

INTRODUCING A NEW MATHEMATICAL ABSTRACTION
FOR MODELING REAL TIME SYSTEMS

Vasileios Deligiannis, Stamatis Manesis

University of Patras
Electrical & Computer Engineering Dept.

Division of Systems and Control
<bdeligiannis, stam.manesis>@ee.upatras.gr

Abstract: Due to the increasing complexity of industrial production systems, there exists a
need for the development of efficient formal approaches for their analysis and control.
Various methods have been proposed and examined from researchers, without being
widely adopted for direct industrial use. In general, an industrial production line can be
modelled as a Discrete Event System, but a more accurate representation would result, if
we considered it as a real-time system. This paper presents a new mathematical
abstraction for modelling real-time systems. In comparison with the conventional
methods, the proposed method introduces new formulation parameters and handles
variables in a different manner. It gives the opportunity to handle both discrete and real
valued variables as inputs, outputs or both. A formal definition of the method is given and
some examples of computations or runs of two typical examples are also presented.
Copyright © 2005 IFAC

Keywords: Real-time systems, discrete-event systems, formal method, automata,
industrial production systems.

1. INTRODUCTION

In general, an industrial production line consists of
various types of devices (e.g. robots, NC machines,
actuators, sensors, etc.) controlled by either
centralized or decentralized controllers. From a
planning and control perspective, an industrial
production line can be seen as a dynamic system
whose states evolve according to the occurrence of
abrupt physical events, thus exhibiting the
characteristics of a Discrete Event System (DES). In
the past, automated manufacturing DESs have
usually been sufficiently simple that intuitive or ad-
hoc control solutions have been adequate (Ramadge
and Wonham, 1989). However, the increasing
complexity of these systems and the requirement of
fast system response have created a need of formal
approaches for their analysis and control
(Cassandras, 1993). Formal methods allow rigid
proving of system properties in verification and
validation.

Many methods have been proposed and examined
from researchers for modelling DESs. Such methods
are Petri nets, GRAFCET, finite automata and their
extensions, hybrid, timed and PLC automata. These
methods did not meet wide acceptance for industrial
use, primarily because they are application depended.

• Petri nets were first introduced by C.A.Petri in the

early 1960s and since then, they have become a
powerful tool for modelling and analysis of
dynamic DESs (Peterson, 1981).

• GRAFCET language was developed in 1977 as a
tool for sequential systems aiming to be a formal
specification method for logical controllers. In
industry, GRAFCET, with minor changes, is better
known under the name Sequential Function Charts
(David, 1995).

• Finite state automata are probably the simplest
mathematical abstractions of discrete event systems
with a finite number of states and transitions
between those states (Khoussainov, 2001).

• Hybrid automata are commonly used mathematical
models for the analysis and design of hybrid
systems. The hybrid automaton extends the
classical notion of automaton by modelling the
coupled interaction of discrete events and
continuous dynamical systems (Allur, et al., 1993;
Antsaklis, 2000; Henzinger, 1996).

• Timed automata were first introduced in (Allur and
Drill, 1994) as a simple technique for modelling
real-time systems. They are an extension of finite
automata restricting transitions based on the values
of multiple timers.

• PLC automata were first introduced in (Dierks,
1997) as a useful tool for the description of
distributed real-time systems that are implemented
on a PLC and are a subclass of timed automata.
The main difference from them is that PLC
automata are being restricted to only one clock and
certain types of restraints on it.

On the contrary, an industrial production system
would be defined more accurately as a real-time
system. This paper, based on this assumption,
presents a new mathematical abstraction for
modelling real-time systems. The proposed method
introduces new modelling parameters in comparison
with conventional methods. It borrows some
characteristics from several types of automata such
as the control graph with a finite set of states and
transition between those states. It can handle both
discrete and real valued variables as inputs, outputs
or both, combining flow conditions, invariants and
guard conditions from hybrid automata, with clock
constraints and delayed inputs from timed and PLC
automata. In addition new parameters as reset table
at each transition and hierarchical classification of
executable events at each state are introduced.

}

The rest of the paper is organized as follows. Section
2 gives a formal definition of the new proposed
method. In section 3, a comparison between the new
method and conventional modeling methods, is
given. Section 4 discusses about two case studies
using the new formulation method. Finally, last
section ends this paper with concluding remarks and
open research problems.

2. A FORMAL APPROACH

In order to be able to model various forms of
industrial systems, as real-time systems, was
necessary to define a new formal method offering
this convenience. Some common features, with other
similar methods, have been conserved or extended to
cover their weakness.

Definition 1. We define an automaton the structure of
which is composed by the following sets:
• The system’s variables:
o Real-valued variables: { mxxxxX ,...,,, 321=
o Discrete variables: { }kzzzzZ ,...,,, 321=

• The set of states: { }nqqqqQ ,...,,, 321=

• The alphabet or set of events:
{ }λσσσσ ,...,,, 321=Σ , which can be:

o Discrete variables.
o Conditions over the real-valued variables.
o Any combination of them.

• Initial conditions: Init
o 0XX =
o 0ZZ =
o 0q

• Flow conditions:
o () 0, =XXF &
o ()ii ZGZ =+1

• Invariant conditions: { }nL llll ,...,,, 321=
• Restrictions or safe values: { }nssssS ,...,,, 321=

• The set of events to be ignored until the satisfaction
of restrictions: { }nwwwwW ,...,,, 321= with Σ⊆iw .

• The set of transitions: ZX RRQQE ××Σ××⊆
• Reset table for each transition:
o XRX =
o ZRZ =

Fig. 1. A simple automaton model with two states.

()
()

{ }

[] { }00

00

,0
3

2,0
5

1,0
20

01

0

,

,...,, 0

ws
XorX

ZGZ
XFX

ii

ll

&

≥≤

=

Each set ()ZX rrqq ,,,', σ represents a transition from
state to state , which is caused by the event q 'q

Σ∈σ . The set gives the real-valued
variables to be resettled during this transition, while
the set gives the discrete variables.

XX Rr ⊆

ZZ Rr ⊆

Each state has a corresponding set of parameters,
which are:

iq

• Flow conditions:
o () 0, =XXFi

&
o ()jij ZGZ =+1

• Active events at the present state: . Set Σ⊆Σ i iΣ
has, by definition, ζ elements, each one of which
belongs to set Σ . { }ki

ji
,σ=Σ , where i is the

present state, ζ,...,2,1=k and []λ,1∈j . Index k
also denotes transitions priority caused by different
events. If two events occur simultaneously and
cause two different transitions, transition with the
lower index k will take place.

• Invariant conditions: il

• Restrictions or safe values: is
• The set of events to be ignored until the satisfaction

of restrictions: . iw

Σ

=
=

+
ζσσσ

()
()

{ }

[] { }11

11

,1
7

2,1
1

1,1
30

11

1

,

,...,, 0

ws
XorX

ZGZ
XFX

ii

ll

&

≥≤
=Σ

=
=

+

ζσσσ

Σ∈σ

[]ZX RZRX == ,

0

0

ZZ
XX

=
=

3. VALIDATION BY COMPARISON WITH
ALTERNATIVE METHODS

When a new method for solving a problem is
presented, it must be compared with previous
methods to prove whether it is better or not. In this
section the proposed method is being validated by
comparison with existing methods such as timed and
hybrid automata.

3.1 Comparison with Timed Automata

Timed automata were introduced by (Allur and Drill
1994) and since then have become one of the most
well studied and widely used models for real-time
systems. They are an extension of finite automata.

Definition 2. Timed Automata: Formally a timed
automaton is defined as a 5-tuple ECiQA ,,,, Σ=
where:
• Q is a finite nonempty set of states,
• Σ is a finite nonempty set of events, called

alphabet,
• is the initial state, AA Qi ∈
• C is a finite set of clocks and
• gives the set of the

transitions, where is defined as a set of clock
constraints.

()CQQE C Φ××Σ××⊆ 2
()CΦ

An edge (q, q’, a, λ, φ) represents a transition from
state q to state q’ on input signal a. The set

C⊆λ gives the clocks to be resettled with this
transition and φ is a clock constraint over C.

A comparison that one can make between timed
automata and the proposed type, will lead them to the
conclusion that a timed automaton can be translated
to the new type without any problems. This primarily
because most of the parameters are the same for both
types and the rest of them can be replaced by other
similar. Considering the definition of timed
automata, as given above, one has to replace the 5-
tuple ECiQA ,,,, Σ= with equivalent parameters.
The first two, sets of states and events, are common
and have the same concept for both types. The third
one is the initial state. The new type’s Init, except the
initial state, has also initial conditions for all system
variables. The last but one parameter is the set of
clocks, which, in the new type, can be reproduced as
real-valued variables governed by flow conditions of
type 1=X& . Finally, the set of transitions, with the
clock constraints and the resettled clocks, can be
replaced with a suitable combination of new type’s
transitions set, reset table and ignored events at each
transition.

A complete comparison between the two types must
also show which are the benefits of using the new
modelling method. The new type can handle, in
addition, discrete variables with different flow
conditions in each state. Besides, as already
mentioned above, initial conditions regard all the
automaton’s variables and not only the initial state.

Moreover, new type has restrictions for every
variable and not only for clock variables. This, in
combination with ignored events at each state, gives
the opportunity to the designer to handle even the
most complicated real-time systems.

3.2 Comparison with Hybrid Automata

Hybrid automata have been proposed as a formal
model for hybrid systems and are a hyper-set of finite
state automata, as they have in addition, continuous
dynamics corresponding to each discrete state of the
automaton. These dynamics are typically modelled
via differential equations.

Definition 3. Hybrid Automata: A hybrid automaton,
as defined by (Henzinger, 1996), consists of the
following components:
• Variables. A finite set X of real-valued variables.
• Control graph. A finite directed multigraph (V,E),

where V are the states or locations and E are the
transitions or switches.

• Initial conditions for every variable and the initial
state.

• Invariant conditions. Limits for every variable.
• Flow conditions, according to which variables

change their value. Flow conditions are, in general,
differential equations.

• Jump conditions, which cause a transition between
two states.

• Events. A finite set of events, whose members are
assigned to each transition.

The most typical example (Antsaklis, 2000) of hybrid
automata is depicted at figure 2 and models a house
thermostat. The real valued variable x represents the
temperature. The two states are labelled as On and
Off and each one has a flow condition according to
which the temperature rises or falls. Initially the
temperature is 20 degrees and the heater is off.
According to the jump condition the temperature
falls, governed by the differential equation

xx 1.0−=& , until the threshold of 18 degrees. Then
the heater turns on and the temperature rises
according to the flow condition , until
the upper limit of 23 degrees, where the heater
returns to off mode.

xx 1.010 −=&

Fig. 2. A thermostat’s hybrid automaton model.

The automaton shown at figure 2 could be also an
automaton, which has been designed based on the
new formal method. This derives from the fact that
the new type is a hyper-set of hybrid automata
including all hybrid automata’s parameters.
Illustrating this conclusion we have to make a

18=x

Off
xx 1.0−=&

18≥x

23=x

20=x

On
xx 1.010 −=&

23≤x

comparison between the two types. Most of hybrid
automata’s components are exactly the same as at the
new type, such as variables, events, initial, invariant
and flow conditions. Control graph has been replaced
by the set of states and the set of transitions. Finally,
jump conditions are including at the set of events, as
defined at section 2.

As denoted above, the new modelling method, in
comparison with hybrid automata, has an additional
group of parameters. First of all new type has the
ability to handle discrete variables with initial
conditions and different flow conditions at each state.
In addition, new automata have transition restrictions
if the relative criteria are not accomplished.
Restrictions take effect only to the ignored events at
each state. Finally, the proposed method resets all the
system variables at each transition.

4. TWO CASE STUDIES USING THE PROPOSED
FORMAL METHOD

4.1 The three machines’ stop problem.

Let us suppose that three similar machines start and
stop manually through an equal number of start–stop
buttons. For the start handling of the three machines
the process does not demand any special
requirement. For the stop handling however, due to
operational reasons, the action takes place
immediately for every machine except the last
operated one, which must be stopped only if an input
signal (e.g. a timer for 30sec) allows it. It is obvious
that the other two machines can stop independently
of the situation of the input when the corresponding
stop button is pressed. Furthermore, the last operated
machine is not predefined or constant. On the
contrary, it is a stochastic parameter and hence can
be any of the three machines. If input has been
activated but the stop button of the last operated
machine has not been pressed, the machine continues
to operate. Summing up, we can claim that any of the
three machines can be the last operated one, which
must stop in combination with an input while the
other two machines will stop in the usual way.

Fig. 3. Full state diagram for the three machine’s

stop problem.

In figure 3 the state diagram with all operating
combinations of the three machines is shown. Let si
and pi denote the signals “start” and “stop” of
machine i respectively and Mi denotes the operating
status of each machine (i = 1, 2, 3). States q1, q4 and
q7 are the states where only one machine operates
(hence is the last one) and from which the transition
to q0 requires the intermediate state q6. This state
diagram seems alike to common finite state
diagrams, as it has the same number of states and
equivalent transitions. But, if we try to take
advantage of every capability the new type of
automata offers, we can succeed to have state
aggregation. The transformation merges states q1, q4
and q7 to a new state labelled “Only one machine
operates” and states q2, q5 and q8 to a new state,
where two machines operate. The new state diagram
has only five states, compared with nine at the initial
diagram, and is shown at figure 4.

M1=0
M2=0
M3=0

T = 30 sec
[T = 0]

T=0

q0

q1 q2 q3

q4

Hs1 Hs1 Hs1

Hs2

Hs2 Hs2

Hs3

Hs3 Hs3

Hp3Hp3

Hp2 Hp2

Hp1 Hp1

Hr1

Hr2

Hr3

p1+p2+p3

1T=&

Fig. 4. Reduced state diagram with five states.

The notation at figure 4 has to be clarified. Firstly,
states q1 and q2, have six couples of restrictions and
events to be ignored. Particularly first three are,
[Mi=1], {si}, where i=1,2,3 and the latter three are
[Mi=0], {pi}, where i=1,2,3. State q3, where all
machines operate, has no restrictions. All transitions
labeled Hsi are triggered by the events si and cause
the set of discrete variables Mi to value 1
respectively. Equivalently, transitions Hpi are
triggered by the events pi and cause the reset of
discrete variables Mi to value 0. Finally, transitions
Hri, which are caused by the events si, set discrete
variables Mi to value 1 and reset discrete variables Mj
(where ij ≠) to value 0.

M1=0
M2=0
M3=0

M1=1
M2=0
M3=0

M1=1
M2=1
M3=0

M1=0
M2=1
M3=0

M1=1
M2=0
M3=1

M1=0
M2=0
M3=1

M1=0
M2=1
M3=1

M1=1
M2=1
M3=1

s1

s1

s1

s1

s1

p1

p1

p1

p1

p2

p2

p2

p2

p3

p3

p3

p3

s2

s2

s2

s2
s2

s3

s3

s3

s3

s3

Fig. 5. Reduced state diagram with three states.

T=0
q0

q1 q2

q4

q7

q5

q8

q3

q6

T = 30 sec
[T = 0]

1T=&

M1=0
M2=0
M3=0
k=0

T = 30 sec
[T = 0]

T=0

Hs1

Hs2

Hs3

Hs1

Hs2

Hs3

Hp1

Hp2

Hp3

q0

q1

q2

α

Hr1
Hr2

Hr3

1T=&

Another approach, adding a new variable k that is the
number of operating machines, is shown at figure 5.
The new state diagram has only three states, as it
merges states q1, q2 and q3 to a new state in which at
least one machine operates.

State q1 now has seven couples of restrictions and
events to be ignored. Six first are exactly the same as
before, [Mi=1], {si}, and [Mi=0], {pi}, where
i=1,2,3, and seventh is [k=1], {p1, p2, p3}. Similarly
to the previous approach, all transitions labeled Hsi
are triggered by the events si and cause the set of
discrete variables Mi to value 1 and increase
counter’s k value by one unit. Equivalently,
transitions Hpi are triggered by the events pi and
cause the reset of discrete variables Mi to value 0 and
the decrease of counter k. Transitions Hri, which are
caused by the events si, set discrete variables Mi to
value 1, reset discrete variables Mj (where ij ≠) to
value 0 and initialize counter k to value 1. Finally,
event α is defined as

332123211321 pMMMpMMMpMMM ++=α . A run
or computation of this automaton on an input
sequence sec30,,,,,, 3112 == Tspssu αα is

0
0

)0,0,0(sec30

1
0

)1,0,0(

1
0

)1,0,0(

11
0

)0,1,0(

1
0

)0,1,0(

2
0

)0,1,1(

1
0

)0,1,0(

0
0

)0,0,0(

02

1

3

2

1

1

1

1

1

2

0

=
=

=
⎯⎯⎯⎯ →⎯ =

=
=

=

⎯→⎯

=
=

=
⎯→⎯

==
=

=

⎯→⎯

=
=

=
⎯⎯→⎯

=
=

=

⎯→⎯

=
=

=
⎯→⎯

=
=

=

k
T

M

q

T

k
T

M

q

k
T

M

q

s

Tk
T

M

q

k
T

M

q

p

k
T

M

q

s

k
T

M

q

s

k
T

M

q

α

α

&

The notation:

)(
)(

)(
)(

11

1

1

01

0

0

0

0

iiZ

X

ii ZGZ
XFX

RZ
RX

q

ZGZ
XFX

ZZ
XX

q

=
=

=
=⎯→⎯

=
=

=
=

++

&& σ

denotes the transition from state q0 to state q1 caused
by the event σ. The two equations under each state
initialize the system variables according to reset table
for transition σ. The other two differential equations
are current state’s flow conditions.

The diagram of figure 5 after the appropriate
modification can be used for modeling a system with
n machines without adding new states. The new
automaton is depicted at figure 6.

All the changes made concern primarily the number
of transitions between the states maintaining the type

of existing transitions. Another change has been
made at event α, which now is

nnnn pMMMpMMMpMMM 21221121 +++=α .

M1=0
M2=0
M3=0
k=0

T = 30 sec
[T = 0]

T=0
Hs1

Hs2

Hs3

Hs1

Hs2

Hsn

Hp1

Hp2

Hpn

q0
q1

q2

α

Hr1

Hr2
Hr3

Hsn

Hrn

...

...

...

...
1T=&

Fig. 6. State diagram for the n machine’s stop

problem according to the proposed formal
method.

4.2 Token Passing Bus Protocol.

The automaton of figure 7 models a local area
network with four nodes using the token passing bus
protocol. The four states reconstruct the virtual ring
between the nodes. When the automaton is in qi state,
i node has the token and the capability to use the
network. The variable t represents the time and τ is
an additional clock variable. The variables M1, M2,
M3 and M4 represent the number of queuing packets
in each node. The discrete variables s1, s2 s3 and s4
represent the arrival of a new packet at the queuing
list in each node. The constant parameter Ts is the
token’s transmission time, while Ps is a single data
packet’s transmission time.

q1

q4

q2

q3

τ=0
t=0

Fig. 7. Token Passing Bus Model with four nodes.

All transitions labeled Hsi are triggered by the events
si and increase counters Mi by one unit, for i=1,2,3,4.
In the other hand, transitions Hti are triggered by the
event ss PT +=τ and cause the reset of variable τ to
zero value and decrease counters Mi by one unit, for
i=1,2,3,4. Finally, transitions HT are caused be the
event sT=τ and reset variable τ to zero value. In

Hs1

Hs1

Hs1
1

2

Hs2

Hs2
2

Hs3

Hs3

Hs3 Hs3

Hs4

Hs4

Hs4 Hs4

HT

HT

HT

HT

Ht1

Ht2

Ht3

Ht4

Hs

Hs

Hs

each state are two flow conditions, one for each
clock variable: and 1=t& 1=τ& . There is also a couple
of an ignored event and a restriction, which are:
[] { 0, >= is MT }τ . This means that when the
automaton is at qi state and , the event 0>iM sT=τ
will be ignored. So, a transition from state qi to state
qi+1 takes place after Ts time units, if Mi = 0, or else
after Ts+Ps time units.

Initially the automaton is in q1 state and stays there
until t=Ts, if M1=0, or until t=Ts+Ps, if M1>0, where
M1 is the number of queuing packets at the queuing
list of node 1. The above condition means that if
node 1 has not any packets to send, the bus’s
management will pass to node 2 after the token’s
time (Ts) elapses. In the other case (M1>0), node 1
will send the first packet of his list and the transition
to state 2 will take place after Ts+Ps time units
(token’s time and time for one packet respectively).
These two different types of transitions cause the
change from one state to the following one.

Each state has also four loop transitions caused by
the events si, which represent the arrival of a new
packet at the queuing list of node i. Consequently,
the corresponding counter Mi increases by one unit.

A run of this automaton is shown above presenting
the system’s states and variables in connection with
time. For this example we assumed that Ts=1 and
Ps=2.

5. CONCLUSIONS – FURTHER WORK

Industrial systems are usually described as DESs and
mostly controlled by Programmable Logic
Controllers (PLC). Modelling DESs is an open
research field and many modelling methods have
been proposed, such as Petri nets and controlled
automata. The main problem is that there is not
consensus on which is the most suitable as the
“lingua franca” for DESs, primarily because most

methods are strongly problem dependent. In addition,
most industrial applications require mixed modelling
with both continuous and discrete components.
Based on this assumption, an industrial production
system would be defined more precisely as a real-
time system.

This paper presents a mathematical abstraction for
modelling real-time systems as a new formal method.
This method has some common features with
existing methods and introduces some new modelling
parameters. It handles both discrete and real valued
variables and seems to be application independent, as
shown at the given examples. Of course further work
must be done so as to have a formal representation
method for real-time systems. Additionally, a new
software tool for modelling, verification and
simulation of industrial systems must be developed,
based on this new formal method.

ACKNOWLEDGEMENTS

This research work has been partially supported by
the Caratheodory Program of the Research
Commission of the University of Patras.

REFERENCES

Allur, R., C. Courcoubetis, T.A. Henzinger and P-H

Ho (1993). Hybrid Automata: An Algorithmic
Approach to the Specification and Verification
of Hybrid Systems”, Hybrid Systems, Lecture
Notes in Computer Science, Vol. 736.

⎯⎯ →⎯ =

=
=

=
=

=
⎯→⎯

=
=

=
=

=

⎯⎯ →⎯ =

=
=

=
=

=
⎯⎯ →⎯ =

=
=

=
=

=

⎯⎯ →⎯ =

=
=

=
=

=
⎯→⎯

=
=

=
=

=

⎯⎯ →⎯ =

=
=

=
=

=
⎯⎯ →⎯ =

=
=

=
=

=

3

1
1

2
11

)0,1,1,1(

1
1

0
9

)0,1,1,0(

1

1
1

0
8

)0,1,1,0(1

1
1

0
7

)0,1,1,0(

3

1
1

1
5

)0,2,1,0(

1
1

0
4

)0,2,0,0(

1

1
1

0
3

)0,2,0,0(3

1
1

0
0

)0,2,0,1(

2

1

2

14

3

2

3

21

τ

ττττ

τ

ττ

τ

ττ

τ

ττττ

τ

ττ

τ

ττ

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

tt
M

q

s
tt

M

q

tt
M

q

tt
M

q

tt
M

q

s
tt

M

q

tt
M

q

tt
M

q

Allur, R. and D.L. Drill (1994). A Theory of Timed
Automata, Theoretical Computer Science,
126:183-235.

Antsaklis, P.J. (2000). A Brief Introduction to the
Theory and Applications of Hybrid Systems,
Proceedings of the IEEE, Special Issue on
Hybrid Systems: Theory and Applications, Vol.
88, pp. 879-887.

Cassandras, C.G. (1993). Discrete Event Systems:
Modeling and Performance Analysis, Richard D.
Irwin Inc., Boston (MA).

David, R. (1995). GRAFCET - a powerful tool for
specification of logic controllers. IEEE Trans. on
Control Systems Technology, Vol. 3, No. 3, pp.
253-268.

Dierks, H. (1997). PLC-Automata: A New Class of
Implementable Real-Time Automata, ARTS’97,
LNCS, Springer Verlag.

Henzinger, T.A. (1996). The theory of hybrid
automata, In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, IEEE
Computer Society Press, pp. 278-292.

Khoussainov, B. and A. Nerode (2001). Automata
theory and its applications. Birkhauser, Boston.

Peterson, J.L. (1981). Petri Net Theory and the
Modelling of Systems, Prentice-Hall Inc. New
Jersey.

Ramadge, P. and W.M. Wonham (1989). The
Control of Discrete Event Systems, Proceedings
of the IEEE, Vol. 77, No.1, pp.81-98.

