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Abstract: In this paper, we propose an object recognition method for 2D objects using 
wavelet descriptors. The descriptors are derived from the continuous wavelet transform 
using the Mexican hat function as mother wavelet. In contrast to the other known 
methods we apply an angle function to describe object contours extracted as polygons. 
The contour extraction is based on the object oriented contour extraction method 
(OCE). The polygon representation is based on the curvature dependent contour 
approximation (CDCA). The continuous wavelet transform (CWT) is used in order to 
apply a suitable number of wavelet descriptors (WD), which are qualified to 
characterize the object shapes. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The automatic recognition of objects is a widespread 
application in image processing and pattern 
recognition systems. One of the most important tasks 
in this application is the representation of object 
shapes by a number of specific features. 
Many methods have been proposed to describe object 
shapes. Several methods use segment sequences 
composed with different segment types like chain 
code (Freeman, 1974) or segments of constant 
curvature (Ramer, 1972). Rodenacker, et al. (1987) 
used the so-called shape factor. A shape factor 
includes measurements of the object like moments, 
area, perimeter etc. Advanced methods use 
descriptors derived from Fourier transformation 
(Granlund, 1972; Zahn and Roskies, 1972) or 
wavelet transform (Chunag and Kuo, 1996; Feng and 
Bui 2001). 
Fourier descriptors (FD) have been a powerful tool 
for pattern recognition. Such FD are derived using 

Fourier transform (FT) of one or two dimensional 
functions, which describe the object shape. The 
recognition is then based on the comparison between 
the FD of the unknown object with those of the 
stored prototypes using minimum distance (Nabout 
1992) or Fuzzy methods (Nabout, et al., 1994). 
To checkout the CWT about its ability of describing 
object shapes, similar to FT, we show in this paper 
the derivation of wavelet descriptors using the 
Mexican hat function as mother wavelet and the 
angle function derived from the extracted contour 
polygon of a given object. The usage of the Mexican 
hat function allows, similar to the Fourier 
transformation described in (Granlund, 1972), the 
execution of the continues wavelet transform in order 
to apply suitable number of coefficients. Other basis 
functions like Daubechies, Coiflet; Haar etc. can be 
used, but they require the execution of the discrete 
wavelet transform which needs suitable discretization 
of the object contours and includes consequently 
some errors. 

     



The paper is organized as follows: 
Section 2 shows the method of describing object 
shapes using an angle function. In this section, the 
object oriented contour extraction method (OCE) 
(Nabout, et al., 1993) as well as the description of 
contours as polygons (Nabout, et al., 1995) are 
shown. Section 3 indicates the derivation of the 
wavelet descriptors (WD) using the Mexican Hat 
function as mother wavelet. Section 4 shows some 
results of the CWT for different object shapes. 
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2. SHAPE DESCRIPTION USING the ANGLE 

FUNCTION 
 

To apply an angle function we at first use the OCE 
method in order to extract the object contours from 
the original image and to describe them as chain 
code. The following processing steps must be done in 
order to extract the object contours according to the 
OCE method (Nabout, et al., 1993). 
 
Step 1: Divide the image into 2*2 resp. 4*4 
overlapped windows as shown bellow 
 

4*4- Window

2*2- Window
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Step 2: Find out the contour edges 

 and their coordinates 
i

a ( )
i

y
i

x ,  

according to Freeman code (Freeman, 
1972) by calculating the pixel values 
of the windows as given in the 
following extraction rules. 
 

Extraction rules 
 
 
 
   Code 1 Code 5  Code 3     Code 7 
 
 
 
  Code 4   Code 6      Code 2 
  Code 0 
Step 3: Connect the extracted edges to build the 
contour chains by checking the start and end points 
of the edges. Fig. 1 shows an example of the 
connection process. 

 
Fig.1 Example of the edge connection 

 contour 

tep 1

Using the curvature dependent
approximation (Nabout, et al., 1995), we can 
describe the contours in the next stage as polygons. 
This method is working with a splitting and merge 
algorithm and is qualified to approximate the 
contours depending on the local curvature. This is 
necessary to avoid distortion of the contour 
characteristic, which can destroy the recognition 
process. The contour approximation using the CDCA 
method are given in the following five steps. 
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iteratively when the 
following condition 
d > dg AND α > αg  
(e.g. dg = 1 Pixel and 
        αg = 1 Degree) 
is fulfilled. 
 

tep5S
Connect the start and end points of the sequences 

ig. 2 shows an example of the contour extraction 

      

ple results, a) contour extract n,  

s mber of polygon edges 

character F in Fig. 2.  

resulted from step 4 by lines. 
 
F
and approximation using OCE (Fig 2a) and CDCA 
method (Fig 2b) which is described above. 
 

  
 

ig.2 Exam ioF
b) contour approximation 

 
shown in Fig. 2b the nuA

needed to characterize the given object is very low 
and depends on the curvature of the object. For 
objects with complex shapes the number of polygon 
edges will be higher than for the shape of the 

i
y

i
x

i
a

3 
5 
4 
1 
7 
4 
4 
4 

2 
2 
1 
3 
2 
4 
3 
5 
4 
6 
5 

0 
1 
7 
2 
7 
1 
7 
2 
6 
3 
5 

7 
6 
6 
8 
6 
8 
8 
8 

2 
3 
4 
2 
5 
1 
6 
1 
7 
2 
7 

3 
5 
6 
2 
5 
3 
4 
5 

     



The approximated object in Fig. 2b can be described 

using an angle function ( )lφ  resp. ( )lφ *
 defined as 

following: 
Beginning from a startin oint on th contour we g p e 
define the angle function ( )lφ  which gives the angle 
changes along the contour length. The angle changes 
are represented by the differences between the angle 
at the current contour position and the angle at the 
starting point. For the shape of Fig. 2b the angle 
values changes only at the polygon corners. 
Therefore ( )lφ  is a step function. Fig. 3a shows the 
step function for the character of Fig. 2. 
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Fig. 3 The angle function ( )lφ  (a) and  (b) of the 

character of Fig. 2. 
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WAVELET TRANSFORMATION 
 

Similar ctions, 
called wavelets, to descri e a given signal (Strang, 

mother wavelet  (Daubech

 ( )l*φ

 
Using the following param r transform ion  
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en in the following Equation
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( ) ( )Ltt = πφφ 2/* t

T ape independent 
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(Fig 3b). 
 
 

3. 

 to the FT, the WT uses elementary fun
b

1993). In contrast to the FT, which uses harmonic 
functions with different dilatation, compression and 
shifting, the WT uses only one basis wavelet (mother 
wavelet) to derive the reconstruction signals. 
Likewise through dilatation, compression and 
shifting of the mother wavelet, we derive new 
variants of this signal which together build the so 
called wavelet building set. Equation (2) shows in 

our case the derived wavelets ( )tba,Ψ  from the 
( )
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nd b is the shifting parameter. B
exican Hat function, Fig. 4 shows the mother 
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wavelet and some derived variants resulting from the 
compression, dilatation and shifting of the mother 
wavelet using Equation (2) (Strang, 1993). 
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Equation (7) includes four terms, which we denote 
with T1-T4. One note that T2 and T4 are independent 

on the function ( )lφ  and their computation yield to 
constant values (see Equation (8) and (9)). 
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The other two terms T1 and T3 depend on the 

ormation fu  and can’t be calculated transf nction

directly. Since the function ( )lφ  is constant along the 
polygon edges, the terms T1 and T3 can be 
calculated through dividing interval the [ ]π20 −  into 
several intervals according to the number of polygon 
edges. The first term T1 can be written as
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Through multiplication and rearranging we get the 
xpression for the first term of Equation (7). 
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Where  is the angle difference between the 
polygon edges i and i+1. 
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Using Equation (8) (9) (14) and (15) the CWT 
elivers finally the wavelet coefficients as given in 

Equation (16). 
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4. WAVELET DESCRIPTORS 
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 sufficient set of Mexican 
[ ]π20 − . Fig. 5 

shows a part of the wavelet building set used in our 
application. 
 

 

 
 

Fig. 5 Part of the wavelet building set applied for the
Mexican Hat function in the interval [ ]

 
π20 −  

As shown in this Figure the small values of the 

the Mexican Hat function and are qualified to 
parameter a (a < 1) produce compressed variants of 

describe the details of the contour shape. Big values 
on the other hand create dilated variants of the same 
function and are used to approximate the object 
shape. It is clear that the higher the number of the 
descriptors is, the more particular the representation 
of the object shape is. Fig. 6 shows for example an 
image with different classes of weed species. The 
corresponding 16 Fourier (FD) and wavelet 
descriptors (WD) for the first two weed of the class 
VER are given in Fig. 7. 

The first half of the WD shown in Fig. 7b [WD1-
WD8] represents the wavelet coefficients which are 
calculated for the 
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Fig. 6 Example of different classes of weed species 
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(b) 

Fig. 7 a) Fourier descriptors (FD), b) wavelet 
descriptors (WD) of the weed species VER 

parameters { }3,2∈a , 
{ }1,5.0,1,2 −−∈b  and used as approximation signal 

(a > 1). The second half [WD9-WD16] represents the 
wavelet coefficients which are calculated e 
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To calculate the differences between two object 
shapes we use the minimum distance (d) as given in 
the following Equation: 
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It is easy to see that the differences between the FD 
re greater than the differences 

given example (see Fig 7). Specially for the low 
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he representation of object contours using wavelet 
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frequent FD and WD. This can cause confusion 
between objects in recognition tasks when we use the 
WD instead of the FD. To study the behaviour of the 
WD for more coefficients we calculated 256 FD and 
WD for the same weed species of Fig. 6. Fig. 8 
shows these results. 
As shown in Figure 8a the values of the FD decrease 
for high frequencies rapidly, so that the differences 
between the FD of 
The values of the WD indicate a periodical 
behaviour. Therefore it is not necessary for 
recognition tasks to use all WD to represent a given 
object, since only a few number of WD are needed 
and qualified to recognize the object. 

 
 

5. CONCLUSION 
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number of WD using only the polygon parameters. 
The number of WD needed to recognize given 
objects increases according to the complexity of the 
object shapes. Certainly it is necessary to study the 
influence of choosing the starting point on the 

recognition process, since the values of the WD 
depends on it. This task will be investigated in 
features works. 
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