
ON A STABILITY PROPERTY OF NONLINEAR
SYSTEMS WITH PERIODIC INPUTS HAVING

SLOWLY VARYING AVERAGE

Y. U. Choi, H. Shim, and J.H. Seo

ASRI, School of Electrical Engineering,
Seoul National University, Kwanak P.O.Box 34,
Seoul, 151-600, Korea. Email: hshim@snu.ac.kr

Abstract: It is known that, if an equilibrium of a nonlinear system has a stability
property when an external input is frozen, then the property is maintained under
the input being slowly varying. In this paper, we show that the same stability
property is preserved not only under slowly varying input but also under slowly-
varying-average input (which is not actually slowly varying but its ‘average’ is
slowly varying). The input is assumed to be periodic and to vary sufficiently fast.
We prove the claim by the average theory and some previous results on the slowly
varying inputs. Copyright c© 2005 IFAC
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1. INTRODUCTION

In the early 1990s, (Kelemen, 1986), (Lawrence
and Rugh, 1990), and (Khalil and Kokotović,
1991) have presented a stability property of non-
linear systems with slowly varying inputs, which
can now be found in a graduate textbook such
as (Khalil, 1996). The goal of this paper is to
extend the result of (Kelemen, 1986; Lawrence
and Rugh, 1990; Khalil and Kokotović, 1991) in
the sense that the same stability property is estab-
lished under periodic inputs having slowly varying
‘average.’ In other words, we consider an input
that may not be slowly varying itself, but whose
average is slowly varying.

To be concrete, let us consider a dynamical system
given by

ẋ = f(x, u), (1)

where f(·, ·) is continuously differentiable, x ∈
Rn, u ∈ Γ ⊂ Rm in which Γ is a connected
compact set. Suppose that, for each frozen (i.e.,
constant) input u ∈ Γ, there exists a correspond-
ing equilibrium x∗(u) such that f(x∗(u), u) = 0.

Suppose also that, for any two (constant) in-
puts u1 and u2 contained in Γ, we want to
drive the state x(t), which is initially located in
a neighborhood of x∗(u1), into a neighborhood
of x∗(u2). This problem has been dealt with in
(Kelemen, 1986; Lawrence and Rugh, 1990; Khalil
and Kokotović, 1991), where it is proved that, if
there exists a curve U in Γ that connects two
points u1 and u2 and, for each fixed ū on the
curve U , the corresponding equilibrium x∗(ū) is
locally exponentially 1 stable, then, by changing
u(t) sufficiently slowly from u1 to u2 along the
curve U , the state x(t) that is close to the point
x∗(u1) can be driven into a small neighborhood of
x∗(u2). In this paper, it is asserted that, for the
same result, slowly varying u(t) is not necessary
but it is sufficient that the average of u(t) is

1 Local exponential stability is easily relaxed to local
asymptotic stability in (Khalil and Kokotović, 1991) once
the region of attraction of each x∗(ū) does not vanish
along the curve U . The latter property has been coined
as ‘NvBA (Non-vanishing Basin of Attraction) stability’
and a verification method of it is proposed in (Shim et
al., 2004).



slowly varying along the curve U if the periodic
oscillation of u(t) is sufficiently fast.

We note that, in practice, there are several oc-
casions where the slowly-varying-average-input
assumption is more suitable than the slowly-
varying-input assumption. A classical example
of the slowly-varying-average-input is the PWM
(pulse-width modulation) control whose net effect
is the average of instantaneous control inputs.

2. MAIN RESULT

To effectively describe the system under consider-
ation, we suppose that the system is given by

ẋ(t) = f(x(t), ua(t), uf (
1
ε
t)),

ua ∈ Γ ⊂ Rm, uf ∈ Rl,
(2)

where f(·, ·, ·) and ua(·) are continuously differ-
entiable, the set Γ is connected and compact, and
the piecewise continuous function uf (·) is assumed
to be periodic with a period T (thus, uf (1

ε t) is
εT -periodic). The small positive parameter ε (to
be specified) indicates that the function uf varies
fastly. In fact, we are going to rely on three-
time scale behavior of the system by specifying ε
sufficiently small so that uf oscillates sufficiently
fast and by specifying the upper bound of the
derivative of ua (i.e., ‖dua

dt ‖ ≤ κ where κ is suffi-
ciently small) so that ua varies sufficiently slowly,
relatively to the behavior of the system state x(t).

Remark 1. A system having an input u(t) whose
average is slowly varying is regarded in this paper
as

ẋ(t) = f(x(t), u(t)) = f(x(t), ua(t) + uf (
1
ε
t))

where ua(t) is slowly varying and the periodic
function uf (·) has zero mean. In this way, this
system is cast into (2).

A trick in our development is to regard (1
ε t) as an

independent variable τ for now. Then, the system
(2) is now rewritten as

ẋ(t) = fav(x(t), ua(t)) + fp(x(t), ua(t), uf (τ))
(3)

where fav is defined as

fav(x, ua) =
1
T

∫ σ+T

σ

f(x, ua, uf (s))ds

with arbitrary σ, and fp(x, ua, uf ) = f(x, ua, uf )−
fav(x, ua). Note that, with this construction,

∫ σ+T

σ

fp(x, ua, uf (s))ds = 0

for any x and ua.

Now we formally assume the stability property of
the averaged system with frozen input ua as fol-
lows. Let Br(x) (B̄r(x)) denote the open (closed)
ball centered at x with the radius r > 0.

Assumption 2. The averaged system

ẋ = fav(x, ua) (4)

has an isolated equilibrium x∗(ua) for each frozen
input ua ∈ Γ, that is, fav(x∗(ua), ua) = 0, and
there exist a locally Lipschitz function V : Rn ×
Rm → R and a positive number r such that, for
each ua ∈ Γ and each x ∈ Br(x∗(ua)),

α1(‖x− x∗(ua)‖) ≤ V (x, ua) ≤ α2(‖x− x∗(ua)‖)
(5)

∂V

∂x
fav(x, ua) ≤ −α3(‖x− x∗(ua)‖), a.e., (6)

where αi(·), i = 1, 2, 3, are class-K functions.

Theorem 3. Consider the system (2) under As-
sumption 2. Given a positive number ρ, there exist
positive numbers ε∗, κ and δ such that, if∥∥∥∥

dua

dt
(t)

∥∥∥∥ ≤ κ

so that the input ua(t) varies sufficiently slowly,
and 0 < ε < ε∗ so that the input uf ( 1

ε t)
varies sufficiently fastly, then the state x(t) ini-
tiated in a neighborhood of x∗(ua(0)) such that
‖x(0)−x∗(ua(0))‖ ≤ δ stays in a neighborhood of
x∗(ua(t)), that is,

‖x(t)− x∗(ua(t))‖ ≤ ρ, ∀t ≥ 0.

PROOF. The proof is taken from (Sanders and
Verhulst, 1985) with modification.

First of all, let us define a compact set of our
interest,

D :=
{
(x, ua) ∈ Rn × Γ : x ∈ B̄r(x∗(ua))

}
.

For each element (x, ua) ∈ D, define µ(x, ua, τ) as

µ(x, ua, τ) =
∫ τ

0

fp(x, ua, uf (s))ds,

where τ ∈ R. Thus, obviously, it follows that

∂µ

∂x
(x, ua, τ) =

∫ τ

0

∂fp

∂x
(x, ua, uf (s))ds, and

∂µ

∂ua
(x, ua, τ) =

∫ τ

0

∂fp

∂ua
(x, ua, uf (s))ds.

Note that the above integrals are conducted
with x and ua fixed. The norms of µ(x, ua, τ),
∂µ
∂x (x, ua, τ), and ∂µ

∂x (x, ua, τ) are bounded by
some constant cm > 0 for all (x, ua, τ) ∈ D ×
[0,∞) since fp(x, ua, uf (τ)) and its partial deriva-
tives with respect to x and ua are T -periodic in τ
and have zero mean.

We consider the change of variables

x = y + εµ(y, ua, t/ε), (7)



where the new variable y is an n-dimensional
vector. Note that the Jacobian of the map (7) is
∂x
∂y (y, ua, τ) = I + ε∂µ

∂y (y, ua, τ). Even though y
is defined implicitly, the Jacobian is nonsingular,
and the ratio of each leading principal minor of
the Jacobian is strictly positive on D× [0,∞) for
sufficiently small ε since the partial derivative ∂µ

∂y

is bounded on D × [0,∞) as stated earlier. Then,
owing to (Kou et al., 1973, Thm. 1), there exists
an ε1 > 0 such that, for each (ua, t, ε) ∈ Γ ×
[0,∞)× [0, ε1], the map y 7→ x is C1 and bijective
for all y ∈ B̄r(x∗(ua)). Differentiating both sides
of the equation (7) with respect to time, we have

ẋ(t) = ẏ(t) + ε
∂µ

∂y
(y(t), ua(t), t/ε) · ẏ(t)

+ ε
∂µ

∂ua
(y(t), ua(t), t/ε) · u̇a(t)

+ ε
∂µ

∂τ
(y(t), ua(t), t/ε) · 1

ε
.

We reformulate the above equation as follows
[
I + ε

∂µ

∂y
(y(t), ua(t), t/ε)

]
ẏ(t)

= ẋ(t)− ε
∂µ

∂ua
(y(t), ua(t), t/ε) · u̇a(t)

− ∂µ

∂τ
(y(t), ua(t), t/ε)

= f(x(t), ua(t), uf (t/ε))

− ε
∂µ

∂ua
(y(t), ua(t), t/ε) · u̇a(t)

− fp(y(t), ua(t), uf (t/ε))

= fav(y(t), ua(t))− ε
∂µ

∂ua
(y(t), ua(t), t/ε) · u̇a(t)

+ f(x(t), ua(t), uf (t/ε))− f(y(t), ua(t), uf (t/ε))
= fav(y, ua) + p0(y, ua, t, ε)u̇a + p1(y, ua, uf , t, ε),

where p0(y, ua, t, ε) = −ε ∂µ
∂ua

and p1(y, ua, uf , t, ε) =
[f(y + εµ, ua, uf ) − f(y, ua, uf )]. The function p1

is written as

p1(y, ua, uf , t, ε) = f̄(y, ua, uf , εµ) · εµ,

where f̄ is a matrix of continuous functions whose
existence follows from the continuous differential-
ibity of f . It can be seen easily that

‖p0(y, ua, t, ε)‖ ≤ εcm (8)
‖p1(y, ua, uf , t, ε)‖ ≤ εcfcm, (9)

for all (y, ua) ∈ D, t ∈ [0,∞) and ε ∈ [0, ε1], where

cf = sup
(y,ua)∈D,0≤τ,0≤εµ≤ε1cm

‖f̄(y, ua, uf (τ), εµ)‖

(cf < ∞ since f̄ is continuous and uf is piecewise
continuous).

We use the function V in Assumption 2 to analyze
the transformed system. The time-derivative of V
along the system in y-coordinates is given by

V̇ (y, ua) =
∂V

∂y
ẏ(t) +

∂V

∂ua
u̇a(t)

=
∂V

∂y

[
I + ε

∂µ

∂y

]−1

(fav + p0u̇a + p1) +
∂V

∂ua
u̇a(t)

=
∂V

∂y
fav +

∂V

∂y

([
I + ε

∂µ

∂y

]−1

− I

)
fav

+
∂V

∂y

[
I + ε

∂µ

∂y

]−1

(p0u̇a + p1) +
∂V

∂ua
u̇a(t).

Since the function V is locally Lipschitz, its partial
derivatives ∂V

∂y and ∂V
∂ua

are bounded on D almost
everywhere, and we let

cv = ess.sup(y,ua)∈D

∥∥∥∥
∂V

∂y
(y, ua)

∥∥∥∥ ,

cw = ess.sup(y,ua)∈D

∥∥∥∥
∂V

∂ua
(y, ua)

∥∥∥∥ ,

ca = ess.sup(y,ua)∈D ‖fav(y, ua)‖ .

In addition, for ε < 1
cm

, we have
∥∥∥∥∥
[
I + ε

∂µ

∂y

]−1
∥∥∥∥∥ ≤

1
1− εcm

, and

∥∥∥∥∥
[
I + ε

∂µ

∂y

]−1

− I

∥∥∥∥∥ ≤
εcm

1− εcm
.

Consequently, from Assumption 2, (8) and (9), it
follows that

V̇ (y(t), ua(t)) ≤ −α3(‖y(t)− x∗(ua)‖)
+ cv

εcm

1− εcm
ca + cv

1
1− εcm

εcm‖u̇a‖

+ cv
1

1− εcm
εcfcm + cw‖u̇a‖,

on D, almost everywhere.

Now, without loss of generality, suppose that the
given number ρ ≤ r. We can take a pair of positive
numbers (ε2, κ) such that

ε2cm

1− ε2cm
cv(ca+κ+cf )+cwκ ≤ (α3◦α−1

2 ◦α1)(
ρ

2
).

Then,

V̇ (y(t), ua(t)) ≤ −α3(α−1
2 (V ))+(α3◦α−1

2 ◦α1)(
ρ

2
),

which implies that, if V (y(0), ua(0)) ≤ α1(ρ/2),
then V (y(t), ua(t)) ≤ α1(ρ/2) for all t ≥ 0.
Therefore, letting δ = (α−1

2 ◦ α1)(ρ
2 ), we have

‖y(t)− x∗(ua(t))‖ ≤ ρ

2
,

for all t ≥ 0 if ‖y(0) − x∗(ua(0))‖ ≤ δ and
ε < min{ε1, ε2, 1

cm
}.

To complete the proof, the analysis is given in x-
coordinate. From (7), x(0) = y(0). Thus, if ‖x(0)−
x∗(ua(0))‖ ≤ δ, then ‖y(t) − x∗(ua(t))‖ ≤ ρ

2 and
(y(t), ua(t)) ∈ D for all t ≥ 0, which implies that



‖x(t)− x∗(ua(t))‖ ≤ ‖x(t)− y(t)‖+ ‖y(t)− x∗(ua)‖
≤ ‖εµ(y(t), ua(t), t/ε)‖+

ρ

2
≤ εcm +

ρ

2
.

Therefore, we finally set

ε∗ = min{ε1, ε2, 1
cm

,
ρ

2cm
},

and we have

‖x(t)− x∗(ua(t))‖ ≤ ρ,

for all t ≥ 0 provided that ε < ε∗.

¥

3. CONCLUSION

In this note, we use the features of the slowly-
varying periodic input and the averaging theory to
prove that if each equilibrium point for the frozen
system of our concern is asymptotically stable,
its stability property is not severely disturbed by
inputs having slowly-varying average. Finally, it
seems that the result in this note can be extended
using ‘general’ averaging theory applicable to the
case that uf (t) may not be periodic.
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