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Abstract: There has been significant recent interest of particle filters for nonlinear
state estimation. Particle filters evaluate a posterior probability distribution of the state
variable based on observations in Monte Carlo simulation using so-called importance
sampling. However, degeneracy phenomena in the importance weights deteriorate the
filter performance. By recognizing the similarities and the differences of the processes
between the particle filters and Evolution Strategies, a new filter, Evolution Strategies
Based Particle Filter, is proposed to circumvent this difficulty and to improve the
performance. The applicability of the proposed idea is illustrated by numerical studies.
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1. INTRODUCTION

State estimation of dynamic systems using a sequence
of their noisy observations is ubiquitous in control
system science. This problem can be solved by a
Bayesian approach, that is, inference on the unknown
state can be performed according to the posterior prob-
ability distribution (pdf), which is obtained by com-
bining a prior pdf for the unknown state with a likeli-
hood function relating them to the observations. When
observations come sequentially in time, recursive state
estimation, which evaluates the evolving posterior pdf
recursively in time, is often interested. However, the
posterior pdf only admits an analytical expression for
very restricted cases, including linear Gaussian state
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space models where well-known Kalman filter (An-
derson and Moore, 1979; Sorenson, 1985) can be ap-
plied. In many realistic problems, state space models
include nonlinear and non-Gaussian elements that pre-
clude a closed form of expression for the optimal state
estimate and that many approximations have been pro-
posed such as the extended Kalman filter (EKF) and
Gaussian sum filter (Jazwinski, 1970; Goodwin and
Agüero, 2002). By the recent progress of computing
ability, “particle filtering," a simulation-based method
for Bayesian sequential analysis attracts much atten-
tions. In this approach, the integral in Bayes’ rule is
approximated by a weighted sum based on the discrete
grid sequentially chosen by the importance sampling
and the estimates are obtained based on corresponding
importance weights (Doucet, 1998; Arulampalam,et
al., 2002). A common problem in the particle filter
is the degeneracy phenomenon, where almost all im-



portance weights tend to zero after some iteration.
It implies a large computational effort is devoted to
updating the particles with negligible weights. Some
modifications such as resampling particle filter have
been proposed to resolve this difficulty. We propose
here a novel particle filter, Evolution Strategies Based
Particle Filter, by recognizing the similarities and dif-
ferences of the operations in particle filters and Evo-
lution Strategies (Schwefel, 1995 ), one of the evo-
lutionary computation approaches. Numerical simu-
lation studies have been conducted to exemplify the
applicability of this approach to nonlinear filtering.

2. PARTICLE FILTER

Consider the following nonlinear state space model.

xk+1 = f(xk, vk) (1)

yk = g(xk, wk) (2)

wherexk andyk are the state variable and observation,
respectively,f and g are known possibly nonlinear
functions, vk and wk are independently identically
distributed (i.i.d.) system noise and observation noise
sequences, respectively. We assumevk and wk are
mutually independent. Problem to be considered here
is to find the best estimate of the state variablexk

in some sense based on the all available data of ob-
servationsy1:k = {y1, y2, . . . , yk}. We can solve the
problem by calculating the posterior pdf of the state
variablexk of time instantk based on all the available
data of observation sequencey1:k.
The posterior pdfp(xk|y1:k) of xk based on the obser-
vation sequencey1:k satisfies the following recursion:

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(Chapman-Kolmogorov equation) (3)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(Bayes’ rule) (4)

with a prior pdfp(x0|y0) ≡ p(x0) of the initial state
variablex0. Here normalizing constant

p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk

depends on the likelihoodp(yk|xk), which is deter-
mined by the observation equation (2).
Since a closed form solution is not admitted ex-
cept in very restrictive cases such as linear Gaussian
state space models, where the well-known Kalman
filter (Anderson and Moore, 1979; Sorenson, 1985)
can be applied, some approximations should be intro-
duced. The most popular approximation approach is
the extended Kalman filter (EKF) (Jazwinski, 1970;
Goodwin and Agüero, 2002):

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = ÃkPk−1|k−1Ã
T
k−1|k−1 + Q

x̂k|k = x̂k|k−1 + Kk(yk − g(x̂k|k−1))

Pk|k = (I −KkC̃k)Pk|k−1

Kk = Pk|k−1C̃
T
k (C̃kPk|k−1C̃

T
k + R)−1

Ãk =
df(x)
dx

∣∣∣
x=x̂k−1|k−1

tildeCk =
dg(x)
dx

∣∣∣
x=x̂k|k−1

.

(5)

This is applicable to nonlinear models with additive
Gaussian noise and uses a linearization technique
based on a first order Taylor expansions of the nonlin-
ear system and observation equations about the current
estimate. However, it approximates the posterior pdf
to be Gaussian. If the true density is non-Gaussian,
then a Gaussian can never describe it well. In such
cases, approximate grid-based filters and particle fil-
ters will yield an improvement in performance. They
approximate the true posterior pdf with the following
weighted empirical distribution of a set ofn � 1
samples{x(i)

k , (i = 1, . . . , n)} called as particles
or discrete grids with associated importance weights
{w(i)

k , (i = 1, . . . , n)}, w(i)
k > 0,

∑n
i=1 w

(i)
k = 1,

p(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (6)

where δ(·) is Dirac’s delta function (δ(x) = 1 for
x = 0 andδ(x) = 0 otherwise).
Here, the particles are generated and associated weights
are chosen using the principle of “importance sam-
pling” (Doucetet al., 2001):
Supposep(x) ∝ π(x) is a pdf from which it is difficult
to draw samples, but for whichπ(x) can be evaluated
(and sop(x)). Let x(i) (i = 1, . . . , n) be samples
that are easily generated from a pdfq(x), called an
importance density. Then a weighted approximation
to the densityp(x) is given by

p(x) ≈
n∑

i=1

w(i)δ(x− x(i)) (7)

with the normalized weight of thei-th particle

w(i) ∝ π(x(i))
q(x(i))

(8)

So, if the samplesx(i)
k in (6) were drawn from an

importance densityq(x(i)
k |y1:k), then the associated

normalized weights are defined as by (8) to be

w
(i)
k ∝

p(x(i)
k |y1:k)

q(x(i)
k |y1:k)

. (9)

If the importance densityq(xk|y1:k−1) is chosen to
factorize such that

q(xk|y1:k) = q(xk|xk−1, y1:k)q(xk−1|y1:k−1). (10)

Then we can obtain samplesx
(i)
k by augmenting each

of the existing samplesx(i)
k−1 sampled from the im-



portance densityq(xk−1|y1:k−1) with the new state
sampled fromq(xk|xk−1, y1:k).
Noting that

p(xk|y1:k) =
p(yk|xk, y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk, y1:k−1)p(xk|xk−1, y1:k−1)

p(yk|y1:k−1)
× p(xk−1|y1:k−1)

∝ p(yk|xk)p(xk|xk−1)p(xk−1|y1:k−1) (11)

we have

w
(i)
k ∝

p(yk|x(i)
k )p(x(i)

k |x(i)
k−1)p(x(i)

k−1|y1:k−1)

q(x(i)
k |x(i)

k−1, y1:k)q(x(i)
k−1|y1:k−1)

= w
(i)
k−1

p(yk|x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

k−1, y1:k)
. (12)

The particle filter with these steps is called “Sequential
Importance Sampling Particle Filter” (SIS).
It is known that the SIS filter suffers from the degener-
acy phenomenon, where all but one of the normalized
importance weights are very close to zero after a few
iterations. By this degeneracy, a large computational
effort is wasted to updating trajectories whose contri-
bution to the final estimate is almost zero. In order to
prevent this phenomenon, several modifications have
been introduced. Among them, resampling process is
used often. Its idea is to eliminate trajectories whose
normalized importance weights are small and to con-
centrate upon the trajectories with larger weights. It in-
volves generating new grid pointsx∗

k
(i) (i = 1, . . . , n)

by resampling from the grid approximation (6) ran-
domly with probability

Pr(x∗
k
(i) = x

(j)
k ) = w

(j)
k (13)

and the weights are reset tow∗
k
(i) = 1/n. A suitable

measure of degeneracy is the estimate of the effective
sample sizeNeff introduced in (Konget al., 1994). It
is given by

N̂eff =
1∑n

i=1(w
(i)
k )2

(14)

with the associated normalized weightw
(i)
k . For a pre-

determined thresholdNthres ∈ [1, n], if the effective
sample sizeNeff is smaller thanNthres, it is decided
that the severe degeneracy is occurred and resampling
step should be introduced. Particle filter with this re-
sampling process is called “Sampling Importance Re-
sampling Particle Filter” (SIR).

3. EVOLUTIONARY COMPUTATION AND
EVOLUTION STRATEGIES BASED PARTICLE

FILTER

In this section, we propose a novel particle filter called
“Evolution Strategies Based Particle Filter” (ESP) by

recognizing the similarities in some steps of the “Sam-
pling Importance Resampling Particle Filter” (SIR)
and Evolution Strategies (ES).

3.1 Evolutionary Computation

Evolutionary computation approach is a computa-
tional model of natural evolutionary processes as
key elements in the design and implementation of
computer-based problem solving systems. A variety of
evolutionary computation approaches such as ‘Evolu-
tionary Programming’ (EP) (Fogel, Owens and Walsh,
1965), ‘Evolution Strategies’ (ES) (Schwefel, 1995),
‘Genetic Algorithm’ (GA) (Holland, 1992), and ‘Ge-
netic Programming’ (GP) (Koza, 1992) have been pro-
posed and studied. Extensive survey and comments
are given in (Bäck and Schwefel, 1993; Bäck, 1996;
Fogel, 1995). The common conceptual base is simulat-
ing the evolution of individuals (candidate solutions)
via processes of selection and perturbation. These pro-
cesses depend on the perceived performance (fitness)
of the individuals as defined by the environments.
Evolutionary computation approach maintains a pop-
ulation of structures that evolve according to rules of
selection and other operators, such as recombination
and mutation. Each individual is evaluated, receiving
a measure of its fitness in the environment.Selection
(reproduction) focuses attention on high-fitness indi-
viduals, thus exploiting the available fitness informa-
tion. Recombination (also refer to ascrossover) and
mutation perturb those individuals, providing general
heuristics for exploration. Here we explain Evolution
Strategies (ES) briefly. ES is developed by Rechen-
berg and Schwefel (Schwefel, 1995) to solve hydro-
dynamic problems. It is applied to continuous function
optimization in real-valuedn-dimensional space. Mu-
tation is applied more often to the solution rather than
crossover. The simplest method can be implemented
as follows: Letx(k) = (x(k)

1 , · · ·x(k)
n ) ∈ Rn, (k =

1, · · · , µ) be each individual in the population.

3.1.1. Generation of initial population
We generate an initial population of parent vectors
{x(k), (k = 1, · · · , µ)} randomly from a feasible
range in each dimension.

3.1.2. Evolution operations

(1) Crossover
This process allows for mixing of parental infor-
mation while passing it to their descendants. A
typical crossover rule is

x′
j = xS,j + χ · (xT,j − xS,j) (15)

where S and T denote two parent individuals
selected at random from the population andχ ∈



[0, 1] is a uniform random or deterministic vari-
able. The indexj in x′

j indicatesj-th component
of new individuals. This is a similar operator
used in differential evolution (Storn and Price,
1995)

(2) Mutation
This process introduces innovation into the pop-
ulation. It is realized by following additive pro-
cess,

σ′
j = σj exp(τ ′N(0, 1) + τNj(0, 1)

x′′
j = x′

j + σ′
jNj(0, 1)

Here, N(0, 1) denotes a realization of normal
random variable with mean and unit variance,
Nj(0, 1) denotes random variable sampled anew
for counterj of normal random variable with
mean and unit variance andσj denote the mean
step size. The factorsτ and τ ′ are chosen de-
pending the population sizeµ (Bäck and Schwe-
fel, 1993). In this approach, small variations are
much more frequent than larger variations, ex-
pressing the state of affairs on the phenotypic
level in nature.

(3) Selection
This is the completely deterministic process
choosing the individuals of higher fitness out of
the union of parents and offspring or offspring
only to form the next generation in order to
evolve towards better search region.
• (µ + λ)-selection

This createsλ offspring fromµ parents and
selected theµ best individuals out of the
union of parents and offspring.

• (µ, λ)-selection
This createsλ offspring fromµ parents and
selected theµ best individuals out of off-
spring(λ ≥ µ).

3.2 Evolution Strategies Based Particle Filter

We will propose here a novel particle filter based on
Evolution Strategies by recognizing the fact the im-
portance sampling and resampling processes in SIR
filter are corresponding to mutation and selection pro-
cesses in ES. Resampling process in SIR filter selects
offsprings with probability

w
(i)
k ∝

p(yk|x(i)
k )p(x(i)

k |x(i)
k−1)p(x(i)

k−1|y1:k−1)

q(x(i)
k |x(i)

k−1, y1:k)q(x(i)
k−1|y1:k−1)

(16)

and this corresponds to selection process in ES with
fitness functionw(i)

k . On the other hand, the impor-

tance sampling process in SIR filter samplesx
(i)
k ac-

cording to the importance densityq(x(i)
k |x(i)

k−1, y1:k),
and this corresponds to mutation process in ES from
the viewpoint of generating offspringsx(i)

k from the

parentsx(i)
k−1 with extrapolation byf(xk−1) and per-

turbation byvk. The main difference is resampling in

SIR is carried out randomly and the weights are reset
as1/n, while the selection in ES is deterministic and
the fitness function is never reset. Hence, by replacing
the resampling process in SIR by the deterministic
selection process in ES, we can derive a new particle
filter as follows.
Based on the particlesx(i)

k−1 (i = 1, . . . , n) sam-
pled from the importance densityq(xk−1|y1:k−1), we
generatè x

(i,j)
k , (j = 1, . . . , `) sampled from the

importance density functionq(xk|x(i)
k−1, y1:k). Corre-

sponding weightsw(i,j)
k are evaluated by

w
(i,j)
k = w

(i)
k−1

p(yk|x(i,j)
k )p(x(i,j)

k−1 |x
(i)
k−1)

q(x(i,j)
k |x(i)

k−1, y1:k)

i = 1, . . . , n, j = 1, . . . , `

From the set ofn` particles and weights{x(i,j)
k , w

(i,j)
k ,

(i = 1, . . . , n, j = 1, . . . , `)}, we choosen sets with
the larger weights, and set asx

(i)
k , w

(i)
k (i = 1, . . . , n).

This process corresponds to(n, n`)-selection in ES.
Hence, we call this particle filter using(n, n`)-
selection in ES as Evolution Strategies based particle
filter Comma (ESP(,)). When we add the particles
x

(i,0)
k = f(x(i)

k−1), (i = 1, . . . , n) in addition ton`

x
(i,j)
k , (i = 1, . . . , n, j = 1, . . . , `) sampled from

the importance density functionq(xk|x(i)
k−1, y1:k) as

above and evaluate the weightsw
(i,j)
k , (i = 1, . . . , n, j =

0, . . . , `) by (17), and then choosen sets of(x(i)
k , w

(i,j)
k )

with larger weights from the ordered set ofn(` +
1) particles {x(i,j)

k , w
(i,j)
k , (i = 1, . . . , n, j =

0, . . . , `)}, we can obtain another ESP filter. Since this
ESP filter uses the selection corresponding to(n+n`)-
selection in ES, we can call this filter as Evolution
Strategies based particle filter Plus (ESP(+)). The al-
gorithms are summarized in Fig.1.

4. NUMERICAL EXAMPLE

To exemplify the applicability of the proposed ESP
filters, we carried out a numerical simulation. We
consider the following nonlinear state space model
with known parameters.

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos (1.2k) + vk

= f(xk−1) + vk (17)

yk =
x2

k

20
+ wk (18)

and vk and wk are i.i.d. zero-mean normal random
variates with variance 10 and 1, respectively. The nor-
mal distribution with meanf(x(i)

k−1) and variance 10

is chosen as the importance densityq(xk|x(i)
k−1, y1:k).

A sample behavior of the true state and corresponding
observation processes is shown in Fig.2. Sample paths



Procedure ESP� �
For k = 0

i = 1, . . . , n, sample x
(i)
0 ∼ q(x0|y0);

i = 1, . . . , n, evaluate the weight

w
(i)
0 = p(y0|x(i)

0 )p(x(i)
0 )/q(x(i)

0 |y0).
For k ≥ 1

i = 1, . . . , n

set x
(i,0)
k = f(x(i)

k−1)

j = 1, . . . , `
sample x̃

(i,j)
k ∼ q(xk|x(i)

k−1, y1:k);
i = 1, . . . , n and j = 0, 1, . . . , `,

evaluate the weight

w
(i,j)
k = w

(i)
k−1

(p(yk|x̃(i,j)
k )p(x̃(i,j)

k |x(i)
k−1)

q(x̃(i)
k |x̃(i)

k , y1:k))
.

Sort the set of pairs {x̃(i,j)
k ,

w
(i,j)
k (i = 1, . . . , n, j = 0, 1, . . . , `)}

by the size of w
(i,j)
k in de-

scending order.

Take the first n x
(i)
k from the

ordered set {x̃(i)
k , w̃

(i)
k }.

i = 1, . . . , n, normalize the
weight

w
(i)
k = w

(i)
k /

∑n
i=1 w

(i)
k .

Let p(xk|y1:k) ≈
∑n

i=1 w̃
(i)
k δ(xk − x

(i)
k )� �

Fig. 1. Algorithm for ESP filters. ESP(+): with the
underlined part; ESP(,): without the underlined
part

of the estimates by the particle filters (SIS (n = 200),
SIR (n = 100, Neff = 50), and the proposed ESP(,)
(n = 100, ` = 2)) and ESP(+) (n = 100, ` = 1)) are
given in Fig.3, and that of EKF as well for comparison.
Particle filters, especially SIR and proposed ESP fil-
ters, show well behaviors in nonlinear state estimation,
while the estimate by EKF cannot follow the true state.
Figure4 shows the 2-dimensional plots of squared er-
rors atk = 1000 and processing time [s] untilk =
1000. ESP filters show similar performance as SIR
both in squared estimation errors and processing time,
and their fluctuations are smaller than SIR. It implies
that ESP filters are more stable than SIR.
The design parameters, of course, affect the conver-
gence performance. Here, we show the effect of the
design parameters in ESP(,) filter. Numerical simu-

Table 1. Design parameters and mean
squared errors in ESP(,)

n \ ` 2 5 10
10 25.64± 5.89 42.71± 4.56 67.17±7.80
20 19.29± 4.05 26.87± 4.85 41.30± 6.88
50 13.61± 2.65 15.92± 2.46 22.30± 2.36
100 12.13± 1.78 13.45± 1.99 17.37± 4.19

(a) True state

(b) Observation

Fig. 2. Sample behavior of state and observation pro-
cesses

lations are carried out for several combinations ofn
and ` of ESP(,), and the mean sqaured errors in 10
simulation runs are given in Table1. It is suggested that
largern provides the better performance and` should
be 2. The other choice of evolution processes, such as
inclusion of crossover, may improve the performance,
and their better choice will be pursued.

5. CONCLUSIONS

Recognizing the similarities and the differences be-
tween the importance sampling and resampling pro-
cess in SIR filter and mutation and selection processes
in ES, we propose a novel particle filters, ESP(,)
and ESP(+) filters, by substituting(µ, λ)-selection and
(µ + λ)-selection in ES into resampling process in
SIR. Introducing of other evolution operations such as
crossover and modification of mutation will have the
potential to create high performance particle filters.
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