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Abstract: In this paper, we propose an object recognition method for 2D objects using
wavelet descriptors. The descriptors are derived from the continuous wavelet transform
using the Mexican hat function as mother wavelet. In contrast to the other known
methods we apply an angle function to describe object contours extracted as polygons.
The contour extraction is based on the object oriented contour extraction method
(OCE). The polygon representation is based on the curvature dependent contour
approximation (CDCA). The continuous wavelet transform (CWT) is used in order to
apply a suitable number of wavelet descriptors (WD), which are qualified to
characterize the object shapes. Copyright © 2005 IFAC
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1. INTRODUCTION

The automatic recognition of objects is a widespread
application in image processing and pattern
recognition systems. One of the most important tasks
in this application is the representation of object
shapes by a number of specific features.

Many methods have been proposed to describe object
shapes. Several methods use segment sequences
composed with different segment types like chain
code (Freeman, 1974) or segments of constant
curvature (Ramer, 1972). Rodenacker, et al. (1987)
used the so-called shape factor. A shape factor
includes measurements of the object like moments,
area, perimeter etc. Advanced methods use
descriptors derived from Fourier transformation
(Granlund, 1972; Zahn and Roskies, 1972) or
wavelet transform (Chunag and Kuo, 1996; Feng and
Bui 2001).

Fourier descriptors (FD) have been a powerful tool
for pattern recognition. Such FD are derived using

Fourier transform (FT) of one or two dimensional
functions, which describe the object shape. The
recognition is then based on the comparison between
the FD of the unknown object with those of the
stored prototypes using minimum distance (Nabout
1992) or Fuzzy methods (Nabout, et al., 1994).

To checkout the CWT about its ability of describing
object shapes, similar to FT, we show in this paper
the derivation of wavelet descriptors using the
Mexican hat function as mother wavelet and the
angle function derived from the extracted contour
polygon of a given object. The usage of the Mexican
hat function allows, similar to the Fourier
transformation described in (Granlund, 1972), the
execution of the continues wavelet transform in order
to apply suitable number of coefficients. Other basis
functions like Daubechies, Coiflet; Haar etc. can be
used, but they require the execution of the discrete
wavelet transform which needs suitable discretization
of the object contours and includes consequently
some errors.



The paper is organized as follows:

Section 2 shows the method of describing object
shapes using an angle function. In this section, the
object oriented contour extraction method (OCE)
(Nabout, et al., 1993) as well as the description of
contours as polygons (Nabout, et al., 1995) are
shown. Section 3 indicates the derivation of the
wavelet descriptors (WD) using the Mexican Hat
function as mother wavelet. Section 4 shows some
results of the CWT for different object shapes.

2. SHAPE DESCRIPTION USING the ANGLE
FUNCTION

To apply an angle function we at first use the OCE
method in order to extract the object contours from
the original image and to describe them as chain
code. The following processing steps must be done in
order to extract the object contours according to the
OCE method (Nabout, et al., 1993).

Step 1. Divide the image into 2*2 resp. 4*4
overlapped windows as shown bellow
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Step 2: Find out the contour edges 5
2 and their coordinates (X y ) 3 1
i i
according to Freeman code (Freeman, |4 /N0
1972) by calculating the pixel values | 5 7
; . . 6
of the windows as given in the
following extraction rules.
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Step 3: Connect the extracted edges to build the
contour chains by checking the start and end points
of the edges. Fig. 1 shows an example of the

connection process.
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Fig.1 Example of the edge connection

Using  the  curvature  dependent  contour
approximation (Nabout, et al., 1995), we can
describe the contours in the next stage as polygons.
This method is working with a splitting and merge
algorithm and is qualified to approximate the
contours depending on the local curvature. This is
necessary to avoid distortion of the contour
characteristic, which can destroy the recognition
process. The contour approximation using the CDCA
method are given in the following five steps.

Step 1 om
Split the contour chain into 070EDDED

regular sequences with
max. 2 different Freeman codes. 0

Step 2

Detect noise sequences
by calculating the lengths

and angle changes of the
sequences. The following
condition is used to
detect noise sequences

I,y * o, <135°

X.Y)

Step3

Build new sequences by
merging the noise sequences )00) %
with regulars.

Step4
Split the new sequences (X.Y)

iteratively when the
following condition
d>dg AND a > ag
(e.g. dg = 1 Pixel and

ag = 1 Degree)
is fulfilled.

Step5
Connect the start and end points of the sequences

resulted from step 4 by lines.

Fig. 2 shows an example of the contour extraction
and approximation using OCE (Fig 2a) and CDCA
method (Fig 2b) which is described above.

Fig.2 Example results, a) contour extraction,

b) contour approximation

As shown in Fig. 2b the number of polygon edges
needed to characterize the given object is very low
and depends on the curvature of the object. For
objects with complex shapes the number of polygon
edges will be higher than for the shape of the
character F in Fig. 2.



The approximated object in Fig. 2b can be described

using an angle function #(1) resp. ¢ (1) defined as
following:
Beginning from a starting point on the contour we

define the angle function #(1) which gives the angle
changes along the contour length. The angle changes
are represented by the differences between the angle
at the current contour position and the angle at the
starting point. For the shape of Fig. 2b the angle
values changes only at the polygon corners.

Therefore ¢() is a step function. Fig. 3a shows the
step function for the character of Fig. 2.
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Fig. 3 The angle function #() (a) and ¢ (1) (b) of the
character of Fig. 2.

Using the following parameter transformation

|=Lt/27

with
L : Total length of the contour

we can derive a periodical angle function ¢ (1) as
given in the following Equation:

¢ (t)=g(Lt/ 27)+t )

This function describes the object shape independent
of the size of the object, his position or orientation
(Fig 3Db).

3. WAVELET TRANSFORMATION

Similar to the FT, the WT uses elementary functions,
called wavelets, to describe a given signal (Strang,
1993). In contrast to the FT, which uses harmonic
functions with different dilatation, compression and
shifting, the WT uses only one basis wavelet (mother
wavelet) to derive the reconstruction signals.
Likewise through dilatation, compression and
shifting of the mother wavelet, we derive new
variants of this signal which together build the so
called wavelet building set. Equation (2) shows in

. a,b
our case the derived wavelets ¥ (t) from the
mother wavelet ¥(t) (Daubechies, 1992).

1
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Where a is the compression or dilatation parameter
and b is the shifting parameter. Based on the
Mexican Hat function, Fig. 4 shows the mother
wavelet and some derived variants resulting from the
compression, dilatation and shifting of the mother
wavelet using Equation (2) (Strang, 1993).
Similar to the FT, Equation (3) shows the coefficient
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Fig. 4 Wavelet building set based on Mexican Hat

When we substitute the function ¥ in Equation (3)
with the Mexican Hat function given below
t2
W(t) = (1-t2)e 2 (4)
and limit the integration to the definition interval
[0-27], we receive the following expression.

t-b)?
a

H;bﬂew "

27

* t=
with ¢ ©=¢0)+t ang L we receive
consequently Equation (6).
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This Equation can be modified after multiplication of
the terms to the following Equation



27— bL}
dl

1
Wy g*(ab)= Zﬂaquﬁ(l)e [ aL

1
+|J_2|7_T|e7[ al 7)

1
L 2 _Y[T
— 24d-bL
[0 24 e

2~
_T@ 24-bL % 2
yT A

Equation (7) includes four terms, which we denote
with T1-T4. One note that T2 and T4 are independent

on the function o) and their computation yield to
constant values (see Equation (8) and (9)).
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The other two terms T1 and T3 depend on the
transformation function and can’t be calculated

directly. Since the function ) is constant along the
polygon edges, the terms T1 and T3 can be

calculated through dividing the interval [0—27] into
several intervals according to the number of polygon
edges. The first term T1 can be written as following:
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Where l and ¢Ui) are the length of the polygon
edge i and the angle differences between the edges i

and i+1l. In the interval lli—l_IiJ the angle

difference is consequently constant. Equation (10)
can be therefore modified to:
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Using the parameter transformation
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Equation (11) can be written as given below.
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Through multiplication and rearranging we get the
final expression for the first term of Equation (7).
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Where a;

polygon edges i and i+1.
In similar way we obtain for the third term T3 the
following expression:
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Using Equation (8) (9) (14) and (15) the CWT
delivers finally the wavelet coefficients as given in
Equation (16).
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4. WAVELET DESCRIPTORS

To apply wavelet descriptors to represent a given
object we vary the values of the compression or
dilatation parameter a and the shifting parameter b in
Equation (4) to receive a sufficient set of Mexican

Hat functions within the interval[0—27]. Fig. 5
shows a part of the wavelet building set used in our
application.
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Fig. 5 Part of the wavelet building set applied for the

Mexican Hat function in the interval [0—27]
As shown in this Figure the small values of the
parameter a (a < 1) produce compressed variants of
the Mexican Hat function and are qualified to

describe the details of the contour shape. Big values
on the other hand create dilated variants of the same
function and are used to approximate the object
shape. It is clear that the higher the number of the
descriptors is, the more particular the representation
of the object shape is. Fig. 6 shows for example an
image with different classes of weed species. The
corresponding 16 Fourier (FD) and wavelet
descriptors (WD) for the first two weed of the class
VER are given in Fig. 7.
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Fig. 6 Example of different classes of weed species
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Fig. 7 a) Fourier descriptors (FD), b) wavelet
descriptors (WD) of the weed species VER

The first half of the WD shown in Fig. 7b [WD;-
WNDg] represents the wavelet coefficients which are

calculated  for the  parameters @€ {23},

be{-2-1051} and used as approximation signal
(a > 1). The second half [WDg-WD4] represents the
wavelet coefficients which are calculated for the
parameters @< {0.5,0.125)  be{-2,-1051} ayq
corresponds to a detail signal (a < 1). It is important
to mention here that the values of the FD in
comparison with the values of the WD are invariant
with respect to the starting point on the contour.



To calculate the differences between two object
shapes we use the minimum distance (d) as given in
the following Equation:

d= %(\NDi -WDi')2 17)

It is easy to see that the differences between the FD
are greater than the differences of the WD for the
given example (see Fig 7). Specially for the low
frequent FD and WD. This can cause confusion
between objects in recognition tasks when we use the
WD instead of the FD. To study the behaviour of the
WD for more coefficients we calculated 256 FD and
WD for the same weed species of Fig. 6. Fig. 8
shows these results.

As shown in Figure 8a the values of the FD decrease
for high frequencies rapidly, so that the differences
between the FD of different objects also decrease.
The wvalues of the WD indicate a periodical
behaviour. Therefore it is not necessary for
recognition tasks to use all WD to represent a given
object, since only a few number of WD are needed
and qualified to recognize the object.
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Fig. 8 256 FD (a) and WD (b) of the objects in
Figure 5

5. CONCLUSION

The representation of object contours using wavelet
descriptors is useful in view of object recognition
tasks. In particular, the Mexican Hat function is
qualified to be used as mother wavelet to apply a
number of WD using only the polygon parameters.
The number of WD needed to recognize given
objects increases according to the complexity of the
object shapes. Certainly it is necessary to study the
influence of choosing the starting point on the

recognition process, since the values of the WD
depends on it. This task will be investigated in
features works.
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