAT &−= ρ  from (4). 
Considering practical situations such as a high-
tensioned beam under axial transport processing, it 
can be assumed that the lower bound min,sT  is larger 
than both max,)( tsT  and max,)( xsT  due to the high 
tension limit. However, for some visco-elastic 
materials such as synthetic rubber and synthetic fiber, 
in which such a high tension is not required, the 
fluctuating )(tvs  might not guarantee >min,sT  

])(,)max[( max,max, xsts TT . 
 
In order to provide a specific idea regarding how a 
boundary control works, the dynamics of the moving 
beam with both fixed right and left boundaries is first 
analyzed. The vibration energy )(tEbeam  of the beam 
is given by 
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The time derivative of )(tEbeam  in (6) is now 
evaluated by applying the one-dimensional transport 
theorem of moving material (see Yang et al., 2005) 
as follows: 
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Thus, it is concluded that for the traveling beam, the 
beam bending moment or beam force occurring on 
the right boundary lx =  and the time rate of the 
change of tension ),( txTs  should be properly handled 
in order to decrease the vibration energy )(tEbeam  
 
 

3. ROBUST ADAPTIVE CONTROL 
 
In this section, robust adaptive control laws that 
suppress the transverse vibration of the beam 
governed by (1)-(3) is derived, and the stability of the 
closed-loop system under the control law is proven.  
 
Lemma 1: The beam vibration energy beamE  in (6) 
and the following function are equivalent: 
 beambeam EV α= ( )∫ ++

l
xstx dxwvwxwA

0
βρ . (8) 

where 1βαβ <  and { }min,1   ,1max sTAl ρβ ⋅= .      []  
 



 

     

Hence, with Lemma 1 and assuming that the 
disturbance )(td  is uniformly bounded by dµ , i.e., 

)(tdd ≥µ , where dµ  is an unknown positive 
constant, a positive definite functional )(tV , as the 
total energy of the moving beam system including 
the actuator, is defined as follows: 
  distactbeam VVVtV ++=)( , (9) 
where  
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where dµ̂  is the adaptive estimate of dµ , which will 
be specified in Theorem 1 following.  
 
In this paper, the functional )(tV  in (9) is considered 
as a Lyapunov function candidate. For sufficiently 
high tension as mentioned in Remark 2, the positive 
values α  and β  can be chosen to satisfy 

( ) ( ){ } 0 )()( max,max,
2

min, >+−−− xsstsss TvlTAvT αβαρβ . 
Finally, the main theorem of this paper is stated as 
follows: 
 
Theorem 1: Consider system (1)-(3). Let the control 
force )(tfc  be given by 

)()()()()()( 21 tflwvmlwgdlwgtf dxsctcxtc +−−+−= & ,(12) 
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and the additional term )(tfd  is regarded as a new 
input signal determined based on robust control 
strategy and is given by 
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where { })() ()( )( lwlvlwlw xst βαα ++=  and 0>dε . 
The adaptation law dµ̂  in (14) is proposed as 
follows: 
  )()(ˆ)(ˆ lwtt dddd γµδµ +−=& , (15) 

where 0>dδ  and 0>dγ .  Suppose that 2)( ss AvlT ρ>   

and ( ) ( ){ } 0 )()( max,max,
2

min, >+−−− xsstsss TvlTAvT αβαρβ . 
Then, the dynamics of the closed-loop system is 
uniformly ultimately bounded, that is, 
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Since υ  in (16) is a uniformly bounded positive 

constant as d
d

d
d µ

γ
δ

ε
2

+ , the uniform ultimate 

boundedness region of )(tV  can be made arbitrarily 
small near to zero by making sufficiently small dε , 

dδ  and relatively large dγ  (see Corless and  
Leitmann, 1981). 
 
Remark 3: From (12)-(16), it is seen that the closed-
loop system with the control law cf  without df  in 
(12) can be exponential stable if the effect of the 
disturbance )(td  from the uncontrolled span is 

ignored, i.e., teVtV λ−≤ )0()(  from (16). Also, in the 
case, the open-loop system with only the boundary 
damping can be stable if the damping coefficient is 
sufficiently large from (16). However, the damping 
value never gives any effect to the slope terms as 
shown in (16) and which means how large damping 
value cannot improve the performance of the open-
loop system. Further, the effect of )(td  cannot be 
such simply disregarded in actual systems and then 
the closed-loop system with only cf  as well as the 
open-loop system in the case would not guarantee 
any stability, without mentioning the exponential 
stability. 
 
Remark 4: Note that Theorem 1 is a sufficient 
condition but not a necessary condition since the 
value of tsT )(  is impossible to maintain as a positive 
value for all t  in an actual system, given that it is 
close to a periodic pattern. Hence, for a system with 
high-frequency variation of the tension, that is, 

max,min, )( tss TT αβ < , the stability analysis of the 
closed-loop system should be performed via complex 
mathematic schemes and/or numerical simulations by 
considering the system parameters and control gains. 
However, in the case of non-viscoelastic materials 
(see Remark 2), for almost all translating beams, 
such as a high-tensioned steel strip in actual 
processing lines, the proper control gains satisfying 
the conditions in Theorem 1 can be assured. 
 
Remark 5: Robust adaptive control laws (12)-(15) are 
given for velocity )(lwt , slope )(lwx , and slope rate 

)(lwxt  on the controlled side of the actuator at lx = . 
By using an encoder (or photodiode) on the actuator 
and two laser sensors, the actuator displacement )(lw  
and the slope )(lwx  on the actuator, respectively, can 
be measured. The actuator velocity )(lwt  and the 
slope rate )(lwxt  can then be implemented by the 
backward differencing of the signals (see Li et al., 
2002; Li and Rahn, 2000). 
 
Remark 6: Consider beamV  in (8) for Tlxl <<  which 
is equivalent to the mechanical energy of the 
uncontrolled span. Since time-varying conditions at 
the left and right boundaries of the uncontrolled span 
part are really bounded, it can be easily concluded by 
using Lemma 1, Lemma 3, and Theorem 1 that the 
mechanical energy of the uncontrolled span is 



 

     

uniform ultimate bounded. However, the uniform 
ultimate boundedness region could not be made 
arbitrarily small despite of the control action at lx =  
due to the periodic excitation of the support roller at 

Tlx = . 
 
Remark 7: Note that a dynamic model of a time-
varying translating string can be easily obtained by 
setting 0=E  in the beam model given as (1)-(3). 
Hence, the robust adaptive controller proposed can 
be directly applied to the axially moving string 
system without any modifications for ensuring the 
vibration reduction. 
 
 

4. NUMERICAL SIMULATIONS 
 
In this section, the effectiveness of the robust 
adaptive controller proposed is illustrated by 
numerical simulations using a finite difference 
scheme. The parameter values used for the beam are 
as follows: 3kg/m  700=ρ , 25 m 1035 −×=A , 

43 m )/12005.007.0( ×=I , m 25=l , m 25=− llT , 

and 28 N/m 102×=E . Also, the parameters and control 
gains of the control laws in (12)-(15) are given as 

kg 2=cm , N/m/sec 5.0=cd , 1=α , 015.0=β , 
310−=dγ , 510−=dδ , and 610−=dε . Let the initial 

conditions of the beam satisfying (2) be 
m )()()103.0()0,( 2328 xlxlxxw T −−×= − , m/sec 0)0,( =xwt ,  

and the initial conditions of the proposed controller 
be zero.  
 
To show the influence of the time-varying speed and 
control gains on the system’s stability, only the 
controlled span is first considered, i.e., the 
uncontrolled span in Fig. 1 is disregarded. Hence, in 
the case, the exponential stability can then be 
guaranteed for the closed-loop system using only cf  
without df  in (12) as mentioned in Remark 4. The 
simulation results of this system are presented in Figs. 
2-5: Fig. 2 depicts the vibration energy )(tEbeam  in 
(6) of the time-varying beam system with 

 10sin2)( ttvs +=  m/sec and the time-invariant beam 
system with m/sec 2=sv , respectively, under the 
proposed controller, for which the initial tension was 
given as N 1150 =T . As shown in Fig. 2, the 
vibration energy of the time-varying beam system 
diverges despite the boundary controller at lx = , 
whereas that of the time-invariant beam system 
converges. This instability result of the time-varying 
beam system is due to 612)( 8.0 max,min, ≅<<≅ tss TT αβ , 
as analyzed in Section 2 and Section 3.  
 
Fig. 3 shows the influence of the control gains α  
and β  in (12), in which the control gain β  was 
given as 001.0  and 038.0 , respectively, instead of 

015.0=β . For this simulation, the varying traveling 
speed and the initial tension of the moving beam 
were given as ttvs 3sin01.02)( += m/sec  and 

N 1150 =T , respectively. As analyzed in Theorem 1 
and Remark 3, it is seen from Fig. 3 that the 
exponential index λ  in (17) depends on the values of 
α  and β ; accordingly, )(tEbeam  of the system with 
higher β  decays more quickly. However, the value 
of β  cannot be set too high due to the limit 
mentioned in Theorem 1; here the limit is 

04.0/ =< lαβ . Even though a local increase in 
)(tEbeam  of the closed-loop system is shown in Fig. 3, 

it is verified from Fig. 4 that the Lyapunov energy 
)(tV  in (27) still exponentially decays without any 

local increases, as analyzed in Remark 3.   
 
In Fig. 5, the closed-loop system given as Fig. 4 was 
compared with the open-loop system with only the 
boundary damping set by N/m/sec 105 4×=cd . From 
the result, it is seen that )(tEbeam  of the open-loop 
system controlled by the boundary damper converges 
more slowly than that of the closed-loop system with 
the feedback boundary controller proposed despite 
such a high damping value as analyzed in Remark 4. 
Further, the present damping value N/m/sec 105 4×=cd  
is too large to be implemented in an actual system. 
 
Now, consider the total span containing the 
uncontrolled span part as shown in Fig. 1. The 
simulation results of the time-varying translating 
beam and string are demonstrated through Figs. 6-7 
and 8-9, respectively: For the beam, the varying 
translating speed, the initial tension, and the periodic 
excitation at Tlx =  were given as 

ttvs 3sin2.01)( += m/sec , m 30sin5.0)( tlw T = , 
and N 50000 =T , respectively. Fig. 6 shows the 
vibration energy )(tEbeam  of the controlled and 
uncontrolled spans using only cf  without df , in 
which it is clearly seen that )(tEbeam  of the closed-
loop system doesn’t converge to zero any more and 
remains at a level due to the vibration effect of the 
uncontrolled span as mentioned in Remark 3. Hence, 
to overcome the unknown undesired vibration effect 
from the uncontrolled span, robust adaptive laws 
(14)-(15) are also needed. Fig. 7 depicts the vibration 
energy )(tEbeam  of the controlled and uncontrolled 
spans using cf  with df . As analyzed in Theorem 1 
and Remark 6, it is seen from the results that the 
initial vibration energy of the controlled span 
dissipates asymptotically with the control action at 

lx =  while the vibration energy of the uncontrolled 
span still remains almost at the same level. Also, a 
local increase in the mechanical energy is shown due 
to the boundary disturbance on the controlled span 
part 
 
The same results as the above can be obtained for the 
string as mentioned in Remark 8. Figs. 7 and 8 show 
the vibration energy )(tEbeam  in (13) of the 
controlled and uncontrolled spans using only cf  
without df  and using cf  with df , respectively, 
where the varying translating speed, the initial 



 

     

tension, actuator mass, and the periodic excitation at 
Tlx =  were given as ttvs 3sin2.01)( +=  m/sec , 

N 26000 =T , kg 5.0=cm , and m 30sin25.0)( tlw T = , 
respectively, and the initial conditions were given as 

m  6sin5.0)0,( xxw π=  and m/sec 0)0,( =xwt .  
 
As shown in Figs. 7 and 9, )(tEbeam  of the closed-
loop system controlled by the robust adaptive control 
laws in (12)-(15) converges in a stable manner, and, 
also, the control gains given by 1=α  and 015.0=β  
would never be an implementation problem. The 
transverse displacement )(lw  at the middle point and 
the control input force )(tfc  in (12), used in 
obtaining Figs. 6-9, are predicted to converge near to 
zero from the results. Also, it is easily predicted that 
the value dµ̂  to estimate the unknown disturbance 
d  converges to a constant value because )(lwt  and 

)(lwx  approach near to zero, however, it is noted that 
the convergence of the estimated parameter to the 
exact value is not essential in this control scheme. 
 
 

5. CONCLUSIONS 
 
This paper has investigated a robust adaptive control 
scheme to suppress the transverse vibration of an 
axially moving beam with a varying traveling speed 
and a nonlinear spatiotemporally varying tension. 
Since the feedback terms in the control laws are the 
velocity, slope, and the slope rate on the controlled 
span side of the actuator, the vibration suppression of 
the controlled span can be successfully implemented 
while ensuring the bounded vibration of the 
uncontrolled span. Because the beam was modeled as 
an Euler-Bernoulli beam equation with a time-
varying speed, the control method developed can be 
applied to any system including string and belt 
systems in a similar form. In our future research, the 
proposed control strategy will be extended to 
applications, such as axially moving continua with 
arbitrarily varying lengths including elevators, cranes, 
and robotic manipulators with axially moving 
flexible arms, in which the traveling velocity and 
tension terms are truly described as time-varying and 
spatiotemporally varying functions, respectively. 
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Fig. 1  A control-oriented model of the axially moving 
beam with a hydraulic actuator. 

 

 
 

Fig. 2  Instability of the time-varying case: 
2/)(tEbeam  with tvs 10sin2 +=  m/sec (solid line) and 

)(tEbeam  with 2=sv m/sec (dotted line). 



 

     

 
Fig. 3  The effect of control gain β : 

)(tEbeam  with 038.0=β  (solid line) and that with 
001.0=β  (dotted line). 

 
Fig. 4  Comparison of )(tEbeam (solid line) and )(tV  

(dotted line): 038.0=β . 

 
Fig. 5 Comparison of )(tEbeam  of the closed-loop system 
(solid line) and that with 0=cf  (open-loop, dotted line). 

 

 
Fig. 6 Responses of the closed-loop system without 

disturbance compensation, that is, df  in (12) is zero: 
)(tEbeam of controlled span (solid line) and uncontrolled 

span (dotted line) 

 
Fig. 7 Responses of the closed-loop system (see Fig. 6) 

with a df -term: improvement is shown. 
 

 
Fig. 8 Responses of the axially moving string (i.e., (1)-(3) 

with E = 0) when 0=df  in (12). 
 

 
Fig. 9  Responses of the axially moving string (see Fig. 8) 

with a df -term. 
 
 


