
  

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

PLATFORM FOR ADVANCED CONTROL APPLICATIONS 
 
 
 

B. Horn*, J. Beran**, J. Findejs**, V. Havlena**, M. Rozložník** 
 
 
 

*Honeywell Process Solutions 
2500 W. Union Hills Drive, Phoenix, AZ 85027, USA  

brian.horn@honeywell.com 
 

**Honeywell Laboratories Prague 
Pod vodárenskou věží 4, 182 08 Prague, Czech Republic 

jaroslav.beran@honeywell.com, jiri.findejs@honeywell.com,  
vladimir.havlena@honeywell.com, mikulas.rozloznik@honeywell.com 

 
 
 

 
Abstract: Control applications have many requirements not provided by commercial 
operating systems. This paper describes the characteristics and usage of an environment 
for hosting process-control applications, which is implemented on a commercial 
operating system. It is called Unified Real Time (URT) platform, and is intended for 
applications that are large or complex and that may involve dynamic configuration, 
flexible scheduling, complex organization, etc. This paper also demonstrates the structure 
of a typical Advanced Control Application (ACA) designed under URT.  
Copyright © 2005 IFAC 
 
Keywords: Cascade control, Software components, Control applications, Data flow, 
Process control, Real-time. 

 
 
 
 

 
1. INTRODUCTION 

 
The increasing power and reliability of commercially 
available computers and operating systems have been 
a boon to advanced control applications due to the 
relatively inexpensive and ever-increasing processing 
power and memory availability, as well as the ability 
to leverage operating system features such as 
memory management and priority execution. 
 
Control applications have many requirements not 
provided by commercial operating systems. Several 
years ago Honeywell Advanced Process Control 
group undertook the implementation of a platform to 
run on MS Windows 2000 and successors that would 
provide execution services, data exposure, process 
data access, configuration, and other application 
needs in as general and flexible way as possible. 
Unlike many of the embedded applications (Passetti, 

2002), the component software based solution 
(Szyperski, 1999) is using standard Component 
Object Model (COM) and Distributed COM 
(DCOM) technology (Grimes, 1997). The resultant 
platform is called Unified Real Time (URT). The 
design took advantage of experience with Distributed 
Control System (DCS) applications, sharing many 
characteristics with advanced control applications, as 
well as experience with earlier platforms for 
advanced applications. The platform is primarily 
dedicated to advanced process control and real time 
optimisation applications (supervisory control layer) 
with sampling periods one second or more. 
 
This paper describes the URT architecture and 
demonstrates the typical usage of this platform. It 
further contains the structure of a typical Advanced 
Control Application (ACA) designed under URT. 
 



  

     

2. URT ARCHITECTURE 
 
Control applications generally need to expose data to 
operators and engineers so that they can view what 
the application is doing and provide inputs. Equally 
important is the ability to pass data between modular 
pieces of an application, or between applications. 
Advanced applications may need to expose large 
amounts of data, which implies that flexible 
containers and structures are needed for the 
organization of data. At the same time, it should be 
simple to configure and work with applications that 
require only a small amount of data. 
 
To meet these needs, data values that need to be 
exposed are encapsulated in component objects 
called data items. Data items have as small 
granularity as possible: each scalar value or each 
container (array, list, etc.) of values is a separate data 
item. The main properties of a data item are the type, 
the value(s) and the name. 
 
A special data type comp, which can be thought of as 
a reference or a pointer to another component, is the 
basis of data organization in URT. Containers of type 
comp can be nested in any order to any depth to form 
a tree structure. The generality of this data tree 
provides the flexibility needed for large applications 
to organize their data in a simple way. The tree 
structure also scales well – it can range from just a 
single branch with a few data items to a large 
structure with many branches to organize a large 
amount of data. 
 
A struct is a specialized list of comp whose elements 
can point to data items of different types. This is 
similar to the concept of a struct in C++ or a record 
in Pascal. In URT, the distinction between a struct 
and a list of comp is that the elements of a struct may 
be of different types whereas the elements of a list of 
comp should all be the same type (not enforced, but 
simplifies programming of function blocks). 
 
In more detail, a struct is actually obtained from a 
container of type node list, which is the same as a list 
of comp with one additional property called the node 
type. The node type can be any string that describes 
the purpose of the node in the hierarchy. A struct is a 
node list with node type set equal to “struct”. 
 
Function blocks and scheduling blocks are derived 
from node list. Their node list underpinning allows 
them to be included in the tree structure and allows 
them to organize their data underneath them. 
 
Taking the idea of the tree structure organization to 
its logical conclusion, a URT platform consists of a 
single tree structure that contains the schedulers, 
function blocks, and data items for the application 
instances that have been configured on that platform. 
Typically, each application instance is a branch off 
the top node of its platform (although organizational 
nodes may be at the top of very large applications), 
and typically a scheduling block heads this branch. 
The function blocks and data items that comprise the 

APPLICATION

CONFIG

RTDATA

RTIN

RTOUT

PARAMS

RTDATA

CURRENT

DEFAULT

LIMITS

MV

CV

CONTROL

PAR_SETS

URT Scheduling  Block

URT Function  Block

URT Data Structure

ENGINE

HISTORY

RTDATA

RTIN

RTOUT

PARAMS

EUTOPCT

EXEC 1

EXEC 2

PCTTOEU

CASCADE

SLAVES

DATAPCT

CASCADE

 
Fig. 1. The ACA Structure 
 
application instance are in one or more branches 
under the scheduling block. There are some 
constraints imposed on the organization by the way 
in which the execution is propagated, but an 
application designer has a great deal of flexibility in 
deciding how to organize the scheduling, functional, 
and data components for the application. 
 
To back up just a bit, a URT platform tree is 
composed of components called tree members. A tree 
member component is defined as a component that 
supports a few minimal interfaces that allow it to be 
part of a URT tree. In particular, a tree member must 
support an attachment to a parent, and any node that 
is not a leaf node must also support attachments to 
children. Data items, function blocks, and scheduling 
blocks are derived from classes that support these 
requisite tree member interfaces. 
 
For unique needs, the component nature of tree 
members allows easy extension to URT’s capabilities 
– additional types of data items and scheduling 
blocks can be readily implemented. Of course, new 
types of applications will usually require writing one 
or more function blocks specific to that application 
type.  
 
 
3. ADVANCED CONTROL APPLICATION (ACA) 

EXAMPLE – DATA STRUCTURE  
 
Figure 1 illustrates a URT platform tree for a typical 
advanced control application. The application reads 
data from a process or underlying control system, 
executes a control algorithm, and writes the result 
back to the process or to the set points of basic 
control loops. The application behaviour is 
parameterized by a set of parameters that can be 
changed in run-time. Besides the main control 
algorithm, other tasks can run simultaneously 
providing data for operators, another applications or 
the main control algorithm. 



  

     

The platform tree in this example consists of the six 
tree members: 
CONFIG – The structure consisting of the 

application configuration parameters, which 
cannot be changed in the run-time. 

RTDATA – The structure consisting of the real time 
application data (input and output). The data can 
be read from or written to the OPC (OLE for 
Process Control) server (remote process or 
application). 

PARAMS – The structure consisting of all 
application tuning parameters. Parameters are 
organized in parameter sets. The sets are 
switched on demand in real-time in a thread-safe 
manner. Some data in a set are replaced by real-
time data. 

LIMITS – The scheduling module that calculates the 
actual limits of the manipulated and controlled 
variables. This is an example of a support task. 

ENGINE – The scheduling module that implements 
the main control algorithm. Implementation of 
this algorithm is distributed to several function 
blocks (EXEC1, EXEC2) 

CASCADE – The scheduling module that handles 
the application coordination in the cascade. 
Independent implementation of a connection to a 
master application and to slave applications 
enables creating control cascades from different 
applications easily. A control cascade can span 
across several platforms (computers). 

 
Important features of control applications are 
modularity and extensibility. Control algorithms are 
further developed and it is essential to be able to 
change an algorithm as easily as possible. The 
decomposition of a control application to URT 
function blocks fulfils this requirement very well. 
Function blocks with the same data items can be 
exchanged without any problem. In the same way, it 
is easy to add a pre- or post-processing functionality 
to an existing application by adding a new function 
block to an appropriate place in the URT platform. 
 
 

4. DATA FLOW 
 
4.1 References (links) 
 
The link type provides a reference to another data 
item in the tree. Access methods for the value 
property are overloaded so that the value can be read 
and written as the name of the target data item. 
Internally, the target name is resolved to a pointer 
whenever it is changed. A function block can use the 
link data item as a reference from which the target 
data item and data items in the branch below the 
target can be easily and efficiently accessed. This can 
be used to provide dynamic indirection. 
 
The link and comp types are similar in that they 
provide a reference to another data item. The 
essential difference is that the comp type defines a 
parent-child relationship within the platform tree, 
which implies that entering a non-NULL value 
means creation and attachment of a new child, 

whereas the link type defines a reference to an 
existing component. 
 
4.2 Connections 
 
Every data item may have an input and/or output 
connection configured. A connection reads or writes 
the data item’s value from some target. There are two 
basic types of connections, internal and external; the 
target of an internal connection is another data item 
(in the same platform, or on a different URT 
platform, either local or remote), and the target of an 
external connection is a value in another system, 
typically a DCS. 
 
External. External connections provide the means to 
input and output process data from DCSs or other 
types of process-connected systems. At present, 
external connections use the OPC standard, but 
external connections are designed for easy 
extensibility to different APIs for access to servers 
that do not support OPC. 
 
URT provides an OPC Client function block that can 
be inserted in applications along with function blocks 
that use input process data and generate output 
process data. An OPC Client function block receives 
a configuration-change event call-back when an 
external connection is (re)configured, and if the data 
item is within its scope, OPC Client adjusts its OPC 
groups accordingly. OPC Client reads inputs just 
prior to execution of function blocks that use the 
inputs, and writes outputs just after execution of 
function blocks that generate the outputs. 
 
Internal. Internal connections allow easy connection 
between inputs and outputs of function blocks that 
provide generic functionality. Typically, a function 
block exposes data items for input and output values. 
A connection on an input data item can be configured 
to pull its value from the output data item of another 
function block, or a connection on an output data 
item can be configured to push the value to the input 
data item of another function block. 
 
 
5. ADVANCED CONTROL APPLICATION (ACA) 

EXAMPLE – DATA FLOW 
 
Data flow in an application is shown in Figures 2 
and 3. Two types of data sharing are distinguished – 
connections (solid line) and links (broken line). 
 
5.1 Real-time input data 
 
Real-time data read from a DCS using external OPC 
connections are stored in defined structures. Function 
blocks copy required data using internal connections, 
or data items shared by several function blocks under 
the same scheduler are copied to common data 
structures. A different approach can be used for, e.g., 
storing data to function block 'history', where the 
operation of storing values and time-stamps is 
executed in context of data reading. 



  

     

Output connection, values are pushed

Link, values are shared

Input connection, values are pulled

 
 

DATAPCT/OUT

RTIN

RTDATA/
RTIN LIMITS

PARAMS

PARAMS//
DATA

HISTORY

RTDATA/
RTIN

EUTOPCT

DATAPCT/IN

EXEC1

EXEC2

RTOUT

RTDATA/
RTOUT

CONFIG

PCTTOEU

 
 

Fig. 2. The engine module data flow. 
 

DATA ITEMS

OPC READ

PVPROC

LIMITSENGHIST PARAMS/
RTDATA

DATA ITEMS

ENGINE

PVPROC

OPC WRITE

WRITE

 
 

Fig. 3. The RTIN and RTOUT module data flow. 
 
5.2 Application parameters 
 
A control application has typically several sets of 
tuning parameters influencing its behaviour. Just one 
of these sets of parameters is active and a special 
mechanism is implemented to switch among the sets. 
These data are copied using connections. More 
details about the organization of the sets and the 
switching mechanism are described below. 
 
5.3 Real-time output data 
 
Real-time output data written to DCS using external 
OPC connections are stored similarly to real-time 
input data. Function blocks copy their results to 
output data using output internal connections. 
Writing to the OPC server is aperiodically scheduled 
by the application when data is ready. 
 
5.4 OPC details 
 
Data from the process and other external sources are 
delivered to a URT platform via an OPC Client 
function block. This block allows getting data from 
several OPC servers. Data retrieval period is given 
by   the  scheduling  module  that  the  OPC  function 

 
 
Fig. 4. The packet manager structure. 
 
block is executed in. All OPC inputs are executed in 
one or more RTIN schedulers independently of the 
rest of the application. This improves the application 
stability when the time for reading is comparable to 
the sampling period. When there are more groups of 
input data with different sampling periods, one RTIN 
scheduler for each data group is created. All RTIN 
schedulers run periodically. 
 
Data are delivered to the external process by the 
same OPC Client function block. Output data are 
located under one or more RTOUT schedulers. 
Again, OPC outputs are executed independently, not 
to influence the rest of the application. RTOUT 
schedulers run periodically or on-demand when all 
output data are available. One RTOUT scheduler 
typically consists of a data group that must be written 
in one pass. 
 
5.5 Parameters organization 
 
Each control application has a set of tuning 
parameters affecting its behaviour. It is very 
convenient for the application tuning, if this set can 
be switched to another one by means of a special 
mechanism.  
 
The set of tuning parameters is called a packet. The 
mechanism designed to switch the packets is called a 
packet manager. 
 
The packet manager consists of the following parts 
(see Fig. 4): 
• default packet – default packet to create a clone 
• current packet – the currently used packet of the 

tuning parameters 
• list of packets – the list of all packets which can 

be selected as current packet 
• packet manager control – the function block to 

support packet management functions  
 
The packet manager control function block provides 
packet management functions including creation, 
selection, validation and removal of the packets. It 
has to guarantee access synchronization for multiple 
clients (e.g. human-machine-interface applications) 
and consistency of data in the current packet.  
 
The content of the current packet is changed using 
the packet manager control select function. Packets 
are created as a clone of the default packet using the 
create function. Content of a packet has to be 
validated to ensure the packet data consistency. For 



  

     

the process of validation, a set of function blocks can 
be specified providing a concrete packet structure 
validation. The packet manager executes them on the 
validation function request. 
 
 

6. APPLICATION EXECUTION 
 
Scheduler blocks perform execution. A scheduler 
block typically heads a branch that contains the 
function blocks and data items for an application 
instance. This branch is referred to as a scheduling 
module. Each scheduler block exposes child data 
items that hold scheduling information such as 
desired execution interval, interval offset, demand 
trigger, execution priority, and active/inactive status. 
 
6.1 Execution thread 
 
A scheduler block creates an execution thread when 
the block is activated. This thread lives as long as the 
scheduler remains active (which is indefinitely long 
for typical continuous-control applications). 
Execution of all the components under the scheduler 
block occurs on this thread. 
 
Use of a separate thread for each scheduling module, 
which typically means for each application instance, 
makes it possible for applications with widely 
different execution frequencies and processing 
requirements to coexist peacefully. Applications with 
short intervals and modest processing loads can be 
assigned higher priorities than applications with long 
intervals and heavy processing loads. 
 
6.2 Commands 
 
Commands are used to tell tree member components 
when they should carry out various kinds of tasks. A 
command is a method implemented by each tree 
member with children. The minimal implementation 
is to call the same method on each child. Beyond that 
minimal requirement, a component is free to do 
whatever it deems appropriate in response to the 
particular command. Once a command is executed 
on a particular node, the command will propagate to 
all nodes on the branch below the initiating node. 
Along the way, each component gets to do whatever 
is appropriate for the particular command. 
 
Execution Commands. When a scheduling module is 
executed, either at a scheduled interval or because of 
a demand, the scheduling block sends a series of 
commands to its branch. An execution cycle consists 
of the following three commands carried out in 
sequence: PreExecute, Execute and PostExecute. 
Application function blocks typically perform their 
main functionality in Execute. OPC Client function 
block and data items with connections use 
PreExecute and PostExecute such that inputs are read 
just prior to use and outputs are sent just after they 
are generated. 
 
Notification Commands. A number of other 
commands are issued by the scheduler and by other 
components, or by external clients. These include: 

• InitNew – Issued on a component when it is 
added to a platform. A component can set its 
initial value. 

• Save – Issued on the top node to persist a 
platform. Each node writes all its own properties, 
in an eXtensible Markup Language (XML) node 
that is a child of its parent’s XML item. 

• Load – Issued on the top node to load a platform 
from persistent storage. Each node is recreated 
and attached by its parent and then loads its own 
properties. 

• OnPostBuild – Issued on any node to indicate that 
configuration activity has occurred on the branch 
below the node. Data items check that connection 
targets are still valid. Function blocks can check 
whether they need to respond to configuration 
changes. 

 
6.3 Cross platform execution 
 
The execution control based on commands is a fast 
and effective system for controlling execution inside 
one platform. Controlling execution of several 
applications running on several platforms, possibly 
on several machines, has different issues and 
priorities. The special function block ‘CASCADE’ 
covers requirements of controlling a cascade of 
several control applications running in 1:n 
relationship, one master application can manage n 
slave applications in parallel. 
 
In addition to the commands, ‘CASCADE’ function 
block uses data connections (links, URT connections 
or OPC connections) for controlling slave 
applications. Two data commands are issued by the 
master application’s PreExec and Execute. 
 
The PreExecute command is first passed to all slaves, 
than it waits while all slaves finish the PreExec 
phase, and finally the application executes its own 
PreExec procedure. It means the PreExec is actually 
processed from the bottom of the cascade to the top. 
 
The Execute command is processed from the top to 
the bottom of the cascade. All slave applications are 
started simultaneously as they can run on different 
processors. Slave synchronization is not provided. 
 
 

7. APPLICATION BUILDING 
 
Creation of a control application tree structure is a 
complex and time-consuming task. The structure 
depends on configuration parameters, i.e. the number 
of manipulated variables, controlled variables, etc. 
Therefore a maintenance function block is created for 
each type of control application. The function block 
has the following features and responsibilities: 
 
• contains information about the tree structure 
• creates or updates the tree according to the 

application configuration parameters  
• creates link data items and connections to shared 

data between function blocks 
• sets default values of selected data items 



  

     

• updates variable ranges  
• calls PostBuild() method on application root node 

to reconnect all data items 
 
The maintenance function block can be considered 
an object, which stores parameterized information of 
the application structure with methods allowing 
application (re)building and managing. 
 
 

8. REAL TIME RECONFIGURATION 
 
The ability to create and modify a URT platform 
from the platform itself together with indirection 
(links) allows implementing advanced features like 
real time configuration switching, on-demand 
reconfiguration or off-line analyses. 
 
The real time configuration switching is a typical 
requirement when some process value is changing its 
control role in real time, e.g. a manipulated value 
becomes a measured disturbance value and vice 
versa. In such a case, one controller for each scenario 
is configured and tuned in a URT platform. 
Input/output data and execution are then switched in 
real-time to the new controller by changing one link. 
 
Example: Master controller output is configured as 
indirect link: MASTER.OP = /SELECTOR#/SP, 
where link SELECTOR can be one of {SLAVE1, 
SLAVE2}. The resulting connection for master 
output is /SLAVE1/SP or /SLAVE2/SP depending 
on actual SELECTOR value. 
 
If there are many possible configurations and the 
selection involves a complex decision-making, the 
required configuration can be generated in real-time 
on a low priority thread. The execution is switched to 
the new configuration when the latter is available and 
ready to use. 
 
Most of today’s advanced control applications 
provide, in addition to their main control 
functionality, also some what-if analyses. These 
analyses require the control algorithm to run on a 
data set where the process data are partially replaced 
by data supplied by a client. A simple and elegant 
solution in the URT platform is cloning the 
corresponding part of a controller function and 
connecting the particular client to the cloned part. 
The client can modify inputs and see possible outputs 
without changing the current control strategy. 
 
 

9. MESSAGES AND OPC EVENTS 
 
All components, including function blocks, have use 
of a messaging system to issue messages for operator 
and engineer viewing and acknowledgement. The 
messaging system takes care of such things as 
filtering out redundant messages (e.g., when the 
same error condition is reported for a number of 
successive intervals) and clearing messages when a 
condition is no longer in effect.  
 

 
 
Fig. 5. Function block for PV processing 
 
The text of a message may be generated in any 
manner, but a convenient mechanism provided by the 
message system is the use of XML files to hold the 
raw message text. XML attributes may be used to 
specify message attributes such as severity, 
acknowledgement, category, and many others. To 
issue a message, a component selects the message by 
specifying a handle attribute, and provides non-static 
information in the form of strings to be inserted into 
the message text at marked points. 
 
The message system is integrated with URT’s OPC 
Alarm & Event Server. Issued messages are 
transformed into OPC A&E events. The events can 
be integrated with process system events for display 
to operators and for operator action if the process 
system has a suitable OPC client. 
 
 

10. PV PROCESSING BLOCK EXAMPLE 
 
An example of a function block, which processes PV 
(can be either a single or double value or an array of 
double values) and calculates OP (the same type and 
size as PV) using both PV and OP range, filter and 
equation parameters is shown in Figure 5. 
 

 
11. CONCLUSION 

 
Overall performance of the platform is limited by the 
underlying operating system (Windows 2000). The 
platform overhead resulting from the COM 
technology used is insignificant and comparable to 
DLL calls. Scheduling accuracy is around 10 ms. 
 
The URT platform itself does not implement any 
control algorithm, but currently some Honeywell 
controllers, e.g. for the petrochemical and power 
markets, have been ported to URT platform. No 
significant performance degradation compared to 
previous Windows native applications was observed 
during testing. 
 
 

REFERENCES 
 
Grimes, R. (1997). Professional DCOM Program- 

ming. Wrox, Birmingham, Canada. 
Passetti, A. (2002). Software Frameworks and 

Embedded Control Systems. Springer, Berlin. 
Szyperski. C. (1999). Component software – Beyond 

Object-Oriented Programming. Addison-
Wesley, Harlow. 


