

NONLINEAR SYSTEM IDENTIFICATION BASED ON EVOLUTIONARY

DYNAMIC NEURAL NETWORKS WITH HYBRID STRUCTURE

Lavinia Ferariu1 and MihailVoicu2

 “Gh. Asachi” Technical University of Iaşi
Department of Automatic Control and Industrial Informatics

Bd. D. Mangeron 53 A, RO – 700 050 Iaşi, Romania
Fax: +40-32-230751, e-mail: lferaru@ac.tuiasi.ro1, mvoicu@ac.tuiasi.ro2

Abstract: The paper presents a novel dynamic neural architecture that allows a flexible
and compact representation of the nonlinear processes. The suggested neural topology
considers local internal recurrence and a heterogeneous structure of the hidden layer. It
allows the cooperation between different types of hidden units, such as perceptrons,
sigmoidal neurons with functional links, radial basis function structures and/or gaussian
neurons with complex weights. An evolutionary multiobjective procedure assists the
automatic design of appropriate neural networks. It searches for accurate neural models,
characterised by good generalisation capabilities. The experiments reveal that the
presented approach is suitable for system identification. Copyright © 2005 IFAC

Keywords: neural networks, multiobjective optimisation, genetic algorithms, system
identification.

1. INTRODUCTION

The Mapping Artificial Neural Networks (MANNs)
have become attractive tools for nonlinear systems
identification, due their universal approximation
capabilities (Isermann, et al., 1997; Haykin, 1999).
In order to approximate dynamic nonlinearities, the
static neural topologies must be combined with
external or internal dynamic blocks, which
implement the memory of the model. The later
configurations are more difficult to design, but they
are able to perform better approximations of the
processes’ behaviours.

The neural models should optimally satisfy a number
of objectives involving accuracy and model
parsimony. Their quality highly depends on the
training data, the model structure assumptions and
the performances of the learning procedure. The
selection of optimal neural architectures and optimal
parameters represents a complex problem, for which
none method can lead to good results for a large
variety of practical situations. Though, the
evolutionary techniques represent a promising
alternative, due the fact that they can efficiently
solve complex nonlinear optimisations, being able to
cope with ill - behaved problem domains,
multimodality, discontinuity, time - variance and
noise (Bäck, et al., 2000; Fleming and Purshouse,

2002). Based on a stochastic search and on
mechanisms similar to biological evolution, the
evolutionary algorithms work on a population of
possible solutions. At each generation, the best
solutions are encouraged to survive and to produce
new points from the search space.

The multitude of computational models illustrates
that none architecture can be uniformly better than
the others. For each type of neural topology, the
computational efficiency of the learning procedure
and the generalisation capabilities of the model
depend on the particular problem to solve.

The paper suggests a novel methodology, which
combines the advantages of different neural
structures, in order to build flexible and compact
models, characterised by higher adaptation
capabilities. The new generalised neural architecture
contains local internal dynamic blocks and a
heterogeneous hidden layer, including gaussian
neurons with real or complex parameters,
perceptrons and sigmoidal neurons with functional
links. An evolutionary method automatically selects
convenient neural topologies and parameters. The
problem is formulated as a multiobjective
optimisation and special mechanisms are used for an
efficient exploration of the search space.

The paper is organized as follows. Section 2
describes the static structural elements included in
the proposed hybrid neural architecture and section 3
discusses the extension to the dynamic topology.
Details regarding the evolutionary design algorithm
are given in section 4. Section 5 investigates the
applicability of the approach within the framework
of system identification problems. Finally, in section
6, several conclusions are presented.

2. STATIC NEURAL NETWORKS WITH
HYBRID HIDDEN LAYER

For the sake of simplicity, firstly, the Static Neural
Networks with Hybrid Hidden layer (SNNHHs) are
introduced. These generalised neural structures offer
a higher potential to perform good approximations,
for a large variety of applications.

The proposed neural topology results as an
aggregation between neurons characterised by global
and local responses. Both simple and complex
structural elements are considered, allowing an
efficient tuning of the neural topology. The hidden
neurons with a global response extrapolate the region
beyond the interval where the training data were
acquired. In contrast, the output of a localised neuron
is nonzero if the inputs belong to a small region of
the input space. Beyond this region, the response of
the neuron is zero (Haykin, 1999). The mixed
structure can take advantage from the generalisation
capabilities of the neurons with global response,
recommended for interpolation problems, and from
the computational efficiency of the localised
neurons, useful for extrapolation problems.

The neural structures accepted for the hidden layer
are indicated in sequel. The approach can be easily
extended in order to accept other neural structures.
As neurons with global response, the Standard
Perceptron (SP) and the Sigmoidal neuron with
trigonometric Functional Links (SFL) are
considered. The later configuration results by
functionally expanding the initial inputs of a
perceptron, using a sub - set of orthogonal
trigonometric functions (Patra, et al., 1999). The
trigonometric functions guarantee a compact
representation (Patra, et al., 1999). For a predefined
order of functional expansion P, the input of the
sigmoidal activation function results as a weighted
sum computed between the terms ix ,)cos(ixpπ ,

)sin(ixpπ , with Pp ,..,1= , Ri ,..,1= , where ix
denotes the initial, unexpanded ith input of the
neuron. In fact, the functional expansions increase
the dimensionality of the input pattern and thus, the
identification of complex nonlinear functions
becomes simpler. For several study cases, Patra et al.
(1999) indicate better overall performances for the
SFL structures than for the SP neurons.

The localised structures included into the hybrid
architecture are the Standard Gaussian neuron (SG)
with real parameters (centres and spreads) and the
structures with Radial Basis function and Complex
weights (RBC), described by the following input -
output mapping (Igelnik, et al., 2001):

()


























∑
=

⋅+









∑
=

⋅−

=

2

1
sin

2

1
cos2 R

i
nizni

R

i
nizninw

n ey

θθ

, (1)

with niini cxz −= . Here ny represents the output of
the neuron n, ix (Ri ,..,1=) denote the inputs of the

neuron, nic , nij
new θ (with 1−=j) indicate the

centre and the complex weight associated to the ith
input connection of the neuron n, respectively. For
certain applications, recent studies reveal some
advantages of the neural structures with complex
weights: a decreasing of the computational time and
better approximation capabilities than the nets
characterised by real weights.

SP

SFL

RBC

SG

.

.

.

.

.

.

ui

u1

uR

…. cni, wn, θni, i=1,..,RFH sn1

FH sni

FH sv,1,1

FH sv,R,1

FH s
nR

….

….

….
….

….

FHn
 a

 F0n
s

FO a

FOv
S

y

∑ ….
b

FH sq1

FH sqi

FH sqR

…
…

FH
s
k1

 FH ski FH ak

FH skR

F0k
s ∑

….

….

….
….

bk

….

cqi, σq, i=1,..,R

FHq
a F0q

S

bv

ϕn

FH sv,1,2P+1

ϕq

EFv1

FH sv,R,2P+1

EFvi

EFvR

∑

….

….

rkvnq ≤≤ ,,,1

FHv
a

Fig. 1: The topology of DNNHHs (R inputs,

maximum r hidden neurons, one output). Here,
EF denote the functional extension blocks (SFL
neurons), ϕ and c indicate the input operator and
the centres of the localised neurons, respectively,
b represents the bias (SP, SFL and output linear
neuron), σ indicates the spread (SG neuron) and

w,θ denote the phase and the magnitude of the
complex weights (RBC neurons).

3. DYNAMIC NEURAL NETWORKS WITH
HYBRID HIDDEN LAYER

For providing a better approximation of the dynamic
nonlinearities, extension to Dynamic Neural
Networks with Hybrid Hidden layer (DNNHHs) is
considered. It results by including Auto - Regressive
Moving Average (ARMA) filters into the static
topology. The ARMA filters placed on the input
connections of a neuron implement the local synaptic
feedback and the ARMA filters placed before/after
the activation functions of the neurons implement a
local activation feedback (Isermann, et al., 1997).
The internal dynamic blocks are denoted as follows
(Fig. 1): s

niFH , s
nFO , n=1,…,r, i=1,…,R represent

the synaptic filters corresponding to the ith input
connection of the nth hidden neuron and to the nth
input connection of the output neuron,
respectively; a

nFH , aFO denote the activation
filters for the nth hidden neuron and for the output
neuron, respectively.

The ARMA filters can reduce the level of noise that
affects the neural inputs and memorize the necessary
past states of the neural network. As consequence, an
important reduction of input space dimensionality
can be obtained, because it is not necessary to extend
the neural input with lagged measurements. The
neural input vector has to include the currents inputs
of the process and the plant outputs measured at the
previous sample time. Moreover, no a priori
information about the process dynamic orders and
the process dead time is required.

The dynamic architecture has to include only stable
ARMA filters, characterised by zeros and poles
which can be correctly sampled subject to the
considered training data set, in order to prevent the
achievement of unexpected behaviours, in the case of
unlearned input data. The suggested design
procedure eliminates all inconvenient zeros and
poles, without changing the static gain of the filter.

DNNHHs can provide a compact representation of
the dynamic processes. Taking into account the
maximum time - delays implemented according to
the dynamic architecture indicated in Fig. 1,
DNNHHs have to be compared with the SNNHHs
having R8 inputs. In some situations (e. g. 2>R
and 1>r), the dynamic topology requires a smaller
number of parameters for any configuration of the
hidden layer. Moreover, the design algorithm
described in the following guarantees a significant
reduction of the total number of parameters,
encouraging the selection of simpler topologies.

3. EVOLUTIONARY DESIGN OF DNNHHs

The present approach considers an evolutionary
design procedure, in order to search for the optimal
DNNHHs topologies and parameters. It allows a
flexible configuration of the heterogeneous neural
architecture. One considers neural topologies for
which the hidden layer can include any combination
of SG, RBC, SP, SFL neural structures, the input
layer is not fully connected with the hidden neurons,
not all permitted dynamic structures are compulsory
and different complexity orders for the internal
ARMA filters are permitted. The static neural
topologies and the homogeneous structures of the
hidden layer are also accepted.

A difficult task to solve is the selection of an
appropriate neural architecture. It requires large
computational resources, due the fact that, for each
analysed topology, a convenient set of parameters
has to be computed. Thus, the suggested
evolutionary design procedure is divided into two
stages: the first stage uses evolutionary mechanisms
for the selection of optimal neural topology and a
fast backpropagation algorithm for a preliminary
computation of the neural parameters; at the second
stage, an improved learning procedure is applied on a
reduced set of selected architectures.

First stage of the design procedure. At each iteration,
the evolutionary algorithm acts on a population of
Nind individuals, each individual encoding a possible
DNNHH architecture. An efficient exploration of the
search space is performed using two – level

hierarchical chromosomes (Fig. 2). The highest
priority level of the chromosome (level 1) specifies
the type of the hidden neurons included in the
encoded neural topology. The second priority level
indicates the active dynamic filters and their
complexity. The control genes included in level 1
can activate (when their value is nonzero) or
deactivate (when their value is 0) the corresponding
parametric genes contained in level 2.

If an individual encodes an incorrect topology,
remedy actions are applied. For the considered
encoding, the repair procedure has to verify that the
hidden layer includes at least one hidden neuron,
each input is connected to at least one hidden neuron
and each hidden neuron is connected to at least one
input of the network.
Level 1

nth hidden neuron, n = 1,…,r

Alleles: 0 – hidden neuron deactivated;
 1, 2, 3, 4 – SP, SG, RBC, SFL active hidden neuron, respectively.
Level 2

... FHs
n1

..

. FHs
nR FHa

n … FOs
1 … FOs

r FOa
ARMA filters for the hidden neurons ARMA filters for the output neuron

Alleles: 0 – connection does not exist (only for filters FHs);
 1 – simple weight, static transfer described by wzG =−)(1 ;

 2 – active filter described by)1/()(1
0

1 −− += zawzG ;

 3 – active filter described by)1/()(2
1

1
0

1 −−− ++= zazawzG ;

 4 – active filter described by)1/()1()(2
1

1
0

1
0

1 −−−− +++= zazazbwzG ;

 5 – active filter described by)1/()1()(2
1

1
0

2
1

1
0

1 −−−−− ++++= zazazbzbwzG

Fig. 2: Hierarchical encoding of DNNHHs topology.

For preventing the competing conventions, the
offspring are generated using mutation operator
(Bäck, et al., 2000).

The DNNHHs design is formulated as a
multiobjective optimisation. Six objective functions
are considered, assigned with different priorities. The
highest priority objective function f1, namely the
total output squared errors computed for the
normalised training data set, indicates the neural
model accuracy. Its values are obtained after
applying, in sequel, the extended real - time recurrent
backpropagation algorithm (for a small number of
epochs) and the ARMA filters’ repair procedure (for
eliminating the inconvenient zeros and poles, as
indicated in Section 2). The other objective
functions, having the same low - level priority,
describe the complexity order of the neural
architecture and allow the selection of simple neural
models, with expected good generalisation
capabilities. They are configured taking into account
the functionality and the complexity of each
permitted structural block: f2 - the number of active
hidden neurons; f3 - the number of active synaptic
dynamic blocks; f4, f5 - the number of parameters
required by all synaptic and activation blocks (static
or dynamic), respectively; f6 - the number of active
input connections corresponding to the hidden layer.

The multiobjective optimisation algorithm considers
a progressive articulation between the search
procedure and the decision mechanism (Fonseca, and
Fleming, 1998; Marcu, et al., 1999; Deb, 2001). A
goal is associated to each objective function. The
goals, defining the desired area for the objective
values, are adapted according to the mean

performances of the current population. Special
Pareto - ranking techniques are used, in order to
encourage the survival of accurate models,
characterised by simple architectures (Ferariu and
Marcu, 2002). If a neural topology satisfies all
imposed goals, its rank is computed according to f1,
otherwise a Pareto - ranking procedure is considered.

Also, a convenient migration strategy is implemented
(Ferariu and Marcu, 2002). The design procedure
considers a supplementary auxiliary population,
which evolves cvasi - independently, subject to the
highest priority objective. Once at No_migr
generations, an exchange of information is permitted
between the two populations. Thus, the genetic
material of the main population is enriched with
more accurate models and a significant decreasing of
the highest priority goal is achieved. The algorithm
encourages the survival and the duplication of
accurate models, whilst maintaining an adequate
complexity order of the encoded topology.

Second stage of the design procedure. At the end of
the evolutionary loop, the neural architectures of the
main population are supplementary trained using a
hybrid supervised learning procedure, denoted
COMT. It switches for N_com times from an
extended backpropagation procedure to a standard
genetic search. The robustness of the evolutionary
search offers greater chances to prevent the locking
into local optimum points and the gradient - based
method improves the convergence speed of COMT.
Each individual of the evolutionary algorithm
encodes a set of neural parameters, corresponding to
the analysed topology. The offspring are generated
by arithmetic recombination and mutation, allowing
only small variations of the parents’ genetic material.

A schematic description of the design algorithm is
presented in the following:
1. Create the initial main and auxiliary population
with Nind individuals (random uniform distribution).
Correct the architectures. Initialise the goals.
2. Train the neural networks encoded into the
population using an extended backpropagation
algorithm (forα epochs). Correct the ARMA filters.
3. Evaluate the chromosomes according to all
considered objectives and compute the fitness values.
4. Loop over a number of Max_gen generations:

4.1 For the main and the auxiliary population:
4.1.1. Select parents for the reproduction pool.
4.1.2. Apply mutation operator. Correct the
offspring (if necessary).
4.1.3. Train the neural networks encoded by
the offspring using backpropagation procedure
(α epochs). Correct the ARMA filters.
4.1.4. Evaluate the offspring and compute the
fitness values.
4.1.5. Insert the offspring into the population,
according to the Pareto reservation strategy.
4.1.6. Once at No_migr generations, exchange
individuals with the other subpopulation
(migration stage).
4.1.7. Adapt the goals. Compute the fitness
values.

5. Train all individuals of the main population with
COMT procedure. Correct the ARMA filters.
6. Select the best individual(s).

4. APPLICATION

The applicability of the suggested method is studied
with respect to the neural identification of two
systems, characterised by different levels of
complexity: the laboratory set - up “Three Tank
system” (Amira DTS 200) and an industrial system,
namely the first section of an Evaporation Station
(ES) from the Sugar factory of Lublin, Poland.

The experimental set - up Amira DTS 200 (Amira,
1993) consists of three cylindrical tanks with
identical cross sections, being filled with water (Fig.
3). The tanks are interconnected with circular pipes.
All three tanks are equipped with piezo - resistive
pressure transducers for measuring the level of the
liquid. The volume flows of lateral tanks ()(1 tq and

)(2 tq) represent the two inputs of the system. Three
system outputs are considered, namely the liquid
levels in the tanks. Here, t stands for the time
variable. A nonlinear analytical model of this plant is
available, but it offers a limited approximation.

h 1
(t)

T1

h 3
(t)

T3

h 2
(t)

T2

leak outlet

pump 1
1(t) 2 (t)

pump 2

L1 L3 L2

C13 C32 C20

q q

Fig. 3. The “Three Tank System” AMIRA DTS 200.

For the experiments, the reference values of the
liquid levels were changed pulse - wise, using
different magnitudes and periods of rectangular
pulses for each controlled tank. The input - output
data of the process were sampled at every TS = 5s,
during a test period of 400s. The sample time,
selected by trial, permits the acquisition of
representative measurements.

The identification task is done for the normal system
behaviour (outlets L1, L2, L3 closed and valves C13,
C32, C20 opened). For the model validation, one
considers 34 testing data sets acquired in different
days of plant exploitation, in order to completely
illustrate the influence of the system environment.

To estimate each process output, DNNHHs with 5
inputs and one output has to be designed. In all
investigations a reduced number of hidden neurons
was sufficient, i.e. 3=r . Several experiments were
necessary for tuning the parameters of the
evolutionary design procedure. Early migration
between the main and the auxiliary population can
allow a premature exchange of information, with
negative effect on the exploration capabilities of the
algorithm. Also, if the evolutionary process works on
insufficiently trained networks, the results are
unsatisfactory. Some of the resulted topologies are
analysed in the following. They were obtained
considering for the first stage 32=Nind ,

30_ =genMax , 10_ =migrNo , 200=α , and for
the second stage 4_ =comN switches between the
genetic search and the backpropagation procedure.

For the DNNHH estimating h3, some details are
given. The selected topology includes 2 hidden
neurons (1SP, 1 SG) with 6 dynamic synaptic filters
and 1 output neuron with 1 dynamic synaptic filter
(22 =f , 73 =f , 224 =f , 25 =f , 86 =f). The
performances of the resulted neural model are
presented in Table 1 (the first line). Here PN
represents the total number of parameters, SSEr
indicates the total output squared error computed for
the data sets without normalisation and REmax
denotes the maximum value of the relative error,
computed as follows:

 %100⋅
−

=
y

yyRE
)

, (2)

where y) represents the estimation of the process
output y. The testing data set considered for this
analysis is characterised by the worst approximation.
The generalisation capabilities are also illustrated in
Fig. 4a, with respect to the same testing data set. As
indicated in Fig. 4b, the selected model guarantees a
good rejection of the supplementary simulated white
noise, acting at the input of the process.

100 150 200 250 300 350 400
23
24
25
26
27
28
29 H3: TESTING DATA SET

th
e

m
od

el
 o

ut
pu

t,
th

e
pr

oc
es

s
ou

tp
ut

 [c
m

]

time [sec]

DNNHH output - dotted line
process output - solid line

a)

100 150 200 250 300 350 400
22
24
26
28
30 H3: TESTING DATA SET WITH SUPPLEMENTARY NOISE

th
e

m
od

el
 o

ut
pu

t,

th
e

pr
oc

es
s

ou
tp

ut
 [c

m
]

time [sec]

100 150 200 250 300 350 400
-2
-1
0
1
2 NORMALISED INPUTS WITH SUPPLEMENTARY NOISE

th
e

pr
oc

es
s

in
pu

ts

(w
ith

 a
nd

 w
ith

ou
t n

oi
se

)

time [sec]

DNNHH output for noisy inputs - dotted line
process output for inputs without noise – solid line

process inputs without noise - solide lines
process inputs with supplementary simulated noise - dotted lines

b)

Fig. 4. Model validation (h3) - testing data set with
the worst approximation: a) the measured data
set; b) the data set with supplementary simulated
additive white noise, acting on the inputs of the
process (mean 0, standard deviation 0.2 for inputs
scaled in [-1,1]).

The experiments are repeated for the identification of
the industrial system. The ES has to increase the
concentration of the sucrose juice (Bartys and
Wasiewicz, 1998). The thin juice passes, in
sequence, through all five sections of the ES, each

one reducing the water content. Due to its
complexity, the process is decomposed in several sub
- processes. One of them, namely the evaporator
[EV] is identified using DNNHHs. It has three inputs
(the steam flow to the input of ES, the steam
temperature at the input of ES and the juice
temperature after heater) and one output (the juice
temperature after section 1 of ES). The model is
designed using real data collected from the sugar
factory during one month of plant exploitation, using
the sample period Ts =10 sec. The selected learning
data set contains 3000 rows and corresponds to a
production shift. It illustrates the maximum possible
excitation of the process and it includes a reduced
number of missing or uncertain values. The isolated
missing and uncertain values have been replaced by
means of polynomial interpolation. In order to
reduce the noise, a low - pass filtering, based on 4th
order Butterworth filters, has been performed. This
also allows the reduction of the amount of data used
during the learning stage. The data have been
decimated using each 10th sampled value. The
validation of the neural model is done with respect to
another testing data set, which includes
measurements acquired from the previous month of
plant exploitation.

0 500 1000 1500 2000 2500 3000
125

126

127

128

129

130

131

132
EV: TESTING DATA SET

th
e

m
od

el
 o

ut
pu

t,
th

e
pr

oc
es

s
ou

tp
ut

time [sec]

DNNHH output - dotted line
process output - solid line

a)

0 500 1000 1500 2000 2500 3000
124

126

128

130

132
EV: TESTING DATA SET WITH SUPPLEMENTARY NOISE

th
e

m
od

el
 o

ut
pu

t,
 th

e
pr

oc
es

s
ou

tp
ut

time [sec]

0 500 1000 1500 2000 2500 3000
-2

-1

0

1

2 NORMALISED INPUTS WITH SUPPLEMENTARY NOISE

 th
e

pr
oc

es
s

in
pu

ts
 w

ith

an
d

w
ith

ou
t s

im
ul

at
ed

 n
oi

se

time [sec]

DNNHH output for noisy inputs - dotted line
process output for inputs without noise - solid line

inputs without noise - solid lines
inputs with supplementary simulated noise - dotted lines

b)

Fig. 5. Model validation (EV) - testing data set: a)
the acquired testing data set; b) the testing data
set with supplementary additive simulated white
noise acting on the inputs of the process (mean 0,
standard deviation 0.2 for inputs scaled in [-1,1]).

Table 1. The performances of the DNNHH models

estimating the output h3 (AMIRA DTS 200) and
the output of the evaporator system

 training data set testing data set
 PN SSEr REmax SSEr REmax

h3 27 0.0444 0.26% 2.718 1.65%
EV 14 0.3412 0.009% 1.1087 1.7%

A set of preliminary experiments was carried out, in
order to find appropriate values for all parameters of
the design procedure (64=Nind , 60_ =genMax ,

20_ =migrNo , 200=α , 4_ =comN). Table 1
(second line) indicates that the DNNHHs models are
characterized by good accuracy and have good
generalization capabilities. The architecture of the
selected neural model includes 1 SP hidden neuron
with 1 active synaptic filter and 1 output neuron with
1 active synaptic filter (12 =f , 23 =f , 104 =f ,

25 =f , 46 =f). Fig. 5 illustrates that the DNNHH
can perform a good approximation of the testing data
set, even if supplementary additive simulated white
noise is considered on the process inputs.

Table 2 compares the DNNHHs with other dynamic
neural models based on local internal feedbacks.
Here f1 denotes the squared output error computed
for the normalised training data set and PN indicates
the number of neural parameters. The DMLPs
contain SP hidden neurons and accept supplementary
lateral connections between the hidden neurons
(Marcu et al., 1999); the DGNNs include both SP
and SG hidden neurons (Ferariu and Marcu, 2002);
the DCWNNs include RBC hidden neurons (Ferariu,
2003). The last two architectures contain output
ARMA filters, placed on recurrent connections
provided from the output of the neurons to the input
of their activation function. The design methodology
based on DNNHHs selects the convenient models
with respect to objectives involving accuracy and
parsimony. Though, this general design approach can
be overtaken by domain specific methods, for certain
particular cases.

Table 2. Comparison with other dynamic neural
models.

h3 EV Model PN f1 PN f1
DNNHH 27 0.0065 14 0.015
DMLP 21 0.0168 24 0.0348
DGNN 31 0.0044 26 0.0312
DCWNN - - 21 0.0316

Even the methodology is based on computationally
intensive evolutionary mechanisms, because it
provides the automatic selection of the neural
architectures, the required design time results much
smaller than in the case of a manual configuration of
the neural topologies (several hours instead of
several days, for the considered study cases).

5. CONCLUSIONS

The paper presents a novel dynamic neural
architecture, characterised by a hybrid structure of
the hidden layer. It combines the advantages of all
component neural structures, offering improved
approximation capabilities. The heterogeneous
neural topology and the local internal dynamic
blocks are adapted according to the dynamic
characteristics of the system that has to be identified.
No model structure assumptions are required.

The experimental results indicate that the proposed
methodology is able to produce neural models with

good performances of approximation and
generalisation. Though, the approach needs large
computational resources, so it is recommended for
nonlinear identifications, if poor a priori information
about the models is available and/or high
performances of the neural models are requested.

Further research will investigate the efficiency of the
fault diagnosis systems based on DNNHH observer
schemes.

REFERENCES

Amira (1993). Laboratory Experiment Three-Tank

System. Amira GmbH, Duisburg, Germany.
Bäck, T., D. Fogel and Z Michalewicz. (2000).

Evolutionary Computation 2. Advanced
Algorithms and Operators. Institute of Physics
Publishing, USA.

Bartys, M. and P. Wasiewicz (1998). Description of
Sugar Technology Process and Artificial Fault
Generation. Prep. EC INCO - Copernicus
Workshop IQ2FD, Kazimierz, Poland, pp.17-32.

Deb, K. (2001). Multi - Objective Optimization using
Evolutionary Algorithms. Wiley, USA.

Ferariu, L. and T. Marcu. (2002). Evolutionary
Design of Dynamic Neural Networks Applied to
System Identification. Proc. of IFAC Congress
b’02, Barcelona, Spain, CDROM-2110.

Ferariu, L. (2003). Nonlinear System Identification
Based on Evolutionary Dynamic Neural
Networks with Complex Weights. In: Proc. of
European Control Conference, ECC’03,
Cambridge, UK, 2003, CDROM - 239.

Fleming, P. J. and R. C. Purshouse (2002).
Evolutionary algorithms in control systems
engineering: a survey. Control Engineering
Practice, 10, 1223 - 1241.

Fonseca, C.M. and P. J. Fleming (1998).
Multiobjective Optimisation and Multiple
Constraint Handling with Evolutionary
Algorithms – Part I: A Unified Formulation.
IEEE Transactions on Systems, Man, and
Cybernetics – Part A, 28 (1), 26-37.

Haykin S. (1999). Neural Networks - A
Comprehensive Foundation. McMillan College
Publishing Company, New York, 2nd Edition.

Igelnik B, M. Tabib-Azar and S. R. LeClair (2001).
A Net with Complex Weights. IEEE
Transactions on Neural Networks, 12 (2), 236 –
249.

Isermann, R., S. Ernst and O. Nelles (1997).
Identification with Dynamic Neural Networks:
Architectures, Comparisons, Applications. In:
Preprints of IFAC Symposium on System
Identification, Fukuoka, Japan, Vol.3, pp. 997-
1022.

Marcu, T., L. Ferariu and P. M. Frank (1999).
Genetic Evolving of Dynamic Neural Networks
with Application to Process Fault Diagnosis. In:
Proceedings of European Control Conference,
Karlsruhe, Germany, CD-ROM - F1046-1.

Patra, J. C., R. N Pal., B. N. Chatterji, G. Panda
(1999). Identification of Nonlinear Dynamic
Systems Using Functional Link Arfificial Neural
Networks. IEEE Transactions on System, Man
and Cybernetics – Part B, 29, 2, 254-262.

