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Abstract: The paper presents a novel dynamic neural architecture that allows a flexible 
and compact representation of the nonlinear processes. The suggested neural topology 
considers local internal recurrence and a heterogeneous structure of the hidden layer. It 
allows the cooperation between different types of hidden units, such as perceptrons, 
sigmoidal neurons with functional links, radial basis function structures and/or gaussian 
neurons with complex weights. An evolutionary multiobjective procedure assists the 
automatic design of appropriate neural networks. It searches for accurate neural models, 
characterised by good generalisation capabilities. The experiments reveal that the 
presented approach is suitable for system identification. Copyright © 2005 IFAC 
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1. INTRODUCTION 

The Mapping Artificial Neural Networks (MANNs) 
have become attractive tools for nonlinear systems 
identification, due their universal approximation 
capabilities (Isermann, et al., 1997; Haykin, 1999). 
In order to approximate dynamic nonlinearities, the 
static neural topologies must be combined with 
external or internal dynamic blocks, which 
implement the memory of the model. The later 
configurations are more difficult to design, but they 
are able to perform better approximations of the 
processes’ behaviours. 

The neural models should optimally satisfy a number 
of objectives involving accuracy and model 
parsimony. Their quality highly depends on the 
training data, the model structure assumptions and 
the performances of the learning procedure. The 
selection of optimal neural architectures and optimal 
parameters represents a complex problem, for which 
none method can lead to good results for a large 
variety of practical situations. Though, the 
evolutionary techniques represent a promising 
alternative, due the fact that they can efficiently 
solve complex nonlinear optimisations, being able to 
cope with ill - behaved problem domains, 
multimodality, discontinuity, time - variance and 
noise (Bäck, et al., 2000; Fleming and Purshouse, 

2002). Based on a stochastic search and on 
mechanisms similar to biological evolution, the 
evolutionary algorithms work on a population of 
possible solutions. At each generation, the best 
solutions are encouraged to survive and to produce 
new points from the search space. 

The multitude of computational models illustrates 
that none architecture can be uniformly better than 
the others. For each type of neural topology, the 
computational efficiency of the learning procedure 
and the generalisation capabilities of the model 
depend on the particular problem to solve.  

The paper suggests a novel methodology, which 
combines the advantages of different neural 
structures, in order to build flexible and compact 
models, characterised by higher adaptation 
capabilities. The new generalised neural architecture 
contains local internal dynamic blocks and a 
heterogeneous hidden layer, including gaussian 
neurons with real or complex parameters, 
perceptrons and sigmoidal neurons with functional 
links. An evolutionary method automatically selects 
convenient neural topologies and parameters. The 
problem is formulated as a multiobjective 
optimisation and special mechanisms are used for an 
efficient exploration of the search space.  



The paper is organized as follows. Section 2 
describes the static structural elements included in 
the proposed hybrid neural architecture and section 3 
discusses the extension to the dynamic topology. 
Details regarding the evolutionary design algorithm 
are given in section 4. Section 5 investigates the 
applicability of the approach within the framework 
of system identification problems. Finally, in section 
6, several conclusions are presented.  

2. STATIC NEURAL NETWORKS WITH 
HYBRID HIDDEN LAYER 

For the sake of simplicity, firstly, the Static Neural 
Networks with Hybrid Hidden layer (SNNHHs) are 
introduced. These generalised neural structures offer 
a higher potential to perform good approximations, 
for a large variety of applications.  

The proposed neural topology results as an 
aggregation between neurons characterised by global 
and local responses. Both simple and complex 
structural elements are considered, allowing an 
efficient tuning of the neural topology. The hidden 
neurons with a global response extrapolate the region 
beyond the interval where the training data were 
acquired. In contrast, the output of a localised neuron 
is nonzero if the inputs belong to a small region of 
the input space. Beyond this region, the response of 
the neuron is zero (Haykin, 1999). The mixed 
structure can take advantage from the generalisation 
capabilities of the neurons with global response, 
recommended for interpolation problems, and from 
the computational efficiency of the localised 
neurons, useful for extrapolation problems. 

The neural structures accepted for the hidden layer 
are indicated in sequel. The approach can be easily 
extended in order to accept other neural structures. 
As neurons with global response, the Standard 
Perceptron (SP) and the Sigmoidal neuron with 
trigonometric Functional Links (SFL) are 
considered. The later configuration results by 
functionally expanding the initial inputs of a 
perceptron, using a sub - set of orthogonal 
trigonometric functions (Patra, et al., 1999). The 
trigonometric functions guarantee a compact 
representation (Patra, et al., 1999). For a predefined 
order of functional expansion P, the input of the 
sigmoidal activation function results as a weighted 
sum computed between the terms ix , )cos( ixpπ , 

)sin( ixpπ , with Pp ,..,1= , Ri ,..,1= , where ix  
denotes the initial, unexpanded ith input of the 
neuron. In fact, the functional expansions increase 
the dimensionality of the input pattern and thus, the 
identification of complex nonlinear functions 
becomes simpler. For several study cases, Patra et al. 
(1999) indicate better overall performances for the 
SFL structures than for the SP neurons.  

The localised structures included into the hybrid 
architecture are the Standard Gaussian neuron (SG) 
with real parameters (centres and spreads) and the 
structures with Radial Basis function and Complex 
weights (RBC), described by the following input - 
output mapping (Igelnik, et al., 2001): 
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with niini cxz −= . Here ny  represents the output of 
the neuron n, ix ( Ri ,..,1= ) denote the inputs of the 

neuron, nic , nij
new θ  (with 1−=j ) indicate the 

centre and the complex weight associated to the ith 
input connection of the neuron n, respectively. For 
certain applications, recent studies reveal some 
advantages of the neural structures with complex 
weights: a decreasing of the computational time and 
better approximation capabilities than the nets 
characterised by real weights.  
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Fig. 1: The topology of DNNHHs (R inputs, 

maximum r hidden neurons, one output). Here, 
EF denote the functional extension blocks (SFL 
neurons), ϕ  and c indicate the input operator and 
the centres of the localised neurons, respectively, 
b represents the bias (SP, SFL and output linear 
neuron), σ  indicates the spread (SG neuron) and 

w,θ  denote the phase and the magnitude of the 
complex weights (RBC neurons). 

3. DYNAMIC NEURAL NETWORKS WITH 
HYBRID HIDDEN LAYER 

For providing a better approximation of the dynamic 
nonlinearities, extension to Dynamic Neural 
Networks with Hybrid Hidden layer (DNNHHs) is 
considered. It results by including Auto - Regressive 
Moving Average (ARMA) filters into the static 
topology. The ARMA filters placed on the input 
connections of a neuron implement the local synaptic 
feedback and the ARMA filters placed before/after 
the activation functions of the neurons implement a 
local activation feedback (Isermann, et al., 1997). 
The internal dynamic blocks are denoted as follows 
(Fig. 1): s

niFH , s
nFO , n=1,…,r, i=1,…,R represent 

the synaptic filters corresponding to the ith input 
connection of the nth hidden neuron and to the nth 
input connection of the output neuron, 
respectively; a

nFH , aFO  denote the activation 
filters for the nth hidden neuron and for the output 
neuron, respectively.  



The ARMA filters can reduce the level of noise that 
affects the neural inputs and memorize the necessary 
past states of the neural network. As consequence, an 
important reduction of input space dimensionality 
can be obtained, because it is not necessary to extend 
the neural input with lagged measurements. The 
neural input vector has to include the currents inputs 
of the process and the plant outputs measured at the 
previous sample time. Moreover, no a priori 
information about the process dynamic orders and 
the process dead time is required.  

The dynamic architecture has to include only stable 
ARMA filters, characterised by zeros and poles 
which can be correctly sampled subject to the 
considered training data set, in order to prevent the 
achievement of unexpected behaviours, in the case of 
unlearned input data. The suggested design 
procedure eliminates all inconvenient zeros and 
poles, without changing the static gain of the filter.  

DNNHHs can provide a compact representation of 
the dynamic processes. Taking into account the 
maximum time - delays implemented according to 
the dynamic architecture indicated in Fig. 1, 
DNNHHs have to be compared with the SNNHHs 
having R8  inputs. In some situations (e. g. 2>R  
and 1>r ), the dynamic topology requires a smaller 
number of parameters for any configuration of the 
hidden layer. Moreover, the design algorithm 
described in the following guarantees a significant 
reduction of the total number of parameters, 
encouraging the selection of simpler topologies.  

3. EVOLUTIONARY DESIGN OF DNNHHs 
 
The present approach considers an evolutionary 
design procedure, in order to search for the optimal 
DNNHHs topologies and parameters. It allows a 
flexible configuration of the heterogeneous neural 
architecture. One considers neural topologies for 
which the hidden layer can include any combination 
of SG, RBC, SP, SFL neural structures, the input 
layer is not fully connected with the hidden neurons, 
not all permitted dynamic structures are compulsory 
and different complexity orders for the internal 
ARMA filters are permitted. The static neural 
topologies and the homogeneous structures of the 
hidden layer are also accepted. 

A difficult task to solve is the selection of an 
appropriate neural architecture. It requires large 
computational resources, due the fact that, for each 
analysed topology, a convenient set of parameters 
has to be computed. Thus, the suggested 
evolutionary design procedure is divided into two 
stages: the first stage uses evolutionary mechanisms 
for the selection of optimal neural topology and a 
fast backpropagation algorithm for a preliminary 
computation of the neural parameters; at the second 
stage, an improved learning procedure is applied on a 
reduced set of selected architectures. 

First stage of the design procedure. At each iteration, 
the evolutionary algorithm acts on a population of 
Nind individuals, each individual encoding a possible 
DNNHH architecture. An efficient exploration of the 
search space is performed using two – level 

hierarchical chromosomes (Fig. 2). The highest 
priority level of the chromosome (level 1) specifies 
the type of the hidden neurons included in the 
encoded neural topology. The second priority level 
indicates the active dynamic filters and their 
complexity. The control genes included in level 1 
can activate (when their value is nonzero) or 
deactivate (when their value is 0) the corresponding 
parametric genes contained in level 2.  

If an individual encodes an incorrect topology, 
remedy actions are applied. For the considered 
encoding, the repair procedure has to verify that the 
hidden layer includes at least one hidden neuron, 
each input is connected to at least one hidden neuron 
and each hidden neuron is connected to at least one 
input of the network.  
Level 1

   
nth  hidden neuron, n = 1,…,r 

Alleles: 0 – hidden neuron deactivated;  
                   1, 2, 3, 4  – SP, SG, RBC, SFL active hidden neuron, respectively.  
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Fig. 2: Hierarchical encoding of DNNHHs topology. 
 

For preventing the competing conventions, the 
offspring are generated using mutation operator 
(Bäck, et al., 2000). 

The DNNHHs design is formulated as a 
multiobjective optimisation. Six objective functions 
are considered, assigned with different priorities. The 
highest priority objective function f1, namely the 
total output squared errors computed for the 
normalised training data set, indicates the neural 
model accuracy. Its values are obtained after 
applying, in sequel, the extended real - time recurrent 
backpropagation algorithm (for a small number of 
epochs) and the ARMA filters’ repair procedure (for 
eliminating the inconvenient zeros and poles, as 
indicated in Section 2). The other objective 
functions, having the same low - level priority, 
describe the complexity order of the neural 
architecture and allow the selection of simple neural 
models, with expected good generalisation 
capabilities. They are configured taking into account 
the functionality and the complexity of each 
permitted structural block: f2 - the number of active 
hidden neurons; f3 - the number of active synaptic 
dynamic blocks; f4, f5 - the number of parameters 
required by all synaptic and activation blocks (static 
or dynamic), respectively; f6 - the number of active 
input connections corresponding to the hidden layer. 

The multiobjective optimisation algorithm considers 
a progressive articulation between the search 
procedure and the decision mechanism (Fonseca, and 
Fleming, 1998; Marcu, et al., 1999; Deb, 2001). A 
goal is associated to each objective function. The 
goals, defining the desired area for the objective 
values, are adapted according to the mean 



performances of the current population. Special 
Pareto - ranking techniques are used, in order to 
encourage the survival of accurate models, 
characterised by simple architectures (Ferariu and 
Marcu, 2002). If a neural topology satisfies all 
imposed goals, its rank is computed according to f1, 
otherwise a Pareto - ranking procedure is considered. 

Also, a convenient migration strategy is implemented 
(Ferariu and Marcu, 2002). The design procedure 
considers a supplementary auxiliary population, 
which evolves cvasi - independently, subject to the 
highest priority objective. Once at No_migr 
generations, an exchange of information is permitted 
between the two populations. Thus, the genetic 
material of the main population is enriched with 
more accurate models and a significant decreasing of 
the highest priority goal is achieved. The algorithm 
encourages the survival and the duplication of 
accurate models, whilst maintaining an adequate 
complexity order of the encoded topology. 

Second stage of the design procedure. At the end of 
the evolutionary loop, the neural architectures of the 
main population are supplementary trained using a 
hybrid supervised learning procedure, denoted 
COMT. It switches for N_com times from an 
extended backpropagation procedure to a standard 
genetic search. The robustness of the evolutionary 
search offers greater chances to prevent the locking 
into local optimum points and the gradient - based 
method improves the convergence speed of COMT. 
Each individual of the evolutionary algorithm 
encodes a set of neural parameters, corresponding to 
the analysed topology. The offspring are generated 
by arithmetic recombination and mutation, allowing 
only small variations of the parents’ genetic material.  

A schematic description of the design algorithm is 
presented in the following: 
1. Create the initial main and auxiliary population 
with Nind individuals (random uniform distribution). 
Correct the architectures. Initialise the goals. 
2. Train the neural networks encoded into the 
population using an extended backpropagation 
algorithm (forα epochs). Correct the ARMA filters. 
3. Evaluate the chromosomes according to all 
considered objectives and compute the fitness values.  
4. Loop over a number of Max_gen generations: 

4.1 For the main and the auxiliary population: 
4.1.1. Select parents for the reproduction pool. 
4.1.2. Apply mutation operator. Correct the 
offspring (if necessary). 
4.1.3. Train the neural networks encoded by 
the offspring using backpropagation procedure 
(α  epochs). Correct the ARMA filters. 
4.1.4. Evaluate the offspring and compute the 
fitness values.  
4.1.5. Insert the offspring into the population, 
according to the Pareto reservation strategy. 
4.1.6. Once at No_migr generations, exchange 
individuals with the other subpopulation 
(migration stage). 
4.1.7. Adapt the goals. Compute the fitness 
values. 

5. Train all individuals of the main population with 
COMT procedure. Correct the ARMA filters. 
6. Select the best individual(s).  

4. APPLICATION 
 
The applicability of the suggested method is studied 
with respect to the neural identification of two 
systems, characterised by different levels of 
complexity: the laboratory set - up “Three Tank 
system” (Amira DTS 200) and an industrial system, 
namely the first section of an Evaporation Station 
(ES) from the Sugar factory of Lublin, Poland. 

The experimental set - up Amira DTS 200 (Amira, 
1993) consists of three cylindrical tanks with 
identical cross sections, being filled with water (Fig. 
3). The tanks are interconnected with circular pipes. 
All three tanks are equipped with piezo - resistive 
pressure transducers for measuring the level of the 
liquid. The volume flows of lateral tanks ( )(1 tq and 

)(2 tq ) represent the two inputs of the system. Three 
system outputs are considered, namely the liquid 
levels in the tanks. Here, t stands for the time 
variable. A nonlinear analytical model of this plant is 
available, but it offers a limited approximation.  

h 1
(t)

T1

h 3
(t)

T3

h 2
(t)

T2

leak outlet

pump 1
1(t) 2 (t)

pump 2

L1 L3 L2

C13 C32 C20

q q

 
Fig. 3. The “Three Tank System” AMIRA DTS 200. 

For the experiments, the reference values of the 
liquid levels were changed pulse - wise, using 
different magnitudes and periods of rectangular 
pulses for each controlled tank. The input - output 
data of the process were sampled at every TS = 5s, 
during a test period of 400s. The sample time, 
selected by trial, permits the acquisition of 
representative measurements.  

The identification task is done for the normal system 
behaviour (outlets L1, L2, L3 closed and valves C13, 
C32, C20 opened). For the model validation, one 
considers 34 testing data sets acquired in different 
days of plant exploitation, in order to completely 
illustrate the influence of the system environment.  

To estimate each process output, DNNHHs with 5 
inputs and one output has to be designed. In all 
investigations a reduced number of hidden neurons 
was sufficient, i.e. 3=r . Several experiments were 
necessary for tuning the parameters of the 
evolutionary design procedure. Early migration 
between the main and the auxiliary population can 
allow a premature exchange of information, with 
negative effect on the exploration capabilities of the 
algorithm. Also, if the evolutionary process works on 
insufficiently trained networks, the results are 
unsatisfactory. Some of the resulted topologies are 
analysed in the following. They were obtained 
considering for the first stage 32=Nind , 



30_ =genMax , 10_ =migrNo , 200=α , and for 
the second stage 4_ =comN  switches between the 
genetic search and the backpropagation procedure.  

For the DNNHH estimating h3, some details are 
given. The selected topology includes 2 hidden 
neurons (1SP, 1 SG ) with 6 dynamic synaptic filters 
and 1 output neuron with 1 dynamic synaptic filter 
( 22 =f , 73 =f , 224 =f , 25 =f , 86 =f ). The 
performances of the resulted neural model are 
presented in Table 1 (the first line). Here PN 
represents the total number of parameters, SSEr 
indicates the total output squared error computed for 
the data sets without normalisation and REmax 
denotes the maximum value of the relative error, 
computed as follows:  

          %100⋅
−

=
y

yyRE
)

,                  (2) 

where y)  represents the estimation of the process 
output y. The testing data set considered for this 
analysis is characterised by the worst approximation. 
The generalisation capabilities are also illustrated in 
Fig. 4a, with respect to the same testing data set. As 
indicated in Fig. 4b, the selected model guarantees a 
good rejection of the supplementary simulated white 
noise, acting at the input of the process. 
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Fig. 4. Model validation (h3) - testing data set with 
the worst approximation: a) the measured data 
set; b) the data set with supplementary simulated 
additive white noise, acting on the inputs of the 
process (mean 0, standard deviation 0.2 for inputs 
scaled in [-1,1]).   

 
The experiments are repeated for the identification of 
the industrial system. The ES has to increase the 
concentration of the sucrose juice (Bartys and 
Wasiewicz, 1998). The thin juice passes, in 
sequence, through all five sections of the ES, each 

one reducing the water content. Due to its 
complexity, the process is decomposed in several sub 
- processes. One of them, namely the evaporator 
[EV] is identified using DNNHHs. It has three inputs 
(the steam flow to the input of ES, the steam 
temperature at the input of ES and the juice 
temperature after heater) and one output (the juice 
temperature after section 1 of ES). The model is 
designed using real data collected from the sugar 
factory during one month of plant exploitation, using 
the sample period Ts =10 sec. The selected learning 
data set contains 3000 rows and corresponds to a 
production shift. It illustrates the maximum possible 
excitation of the process and it includes a reduced 
number of missing or uncertain values. The isolated 
missing and uncertain values have been replaced by 
means of polynomial interpolation. In order to 
reduce the noise, a low - pass filtering, based on 4th 
order Butterworth filters, has been performed. This 
also allows the reduction of the amount of data used 
during the learning stage. The data have been 
decimated using each 10th sampled value. The 
validation of the neural model is done with respect to 
another testing data set, which includes 
measurements acquired from the previous month of 
plant exploitation. 
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Fig. 5. Model validation (EV) - testing data set: a) 
the acquired testing data set; b) the testing data 
set with supplementary additive simulated white 
noise acting on the inputs of the process (mean 0, 
standard deviation 0.2 for inputs scaled in [-1,1]). 

 
Table 1. The performances of the DNNHH models 

estimating the output h3 (AMIRA DTS 200) and 
the output of the evaporator system 

 
  training data set testing data set 
 PN SSEr REmax SSEr REmax 

h3 27 0.0444 0.26% 2.718 1.65% 
EV 14 0.3412 0.009% 1.1087 1.7% 



A set of preliminary experiments was carried out, in 
order to find appropriate values for all parameters of 
the design procedure ( 64=Nind , 60_ =genMax , 

20_ =migrNo , 200=α , 4_ =comN ). Table 1 
(second line) indicates that the DNNHHs models are 
characterized by good accuracy and have good 
generalization capabilities. The architecture of the 
selected neural model includes 1 SP hidden neuron 
with 1 active synaptic filter and 1 output neuron with 
1 active synaptic filter ( 12 =f , 23 =f , 104 =f , 

25 =f , 46 =f ). Fig. 5 illustrates that the DNNHH 
can perform a good approximation of the testing data 
set, even if supplementary additive simulated white 
noise is considered on the process inputs.  
 
Table 2 compares the DNNHHs with other dynamic 
neural models based on local internal feedbacks. 
Here f1 denotes the squared output error computed 
for the normalised training data set and PN indicates 
the number of neural parameters. The DMLPs 
contain SP hidden neurons and accept supplementary 
lateral connections between the hidden neurons 
(Marcu et al., 1999); the DGNNs include both SP 
and SG hidden neurons (Ferariu and Marcu, 2002); 
the DCWNNs include RBC hidden neurons (Ferariu, 
2003). The last two architectures contain output 
ARMA filters, placed on recurrent connections 
provided from the output of the neurons to the input 
of their activation function. The design methodology 
based on DNNHHs selects the convenient models 
with respect to objectives involving accuracy and 
parsimony. Though, this general design approach can 
be overtaken by domain specific methods, for certain 
particular cases. 
 

Table 2. Comparison with other dynamic neural 
models. 

h3 EV Model PN f1 PN f1 
DNNHH 27 0.0065 14 0.015 
DMLP 21 0.0168 24 0.0348 
DGNN 31 0.0044 26 0.0312 
DCWNN - - 21 0.0316 

 
Even the methodology is based on computationally 
intensive evolutionary mechanisms, because it 
provides the automatic selection of the neural 
architectures, the required design time results much 
smaller than in the case of a manual configuration of 
the neural topologies (several hours instead of 
several days, for the considered study cases).  

5. CONCLUSIONS 

The paper presents a novel dynamic neural 
architecture, characterised by a hybrid structure of 
the hidden layer. It combines the advantages of all 
component neural structures, offering improved 
approximation capabilities. The heterogeneous 
neural topology and the local internal dynamic 
blocks are adapted according to the dynamic 
characteristics of the system that has to be identified. 
No model structure assumptions are required. 

The experimental results indicate that the proposed 
methodology is able to produce neural models with 

good performances of approximation and 
generalisation. Though, the approach needs large 
computational resources, so it is recommended for 
nonlinear identifications, if poor a priori information 
about the models is available and/or high 
performances of the neural models are requested.  

Further research will investigate the efficiency of the 
fault diagnosis systems based on DNNHH observer 
schemes. 
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