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Abstract: This paper proposes on-line optimal operation planning and control of 
cogeneration systems (CGS). CGS is usually connected to various facilities such as 
refrigerators, reservoirs, and cooling towers. In order to generate optimal operation 
planning for CGS, startup/shutdown status and/or input/output values of the facilities for 
each control interval should be determined. The facilities may have nonlinear input-
output characteristics. Therefore, the problem can be formulated as a mixed-integer 
nonlinear optimization problem (MINLP). Particle Swarm Optimization (PSO) can be 
easily expanded to be utilized for MINLP. The proposed PSO-based methods are applied 
to typical cogeneration planning problems with promising results. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

 
Recently, CGS have been installed in various 
factories and buildings. CGS is usually connected to 
various facilities such as refrigerators, reservoirs, and 
cooling towers, and produces various energies for 
electric loads, air-conditioning loads, heating loads, 
and hot water loads (Fig.1). Since daily load patterns 
of the various loads are different, optimal operational 
planning for CGS is a very important task for saving 
operational costs and reducing environmental loads. 
 

In order to generate optimal operational planning for 
CGS, various loads should be forecasted, and startup 
and shutdown status and input values for the facilities 
at each control interval should be determined using 
facility models (Fig.2). Therefore, the optimal 
operational planning problem can be formulated as a 
mixed-integer linear problem (MILP) and 
mathematical programming techniques such as 
branch-and bound, decomposition method, and 
dynamic programming have been applied 
conventionally (Ravn, 1994; Ito, et al., 1994; 
Yokoyama, et al., 1996). However, The facilities 
may have nonlinear input-output characteristic 
practically and operational rules, which cannot be 
expressed as a mathematical forms, should be 
considered in actual operation. Therefore, the 
problem should be formulated as a MINLP and 
independent facility models should be developed for 
practical use (as shown in Fig.1) and the method for 
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solving the MINLP problem has been eagerly 
awaited. 
 
PSO is one of the evolutionary computation (EC) 
techniques (Kennedy and Eberhart, 1995). The 
method is improved and applied to various problems 
(Kennedy and Eberhart, 2001; Fukuyama, 2000; 
Fukuyama, 2002; Yasuda, et al., 2003; Miranda, et 
al., 2002a; Miranda, et al., 2002b). The original 
method is able to handle continuous state variables 
easily. Moreover, the author has expanded PSO in 
order to handle both continuous and discrete 
variables for a power system problem (Fukuyama, 
2000). Various methods have been developed for a 
MINLP such as generalized benders decomposition 
(GBD) (Geoffrion, 1972) and outer approximation 
(OA/ER) (Kocis, et al., 1989). Using the 
conventional methods, the whole problem is usually 
divided to sub-problems and various methods are 
utilized for solving each sub-problem. Therefore, the 
whole algorithm has to solve each sub-problem 
alternately. On the contrary, PSO can be expanded to 
handle the whole MINLP by itself easily and 
naturally, and it is easy to apply to various problems 
compared with the conventional methods. Moreover, 
optimal CGS operational planning requires handling 
various operational rules and constraints that are 
difficult to be handled by linear models. In addition, 
independent facility models, which cannot be 
handled in the conventional method, must be handled 
in the optimal operational planning problem for CGS. 
PSO is expected to be suitable for the optimal 
operational planning for CGS because it can handle 
such operation rules, constraints, and independent 
facility models easily. 
 
This paper proposes online optimal operation and 
control of cogeneration system using particle swarm 
optimization techniques. The original PSO, Adaptive 
PSO, and Evolutionary PSO based methods are 
compared. The methods are applied to typical 
cogeneration planning problems with promising 
results. Forecasting various loads is out of scope in 
this paper. However, the authors have developed the 
analyzable structured neural network (ASNN) and 
other forecasting methods. The accurate load 
forecasting can be realized for various loads 
(Fukuyama, et al., 2002). 
 

 
2. PROBLEM FORMULATION 

 
2.1 State Variables 
 
State variables are on/off status per hour (24 points a 
day) of each controlled facility. The detailed 
variables and related constraints can be listed as 
follows: 

i = 0, 1, 2, ... , 23 : index for time (hour), 
n : i th facility of a specific equipment. 
 

Steam absorption refrigerator: SR 
The state variables of SR are as follows: 

SRniδ :On/Off status of the n th SR at the i th hour 
where, n=1,…,NSR, 

NSR : Total number of SR. 
 
Oil fueled cooling and heating machine: OC 
The state variables of OC are as follows: 

OCniδ :On/Off status of n th OC at the i th hour 
where, n=1,…,NOC
NOC : Total number of OC. 
 

Gas fueled cooling and heating machine: GC 
GCniδ :On/Off status of the n th GC at the i th hour 

 
All state variables are binary (0 / 1) variables and the 
formulation for summer season is utilized in this 
paper. For example, heat exchanger output values are 
continuous and the problem can be MINLP in winter 
season. The formulation can be easily expanded to 
MINLP. One state variable for one facility is 
composed of vectors with 24 elements (24 points at 
the day). Namely, all of state variables have 24 
elements and one state in the solution space can be 
expressed as an array with number of all facilities 
multiplied by 24 elements. 
 
2.2 Objective Function 
 
The objective function is to minimize the operational 
costs. The operational costs can be obtained by 
calculation of the annual operational costs using 
daily operational costs of the representative days of 
summer, winter, and intermediate seasons). 

( )PCF βα +min    (1) 

332211 PkPkPkP ++=  
where, 

 CF : Total fuel charges, 
 P : Total penalty costs, 

βα , : Weighting factors of cost and penalty  
term, 

ki : Weighting factors of each penalty term, 
Pi : Penalty terms (i=1,2,3). 

The penalty term P1 is related to the air-conditioning 
supply-demand balance constraints concerning the 
heat storage tank 1 (HST-1). The penalty term P  is 
related to the 

2
air-conditioning supply-demand 

balance constraints concerning the heat storage tank 
2 (HST-2). The penalty term P  is related to the 
steam supply-demand balance constraints. 

3
As shown 

in (1), the objective function value can be obtained as 
the total costs of the fuel charges.  
 
2.3 Constraints 
 
Air-conditioning load balance 
Summation of air-conditioning energies should be 
greater or equal to air-conditioning loads. 

niACHSTniPni QQQ ≥+    (2) 
where, 

PniQ : Total heat output of the equipment 
connected to HST-n, 

HSTnbaseHSTnTotaliHSTni QQQ −= : Available heat 
quantity of the HST-n, 

HSTnTotaliQ : Total heat quantity of HST-n, 

     



HSTnbaseQ : Base heat quantity of HST-n, 

niACQ :Air-conditioning load connected to  
HST-n, 

n=1,2 : # of the heat storage tank. 
i=0, 1, …, 23 : index for time (hour). 

 
Steam load Balance 
Summation of steam flow supplied from boilers 
should be greater or equal to steam demand. 

QiLiPi SSS +≥    (3) 
where, 

PiS : Total steam flow supplied from small 
boilers and exhaust gas boiler,  

LiS : Steam load flow, 

QiS : Total consumed steam flow by steam 
absorption refrigerators, 

i=0, 1, …, 23 : index for time (hour). 
 
Facility Constraints and Operational Rules 
Various facility constraints including the boundary 
constraints shown above with state variables should 
be considered. Input-output characteristics of 
facilities should be also considered as facility 
constraints. Examples of the operational rules are 
shown below:  
 - If the facility is startup, then the facility should not 

be shut downed for a certain period. (Minimum up 
time) 

 - If the facility is shut downed, then the facility 
should not be startup for a certain period. 
(Minimum down time) 

Facility models are constructed using the facility 
constraints and the operational rules. The models are 
independent and all of CGS states are calculated 
when all of facility states are input from PSO. Then, 
the operational cost for the days can be calculated. 
 

 
3. PARTICLE SWARM OPTIMIZATION 

TECHNIQUES 
 
3.1 Original PSO (Kennedy and Eberhart, 1995, 

2001) 
 
The original PSO algorithm can be expressed as 
follows (See fig.3): 
1)  State variables (searching point) 

State variables (states and their velocities) can be 
expressed as vectors of continuous numbers. PSO 
utilizes multiple searching points for search 
procedures. 

     

2)  Generation of initial searching points (Step.1 in 
fig.3) 

Initial conditions of searching points in the 
solution space are usually generated randomly 
within their allowable ranges. 

3)  Evaluation of searching points (Step.2 in fig.3) 
The current searching points are evaluated by the 
objective function of the target problem. Pbests 
(the best evaluated value so far of each agent) and 
gbest (the best of pbest) can be modified by 
comparing the evaluation values of the current 
searching points, and current pbests and gbest. 

4)  Modification of searching points (Step.3 in fig.3) 
The current searching points are modified using 
the state equations of PSO. 

5)  Stop criterion (Step.4 in fig.3) 
The search procedure can be stopped when the 
current iteration number reaches the predetermined 
maximum iteration number. For example, the last 
gbest can be output as a solution. 
 
Searching points can be modified (Step.3 in fig.3) as 
follows: 
Velocity of the state equations can be expressed by 
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where, vi
k  : Velocity of agent i at iteration k, 

w   : Weighting function, 
ci   : Weighting coefficients, 
randi   : Random number between 0 and 1, 
si

k   : Current position of agent i at iteration 
 k, 

pbesti   : pbest of agent i, 
gbest   : gbest of the group. 

The original PSO utilizes the following weighting 
function in (4). The way to utilize the function is 
called "inertia weights approach (IWA)": 

iter
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ww
ww ×

−
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minmax
max   (5) 

where,  
wmax : Initial weight,  
wmin : Final weight,  
itermax : Maximum iteration number, 
iter : Current iteration number. 

The current position (searching point in the solution 
space) can be modified by the following state 
equation: 
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k
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k
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3.2 Adaptive PSO (APSO) (Yasuda, et al., 2003) 
 
The following points are improved to the original 
PSO with IWA. 
1) The search trajectory of PSO can be controlled by 

introducing the new parameters (P1, P2) based on 
the probability to move close to the position of 
(pbest, gbest) at the following iteration. 

2) The wvi
k term of (4) is modified as (8). Using the 

equation, the center of the range of particle 
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Fig.3 A general flow chart of PSO. 



movements can be equal to gbest. 
3) When the agent becomes gbest, it is perturbed. 

The new parameters (P1, P2) of the agent are 
adjusted so that the agent may move away from 
the position of (pbest, gbest). 

4) When the agent is moved beyond the boundary of 
feasible regions, pbests and gbest cannot be 
modified. 

5) When the agent is moved beyond the boundary of 
feasible regions, the new parameters (P1, P2) of the 
agent are adjusted so that the agent may move 
close to the position of (pbest, gbest). 

The new parameters are set to each agent. The 
weighting coefficients is calculated as: 

2
2

1
1

2
2,2 c
P

c
P

c −== .  (7) 

The search trajectory of PSO can be controlled the 
parameters (P1, P2). Concretely, when the value is 
enlarged more than 0.5, the agent may move close to 
the position of pbest/gbest. 

( ) ( ){ }( xxgbestcxpbestc
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221 )  (8) 

Namely, the velocity of the improved PSO can be 
expressed as follows: 
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.    (9) 

The improved PSO can be expressed as follows: 
(Step1 and 5 are same as PSO) 
2) Generation of initial searching points: Same as 

PSO. In addition, the parameters (P1, P2) of each 
agent are set to 0.5 or higher. Then, each agent 
may move close to the position of (pbest, gbest) at 
the following iteration. 

3) Evaluation of searching points: Same as PSO. In 
addition, when the agent becomes gbest, it is 
perturbed. The parameters (P1, P2) of the agent are 
adjusted to 0.5 or lower so that the agent may 
move away from the position of (pbest, gbest). 

4) Modification of searching points: The current 
searching points are modified using the state 
equations (9), (6) of adaptive PSO. 
 
3.3 Evolutionary PSO (EPSO) (Miranda, et al., 

2002a, 2002b) 
 
The idea behind EPSO is to grant a PSO scheme with 
an explicit selection procedure and with self-adapting 
properties for its parameters. At a given iteration, 
consider a set of solutions or alternatives that we will 
keep calling particles. The general scheme of EPSO 
is the followings: 
1)REPLICATION - each particle is replicated R 
times 
2)MUTATION - each particle has its weights 
mutated 
3)REPRODUCTION - each mutated particle 

generates an offspring according to the particle 
movement rule 

4)EVALUATION - each offspring has its fitness 
evaluated 

5)SELECTION - by stochastic tournament the best 
particles survive to form a new generation. 

The movement rule for EPSO is the following: given 
a particle , a new particle  results from  k

is 1+k
is
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So far, this seems like PSO – the movement rule 
keeps its terms of inertia, memory and cooperation. 
However, the weights undego mutation 

( )1,0* Nww ikik τ+=    (12) 
Where, N(0,1) is a random variable with Gaussian 
distribution, 0 mean and variance 1; and the global 
best g b is randomly disturbed to give 

( )1,0* Ngbestgbest τ ′+=   (13) 
The τ,τ’ are learning parameters (either fixed or 
treated also as strategic parameters and therefore also 
subject to mutation). 
 
This scheme benefits from two “pushes” in the right 
direction: the Darwinistic process of selection and 
the particle movement rule and therefore it is natural 
to expect that it may display advantageous 
convergence properties when compared to ES or 
PSO alone. Furthermore, EPSO can also be classified 
as a self-adaptive algorithm, because it relies on the 
mutation and selection of strategic parameters, just as 
any σ-SA Evolution Strategy. 
 
3.4 Expanded PSO for MINLP (Fukuyama, 2000; 

Kennedy and Eberhart, 1997) 
 
A binary version of PSO has been developed 
(Kennedy and Eberhart, 1997). Although the PSO is 
useful only for binary problems, on/off status of 
facilities can be expressed by binary numbers. Using 
the binary version and the original continuous 
version of PSOs, the optimal CGS operational 
planning problem formulated as a MINLP can be 
handled. 
 
As formulated in section 2, the optimal CGS 
operational planning problem can be formulated as a 
0-1 integer nonlinear problem. In the binary version 
of PSO, the current position (searching point in the 
solution space) can be modified by the following 
state equation: 
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where, 
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The authors have expanded PSO to handle discrete 
variables as follows (Fukuyama, 2000): 
(a) Velocity can be discretized to existing values 

after calculation of (4) or (9) or (11), 
(b) Searching points are discretized to existing values 

after calculation of (6) or (10). 
The application of the expanded PSO for one of the 
MINLP in power systems has been shown in 
(Fukuyama, 2000). The expanded PSO can be also 
utilized for the optimal CGS operational planning 
problem. 

     



 
 

4. OPTIMAL OPERATION PLANNING AND 
CONTROL FOR CGS USING PSO 

 
Each agent keeps a state and a velocity in the 
solution space, and the state and the velocity are 
modified using state equations at each iteration. 
Using the above-mentioned expansion, x1 and v1 are 
composed of vectors with 24 elements. Namely, all 
of state variables have 24 elements and one state in 
the solution space can be expressed as an array with 
number of all facilities multiplied by 24 elements. 

The whole algorithm can be expressed as follows: 
Step.1 Generation of initial searching points (states) 

States and velocities of all facilities are randomly 
generated. The upper and lower bounds of 
facilities are considered when the initial states are 
generated. 

Step.2 Evaluation of searching points 
The current states are input to facility models and 
the total annual operational costs are calculated as 
the objective function value. If the calculated 
value of the current state is better than the current 
pbest, pbest is updated. If the best pbest is better 
than the current gbest, gbest is updated. 

Step.3 Modification of searching points 
The current searching points (facility states) are 
modified using the state equations ((4)-(6) or (7)-
(9) or (11)-(13)). The upper and lower bounds of 
facilities are considered when the current states 
are modified. 

Step.4 Stop criterion 
The search procedure can be stopped when the 
current iteration number reaches the 
predetermined maximum iteration number. 
Otherwise, go to step. 2. The last gbest (the state 
and the objective function value) is output as a 
solution for the optimal CGS operational 
planning. 

     

 
The planning until 24 hours ahead is performed 
every 15 to 30 [min] with energy load forecasting 
results. The planning results are shown in display 
and the results for the next control interval are sent to 
DCS for online control. The operators can evaluate 
the control plans until 24 hours ahead and the plans 
may change gradually according to the modification 
of energy load forecasting results.  
 
 

5. NUMERICAL EXAMPLES 
 
The proposed method has been applied to typical 
cogeneration system planning problems. One 
numerical example is shown in this paper. Original 
PSO, APSO, and EPSO based proposed methods are 
compared. 
 
5.1 Simulation Conditions 
 
The proposed method is applied to the typical CGS 
system shown in fig. 1. A factory load model based 

on actual data is utilized in the simulation. One CGS 
generators and two heat storage tanks are assumed to 
be installed. At most, one steam absorption 
refrigerator is assumed to be installed to each heat 
storage tank. One oil fueled cooling and heating 
machine and one gas fueled cooling and heating 
machine are connected to heat storage tank 1. Two 
gas fueled cooling and heating machine are 
connected to heat storage tank 2. A summer load data 
is utilized. Number of agent is set to 200. The 
iteration number is set to 200. Twenty trials are 
compared. The numbers may be able to be optimized 
and the further investigation should be performed. 
 
5.2 Simulation Results 
 
Table 1 shows comparison of costs by Original PSO, 
APSO, and EPSO based method. All of the value in 
table 1 is the relative rate when the value of the 
original PSO method is assumed to be 100. 
According to the results, usage of fuel is improved. 
EPSO generates the best solution. APSO can 
generate the second result. In addition, EPSO and 
APSO can generate better average results than 
original PSO. According to the results, the 
followings can be observed: 
(a) EPSO (Evolutionary PSO) and APSO (Adaptive 

PSO) can generate better results than Original 
PSO with IWA clearly. 

(b) EPSO (Evolutionary PSO) can generate better 
results than APSO (Adaptive PSO). 

Fig.4 shows comparison of results for HST-2 by 
three methods. According to the results, operation 
time for SR R-1 by Evolutionary and Adaptive PSO 
is longer than that by original PSO so that the total 

operational cost is reduced. 

Table 1. Comparison of costs by the original PSO, 
APSO, and EPSO. 

Method Min. Ave. Max. 
Original PSO 100.0 100.6 101.3
Adaptive PSO 98.7 99.4 101.3
Evolutionary 
PSO 96.7 97.5 100.5

*) All of the value is the relative rate when the value 
of the original PSO method is assumed to be 100. 

 
 

6. CONCLUSIONS 
 
This paper proposes on-line optimal operation 
planning and control of cogeneration systems using 
particle swarm optimization. Three PSO based 
techniques: Original PSO, Adaptive PSO, and 
Evolutionary PSO are compared. The proposed 
methods are applied to a typical cogeneration 
planning problem and the results indicate practical 
applicability of PSO for the target problem. 
According to the results, Evolutionary PSO can 
generate better results than others. The PSO-based 
one-line optimal operational planning and control 
system has been used in the factories of Toyota 
motor corporation (Fukuyama, et al., 2004).  



Fukuyama, Y. (2002). Foundation of Particle Swarm 
Optimization. In chapter 5 of tutorial text on 
Modern Heuristic Optimization Techniques with 
Application to Power Systems (Lee, K. Y. and 
El-shakawi, M. (Eds.)), IEEE Winter Power 
Meeting.  
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(b) Results by APSO 
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(c) Results by original PSO 

Fig.4 Comparison of Results for HST-2 by three 
methods. 

Fukuyama, Y., et al. (2002). Intelligent Technology 
Application to Optimal Operation for Plant 
Utility Equipment. Journal of the Society of 
Plant Engineers Japan, 14, No.3 (in Japanese).  

Fukuyama, Y., et al. (2004). Optimal Operation of 
Energy Utility Equipment and its application to a 
practical system, Fuji Electric Journal, 77, 2, 
pp.164-168 (in Japanese). 

Geoffrion, A. M. (1972). Generalized Benders 
Decomposition. Journal of Operation Theory 
and Applications, 10, No.4, pp.237-260.  

Ito, K., Yokoyama, R., et al. (1994). Optimal 
Operation of a Cogeneration Plant in 
Combination with Electric Heat Pumps. 
Transaction of the ASME, 116, pp.56-64.  

Kennedy, J. and Eberhart, R. (1995). Particle Swarm 
Optimization. Proceedings of IEEE 
International Conference on Neural Networks, 
pp.1942-1948.  

Kennedy, J. and Eberhart, R. (1997). A discrete 
binary version of the particle swarm 
optimization algorithm. Proc. of the IEEE 
conference on Systems, Man, and Cybernetics 
(SMC'97), pp.4104-4109.  

Kennedy, J. and Eberhart, R. (2001). Swarm 
Intelligence, Morgan Kaufmann Publishers. 

Kocis, G. R. and Grossmann, I. E. (1989). 
Computational Experience with DICOP solving 
MINLP Problems in Process Systems 
Engineering.  Computer Chemical Engineering, 
13, No.3, pp.307-315.  

Miranda, V. and Fonseca, N. (2002a). New 
Evolutionary Particle Swarm Algorithm (EPSO) 
Applied to Voltage/Var Control. Proceedings of 
PSCC'02 - Power System Computation 
Conference. 

There are many practical problems formulated as a 
mixed-integer nonlinear optimization problem. The 
practical tools such as PSO for the problem have 
been eagerly awaited. As shown in this paper, in the 
practical applications, number of state variables may 
be too large to be handled by the original PSO. There 
are some expansions of PSO for improving 
efficiency of the quality of solutions, APSO, EPSO 
and others (Kennedy and Eberhart, 2001). However, 
more powerful improvement is expected for practical 
use. 

Miranda, V. and Fonseca, N. (2002b). EPSO -Best of 
Two World of Meat-heauristic Applied to Power 
System Problems. Proceedings of the 2002 
Congress of Evolutionary Computation 
(CEC2002). 

Ravn, H., et al. (1994). Optimal Scheduling of 
Coproduction with a Storage. Journal of 
engineering, 22, pp. 267-281.  

Yasuda, K., et al. (2003). The Improvement of 
Search Trajectory of Particle Swarm 
Optimization. National Convention Record IEE 
of Japan, pp.41-42 (in japanese).  

 
 

REFERENCES 
 

Yokoyama, R., and Ito, K. (1996). A Revised 
Decomposition Method for MILP Problems and 
Its Application to Operational Planning of 
Thermal Storage Systems. Journal of Energy 
Resources Technology, 118, pp.277-284.

Fukuyama, Y., et al. (2000). A Particle Swarm 
Optimization for Reactive Power and Voltage 
Control Considering Voltage Security 
Assessment. IEEE Trans. on Power Systems, 15, 
No.4, pp.1232-1239.  




