

DEVELOPMENT OF MIDDLEWARE FOR SOFTWARE OF UNIX BASED CONTROL SYSTEM

Hwawon Hwang, Yongsoo Kim

Instrumentation Research Group, Technical Research Lab,
 POSCO, Pohang, SOUTH KOREA

Abstract: Standardization for development of open, economical and efficient control system
has been progressed by international and domestic technical committee and numerous
vendors around the world. As a major example, we can pick up OPC standard and pc-based
control system. Following the advent of pc-based control system, there are a lot of
movement of expanding linux based technology into automation field such as development
of OPC for linux and linux based HMI. As the first step of coping with global movement of
standardization and openness, middleware for management of system resources of MS
Windows based control system was developed in POSCO. As the next step for building up
standard framework for platform and vendor independent development of software ,
middleware for linux and UNIX based control system has been developed. We can get the
easiness of management and development of software, built-up of control system with high
level of extensibility and self-engineering power by development of the middleware. In this
paper, development of UNIX based middleware will be introduced in detail. In the last part
of this paper, evaluation of performance of middleware will be presented. Copyright ©
2005 IFAC

Keywords: Computer Software, Process Control, Utility, Linux, Middleware, OPC, Task
Management

1. INTRODUCTION

Standardization for development of open, economical
and efficient control system has been progressed by
international and domestic technical committee and
numerous vendors around the world. As a major
example, we can pick up OPC standard and pc-based
control system. It is necessary to develop open
control system using linux based technology as well
as windows based technology for real open control
systems which are platform and OS independent.

In the case of POSCO, several linux based system are
used as process control station or process monitoring
system. One example is the linux based HMI station
in KwangYang No.2 Hot Rolling Mill. The other is
linux based control system in Pohang No.1 Cold
Rolling Mill.

When Windows or linux based systems are used as
open control systems, there is a few major drawback

in the view point of application developer such as
different system calls according to operating systems,
complicated procedures for use of system resources
(memory, file, IPC, remote communication) and
difficulty of monitoring and updating of resources
which are used for application processes. To solve
problems mentioned above, middleware for windows
based control system was developed and standardized,
which manages system resources and provides
application developer with easiness of development
of application using system resources. As the next
step towards standardization of platform independent
middleware, linux based middleware was also
developed, being based on the previous windows
based middleware system. And then UNIX based
middleware system was redesigned and implemented
on SUN Solaris and IBM AIX operating systems.

We can get the easiness of management and
development of software, built-up of control system
with high level of extensibility and self-engineering

power by development of the middleware.
In the next section , the detailed functions of
middleware system will be explained and then results
of performance test of middleware will be analyzed in
section 3, Lastly, future development plan will be
mentioned.

2. DEVELOPMENT OF MIDDLEWARE FOR

INTEGRATION AND DEVELOPMENT OF
APPLICATION SYSTEMS (MIDAS)

MIDAS can provide users with convenience of
management and development of software by
implementing management functions itemized as
follows.
z Management of message exchanges among

tasks
z Management of periodic and non-periodic

timers
z Management of access to three kinds of

files which are named as record file, cyclic
file and index file.

z Management of creation and access of
shared memory, implementing easy inter-
process communication among tasks.

z Adds-on utility graphically showing usage
status of system resources and user
API(Application Program Interface) helping
users to easily access to system resources.

On middleware server system, MIDAS kernel is
running with implementing management functions.
And user application programs can be programmed
using user APIs on client system. Middleware API
provided by MIDAS are as follows.
z API for management of tasks

� Task Registration, Task Deletion, Task
suspension,

� Task Resumption, Task Locking and
Unlocking

z API related with message exchanges
� Asynchronous Message

Sending/Receiving,
� Synchronous Message

Sending/Receiving
z API for Timer Management

� Periodic Timer
� Non-Periodic Timer

z API for access to files
� File Open, File Close
� File Lock/Unlock, Record

Lock/Unlock
� Record Reading/Writing (Three kinds

of access methods exist: using record
number, read/write pointers or key
value)

z API for Access to Memory
� Shared Memory Reading/Writing

2.1 Task Management

Control flow of task management functions of
Middleware is shown in FIG1. If MIDAS kernel
receives a request of task registration from a user

Proxy
Thread
For Task A

Main Thread
For Tasks

Task A Task B

Task Registeration

Message Sending

MIDAS Kernel

Shared Memory
For Tasks

Proxy
Thread
For Task B

Task Registeration

Messgage Receiving

Write

Task C

Task Registeration

Suspending Task A

Task C

Task Registeration

Deleting Task B

Resuming Task A

Proxy
Thread
For Task A

Main Thread
For Tasks

Task A Task B

Task Registeration

Message Sending

MIDAS Kernel

Shared Memory
For Tasks

Proxy
Thread
For Task B

Task Registeration

Messgage Receiving

Write

Task C

Task Registeration

Suspending Task A

Task C

Task Registeration

Deleting Task B

Resuming Task A

Fig. 1. Control flow of task management

application program, kernel creates proxy thread
which handles the user’s requests. The requests
related with task operations such as suspension,
resumption, deletion and etc are delivered to the
corresponding proxy thread through main thread. And
then, the proxy thread executes functions handling the
requests.

Middleware kernel uses communication method
which is supported inside kernel for event delivery
and data exchanges among tasks. The following is the
operational procedure occurred inside kernel for a
message exchange between two user application tasks.

If middleware kernel receives requests of task
registration from user application programs called A
and B which exchange data , kernel creates two proxy
threads which will handle user ‘s requests from task
A and B. And then message exchanges are executed
by the following procedures. Types of message
exchanges are classified as synchronous exchanges
and asynchronous exchanges.

z Asynchronous message exchanges :

Sender task A stores a message in the
message queue of proxy thread B by proxy
thread A and returns without waiting for
acknowledgement message from task B.
Receiver task B processes the message
from task A in its own proxy’s message
queue if the message from task A is the
only message existing in its queue. But if
there are several messages to be processed
in the message queue, messages will be
processed sequentially in FIFO(First in
First Out) method.

z Synchronous message exchanges :
Synchronous message exchanges are a little
different from asynchronous message
exchanges in that sender task A is waiting
for a response from task B. If there is no
response from receiver task, sender task
enters into waiting mode until receiving any
response.

User application tasks may or may not reside in the
same system where middleware exists. Therefore,
middleware kernel internally uses two kinds of
methods for communication between kernel and
client tasks. One is socket communication method for
remote clients, the other is UNIX socket
communication for local clients, which is one of the
inter process communication methods on UNIX. The
reason why middleware kernel uses a separate
method for local clients without using socket method
is that inter-process communication is 2 or 3 times
faster than remote communication such as socket
communication method.

UNIX socket method uses the same type of API
functions as general socket interface method but has
different implementation internally. Message Queue
is another option for implementing message
exchanges between user application tasks, which
shows excellent performance in the speed of
communication. But only maximum 16 message
queues can be created in one system and one message
queue can stores maximum 32K bytes. So, message
queue communication method is not adequate for
middleware in which several 64K bytes data have to
be stored and exchanged.

we decided to use UNIX socket for supporting
message exchanges between local clients because
UNIX socket communication method shows similar
performance to the performance of message queue.

2.2 Timer Management

Timer provided by middleware kernel is categorized
according to whether timer event is issued
periodically or not. And exact time of issuing timer
event is specified as absolute time or offset from the
current time of request.

If a user application task requests timer service
through middleware API, the proxy thread in
middleare kernel corresponding to the application
task records type of the timer and time of issuing
timer event in the proxy thread’s timer management
table . When calling timer service request, User can
specify type of timer, time of issuing timer event and
the application task which will receive the timer event
message.

In the case of expiring the time, the proxy thread of
which application task requested timer service, sends
timer event to the application task which will receive
the timer event message. If the user application task
requested non-periodic timer service, the proxy
thread handling the timer service deletes timer service
entry in their timer management table after the first
issuing of timer event. But in the case of periodic
timer, the entry is not deleted until user application
task calls API for deletion of timer service.

Prox
y Thre
adFor Task
A

Thread
forTime
r Task

B

Sca
n(10m
s)

Tabl
e Rea
d

Prox
y Thre
adFor Task
B

Writ
e

Writ
e

TaskProxy
For Process
A

Thread for
timer

Timer
(msec)

MIDAS Kernel

Timer Registration

Update of
timer interval

Task
A

Request for
update of

AP Process A

Task registration

Request for
update of timer
interval

AP Process용
TaskProxy
AP Process용
TaskProxy

AP Process C

Update of
timer interval

TaskProxy
For Process
C

Thread for
timer

Timer
(msec)
Timer
(msec)

Timer Registration

Task
A

Request for
update of

AP Process B

Task registration

Request for
update of timer
interval

Receiving message

Task registration

Fig. 2. Control flow of timer management

2.3 File Management

Middleware provides users with three types of file
called record file, cyclic file and index file
according to file access methods and storage medium.
Common characteristic of every type of files is that
the smallest unit of read/Write operation is a record.
As we can see the structure of file provided by kernel
in FIG.3, MIDAS file is composed of header area,
sub header area and record area regardless of file
types. Record area can varies in size by the number of
records and record sizes. Record file is accessed by
record number while cyclic file can be accessed by
read/write pointer. And index file can be accessed by
key value of a record. So index file is very efficient
file type when users need to quickly search the record
with specific key value.

To implement read/write pointer of cyclic file and
key index of index file, a record in FIG.3 is composed
of two fields. One is key field which stores key value
uniquely identifying the record of index file or time
stamp of read and write operation of the record in the
case of cyclic file. And the other is record field which
stores record values. Time stamp stored in key field
contains information about the time when write and
read operation of record happened. So, system can
recognize the record which can be read next time and
the empty positon where new records can be written.

All three types of files are physically stored in storage
medium in three different ways. In one way, record is
read and written directly from disk. In second way,
record is read from memory and written into memory
while middleware is running and then finally written
into disk when middleware kernel stops its operation.
In third way, record is repeatedly written into both
disk and memory but read operation of record is only
done on memory.

Records

Midas Header

Sub Header

1Kbyte

64Kbyte Allign

Fig. 3. The structure of file provided by MIDAS

kernel

MIDAS FILE

CYCLIC FILERECORD FILE INDEX FILE

inherit inherit inherit

MIDAS FILE

CYCLIC FILERECORD FILE INDEX FILE

inherit inherit inherit

Fig. 4. Class structure of middleware file system

All three types of files inherit from the abstract class
“midas file” as child class of midas file. Midas file
class has common characteristics of three file types
and implements basic file operations which files of
child class internally use when handling user’s
request of file operation such as file open/close,
record read/write and file or record lock/unlock.
Although results of file operation are similar to each
other regardless of file types, little difference exists
when executing the operation. The following items
are explaining file operation classified by file types.
z File open and close operation : opening

and closing file specified by user.
z Record read and write operation: reading

and writing a record or several records from
file
� Record file: A record or several

records can be read and written by
record number specified by user. And
also several records can be read or
written starting from the position
located in the offset from the specific
record number.

� Cyclic file : Read and write operation
of records begin from the position
pointed by read/write pointer. After
read /write operation of record,
read/write pointer increases by one.
Addtion to read / write operation of
records, users can get the number of
valid records which are already written
in file but not yet read.

� Index file: Read/write operation of
record is done by key value specified
by user. As record searching has to be
done by key value before reading or
writing operation, registration of key
values are needed when records are
written.

z Record or file lock/unlock: locking or

unlocking records and files.

In the case of index file, record searching by key
value has to be done before read or write operation.
So, key searching is vital to the fast access to records.
In middleware, key value is stored in sorted array and
binary searching method is used for fast key value –
record matching.

2.4 Memory Management

Users can share data among tasks using shared
memory provided by middleware. Middleware makes
shared memory using unix function, shmget() during
kernel initialization, referencing header file which
defines record structure of shared memory. The
header file usually is defined by users. Users have to
also define key number of shared memory in the
procedure of defining structure of records which will
be stored in shared memory. This key number will be
recorded in shared memory mapping table with id and
start address of shared memory and used to get the
physical address of shared memory.

3. PERFORMANCE TEST

3.1 Performance of Middleware System

UNIX based middleware system was developed on
SUN solaris and IBM AIX operating system. So,
Performance of middleware system was tested on
both operating systems. The UNIX servers with the
following specificaiton was used in the performance
test.

[IBM AIX 5.1]
z CPU: 1.2GHz Power4
z Memory: 1 Gbytes DIMM
z Hard Disk: 36.4 Gbytes,Ultra3 SCSI,

10,000 RPM
 [SUN Solaris8]
z CPU: 1.2GHz UltraSparcIII
z Memory: 1 Gbytes, DIMM
z Hard Disk: 73 Gbytes,Ultra/Fast/Wide

SCSI, 10,000 RPM
client applications for test was developed in
middleware C API on the client system with the
following specification.
z OS: Linux Redhat9.0
z CPU: Intel Xeon Dual CPU 2.8GHz
z Memory: 1GB

Middleware system resides on the UNIX servers.
Client applications using services of middleware
can reside in the same system or in remote system.
Performance of middleware system can be
categorized as performance of file system, message
exchange between tasks and timer accuracy.

3.2 Performance of File Management System

Performance of middleware file system was tested
with the number of read and write operations being
increased from 10000 to 100000. And time of file

read and write opreations was measured in the cases
of twenty seven combinations of three kinds of file
types such as Record, cyclic and index file, file

Fig. 5. Results of test for performance of file system

size(1Kbytes, 2Kbytes and 4Kbytes) and storage type
of records such as memory, disk and cache type.
As a result of the test , we can get that it taskes 0.4
milli seconds to complete one write operation of a
record with record size of 4Kbytes in record file on
AIX . In the case of test on sun solaris, one write
operation of a record with 4kbytes was completed in
0.35milli seconds. And a write operation costs more
time than a read operation when file format and
storage type are the same.
Analyzing the performance of file system of
middleware in regard with storage type, 10000 times
of write operations of records in memory type file
show the least processing time than any other file
type but shows a little difference because of the
overall overhead of communication between
middleware server and application requesting file
system service.
Read and write operations of cyclic file costs more
time than record file or index file. Test of record and
index file shows similar result.

3.3 Performance of Task Management

Performance test of task management was executed
in the environment where only testing system (a
server and two clients) was connected on one
network hub without no background network traffic.
User applicatons locally communicating with

middleware was programmed in middleware API for
UNIX(aIX, solaris) and gcc v3.2 on UNIX system
where middleware server resides. And User
applicatons remotely communicating with
middleware was programmed in middleware API for
linux and gcc v3.2

Performance of Reading and Writing of

Record File on AIX

0
10
20
30
40
50

1
0
0
0
0

(W
ri
te

)

1
0
0
0
0
0

(W
ri
te

)

5
0
0
0
0

(R
e
a
d
)

Counts of Read and Write

Operation

T
im

e
(S

e
c
o
n
d
s
)

1000

2000

4000

Test for Performance of Message Exchanges among
Tasks

Test in this section shows how system performance
varies as the number of task running and message
sizes increase when tasks constantly exchange
messages without taking a break. One return time of
message exchange is defined as the time which takes
for task A to receive the response from task B after
sending a message to task B. Task B immediately
sends a response to task A. All tasks have a message
queue with the size of 100. For precise test, one
return time of message exchange was calculated from
average time of 100 numbers of message exchanges
from 101th to 200th message exchanges.

Performance of File Writing Operations of

10000 times on AIX

0

1

2

3

4

5

Record(Mem)

Record(Disk
)

Record(Cache)

Cyclic(Mem)

Cyclic(Disk
)

Cyclic(Cache)

Index(M
em)

Index(D
isk

)

Index(C
ache)

File Type

T
im

e
(S

e
c
o
n
d
s
)

1000

2000

4000

As you can see in the graph, test of message
exchanges through middleware system shows
performance within 800 milli seconds in the case of
middlware and communicating applications on the
same system.
As number of tasks and message size increases, time
spent in communication linearly increases as shown
in FIG.6. In local communication between
middleware and applications, better performance of
middleware on AIX can be explained by difference of
thread scope which were set in the time of
development of middleware on Operating system. –
AIX thread scope was single in which each user
threads have correspoding kernel threads inside
kernel layer while several user threads match onto
one kernel threads in multi thread scope. AIX threads
are allocated CPU time evenly with other processes
while child threads of a process on solaris shares

CPU time allocated to parent process among child
threads. Middleware kernel creates a proxy thread
whenever requests are coming from user applications.
Therefore, middleware for AIX shows better
performance than AIX.

Another thing we have to notice is that time suddenly
rises when message size increases from 4K to 8K
bytes in remote communication between middleware
and application. This phenomenon happens when task

Performance of Asynchronous Message

Exchange on AIX (Local)

0

200

400

600

800

0 1K 4K 8K 16K 32K 64K

Message Sizes

T
im

e
(m

s
e
c
)

2

50

100

150

200

230

Fig. 6. Performance of message exchange among
tasks

numbers are 50 ~ 230. One reason is that
retransmission of messages occurs very often by
ethernet collison as number of tasks increases and too
many messages are transmitted on network. Actually
we could find out that network utilization was over
50% for more than 50 tasks exchanging messages
each other.

3.4 Performance test of timer accuracy

Table 1 Test result of accuracy of timer service of
middleware

To test the accuracy of timer, two kinds of test was
performed. One is to test if timer event from
middleware was sent to the application requesting
timer service within timer inteval when serveral other
applications also get timer events from middleware.
The result of irst test was shown in figure. Another is
to test if timer event from middleware was sent to the
application requesting timer service within timer
inteval when serveral other applications are
exchanging messages in busy way through
middleware communication service.

As seen in the table, we can see that tasks requesting
timer service can get timer service of middleware
within timer interval although the number of
application requesting timer service increases

4. CONCLUSION AND FUTURE PLAN

UNIX based middleware was developed for built-up
of cost-effective open control system with
convenience of maintenance and development and
standardized middleware with platform
independence. Middleware has several management
functions of task, timer, file and memory and adds-on
utilitys such as logviewer and maintenance system.

Performance of Asynchronous Message

Exchange on AIX (Remote)

0

1000

2000

3000

4000

5000

6000

0 1K 4K 8K 16K 32K 64K

Message Sizes

T
im

e
(m

s
e
c
) 2

50

100

150

200

To review performance of middleware, file system
and message exchange among taks was tested. Time
for message exchanges increases linearly as the
number of tasks and message size becomes larger.
Performance of UNIX based middleware goes down
in the case of consecutive message exchange among
over 100 tasks by processing overhead. And time
suddenly rises when message size increases from 1K
to 4K bytes and number of tasks is over 50 ~ 100 for
UNIX based middleware. This is caused by several
retransmission of messages by ethernet collison as
too many messages are transmitted on network. We
can also get the result from performance test of
message exchanges that best performance of message
exchange can be maintained , not giving CPU
processing overhead regardless of number tasks if
given delay time of 5 msec between each messages
exchanges. And we can also make sure that queue
overflow never happens when messages are
exchanged one to one if size of message queue is over
5. After performance test of file system on
middleware, we can get the result that types of file
doesn’t play a major role in overall performance of
file system on middleware because communication
overhead of middleware is too large enough.

UNIX based middleware developed in this project
will be used as middleware for open process control
system to be newly installed in steel works. And
mddleware will be added with new functionality such
as on-line backup functionality and support for
databases.

999.8499.999.9549.9664

999.8499.999.9649.9720

999.8499.999.9749.981

1000
ms

500
ms

100
ms

50
ms

Interval
Number of
tasks

REFERENCES

Kangje,Cho (1997). development of network

functionality of PC middleware for PCS,
POSLAB POSCO.

FSMLabs Inc. (2001). Getting Started with RTLinux.
Gavin Smith (2002). Linux Kernel Programming,

chapter 2, O’Reilly

	Hwawon Hwang, Yongsoo Kim

