
A CURSE-OF-DIMENSIONALITY-FREE
NUMERICAL METHOD FOR A CLASS OF HJB

PDE’S

William M. McEneaney ∗,1

∗Dept. of Mech. and Aero. Eng. and Dept. of Math.,
University of California San Diego, wmceneaney@ucsd.edu

Abstract: Max-plus methods have been explored for solution of first-order, nonlin-
ear Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs) and corre-
sponding nonlinear control problems. These methods exploit the max-plus linearity
of the associated semigroups. Although these methods provide advantages, they
still suffer from the curse-of-dimensionality. Here we consider HJB PDEs where
the Hamiltonian takes the form of a (pointwise) maximum of linear/quadratic
forms. We obtain a numerical method not subject to the curse-of-dimensionality.
The method is based on construction of the dual-space semigroup corresponding
to the HJB PDE. This dual-space semigroup is constructed from the dual-space
semigroups corresponding to the constituent Hamiltonians. Copyright 2005 IFAC.
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1. INTRODUCTION

One approach to nonlinear control is through
Dynamic Programming (DP). With DP, solution
of the control problem “reduces” to solution of the
corresponding partial differential equation (PDE).
In the case of Deterministic Optimal Control or
Deterministic Games (such as H∞ control) where
one player’s feedback is prespecified, the PDE
is a Hamilton-Jacobi-Bellman (HJB) PDE. The
difficulty is that one must solve the HJB PDE.

Various approaches have been taken to solution of
the HJB PDE. The most common methods by far
all fall into the class of finite element methods (cf.
(Bardi and Capuzzo-Dolcetta, 1997), (Dupuis and
Boué, 1999), among many others). These require
that one generate a grid over some bounded region
of the state-space. Suppose the region over which
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one constructs the grid is rectangular. Suppose
one uses 100 grid points per dimension. If the
state dimension is n, then one has 100n grid
points. Thus the computations grow exponentially
in state-space dimension n.

In recent years, an entirely new class of numer-
ical methods for HJB PDEs has emerged (c.f.
(Fleming and McEneaney, 2000), (McEneaney,
2003), (McEneaney, 2004), (Akian, Gaubert and
Lakhouat, 2004)). These methods exploit the
max-plus linearity of the associated semigroup.
They employ a max-plus basis function expansion
of the solution, and the numerical methods ob-
tain the coefficients in the basis expansion. Much
of the work has concentrated on the (harder)
steady-state HJB PDE class. With the max-plus
methods, the number of basis functions required
still typically grows exponentially with space di-
mension. For instance, one might use 25 basis
functions per space dimension to cover a rectan-
gular region well. Consequently, one still has the



curse-of-dimensionality. Even with the max-plus
approach, one cannot expect to solve problems
of more than say dimension 4 or 5 on current
machinery.

This paper discusses an approach to certain
nonlinear HJB PDEs which is not subject to
the curse-of-dimensionality. In fact, the compu-
tational growth in state-space dimension is on
the order of n3. However, there is exponential
computational growth in a certain measure of
complexity of the Hamiltonian. Under this mea-
sure, the minimal complexity Hamiltonian is the
linear/quadratic Hamiltonian – corresponding to
solution by a Riccati equation. If the Hamiltonian
is given as a maximum of M linear/quadratic
Hamiltonians, then one could say the complexity
of the Hamiltonian is M .

The approach has been applied on some sim-
ple nonlinear problems. A few simple examples
comprised of 3 linear/quadratic components were
solved in 10-20 seconds over R3 and 10-45 seconds
over R4. For these particular problems, the solu-
tion was obtained over the entire space with the
resulting errors in the gradients growing linearly
in |x|. (See Section 5 for specific examples.) These
speeds are of course unprecedented. This code was
not optimized. Further, the computational growth
in going from n = 4 up to say n = 6 would be on
the order of 63/43 ' 4 as opposed to say more
than 104 for a finite element method.

We will consider HJB PDEs given as

0 = H̃(x,∇V ) = max
m∈{1,2,...,M}

{Hm(x,∇V )} (1)

with boundary data V (0) = 0 (V being zero at the
origin). In order to make the problem tractable,
we will concentrate on a single class of HJB PDEs
of form (1). However, the theory can obviously be
expanded to a much larger class.

2. REVIEW OF THEORY

Note that due to space limitations, the proofs of
the results cannot be included here.

As indicated above, we suppose the individual Hm

are linear/quadratic Hamiltonians. Consequently,
consider a finite set of linear systems

ξ̇m = Amξm + σmw, ξm
0 = x ∈ IRn. (2)

Let w ∈ W .= Lloc
2 ([0,∞); IRm). Let the cost

functionals and value functions be

Jm(x, T ;w) .=

T∫
0

1
2ξm

t Dmξm
t − γ2

2
|wt|2 dt, (3)

V m(x) = lim
T→∞

sup
w∈W

Jm(x, T ;w). (4)

Obviously Jm and V m require some assumptions
in order to guarantee their existence.

Assume that there exists cA ∈ (0,∞)
such that xT Amx ≤ −cA|x|2 for all
x ∈ IRn and m ∈ M. Assume that
there exists cσ < ∞ such that |σm| ≤
cσ ∀m ∈ M. Assume that all Dm are
positive definite, symmetric, and let cD

be such that xT Dmx ≤ cD|x|2 for all
x ∈ IRn and m ∈M. Lastly, assume that
γ2/c2

σ > cD/c2
A.

(A.m)

These assumptions guarantee the existence of the
V m as locally bounded functions which are zero
at the origin (cf. (McEneaney, 1998)).

The corresponding HJB PDEs are

0 = Hm(x,∇V )

= 1
2xT Dmx + (Amx)T∇V + 1

2∇V T Σm∇V

V (0) = 0

(5)

where Σm .= 1
γ2 σm(σm)T . Let Gδ be the subset

of C(IRn) such that 0 ≤ V (x) ≤ cA(γ−δ)2

c2
σ

|x|2.
For m ∈ M, let Pm satisfy the algebraic Riccati
equations

0 = (Am)T Pm + PmAm + Dm + PmΣmPm. (6)

Theorem 2.1. Each value function (4) is the
unique classical solution of its corresponding HJB
PDE (5) in the class Gδ for sufficiently small δ > 0.
Further, V m(x) = 1

2xT Pmx where Pm is the
smallest symmetric, positive definite solution of
(6) In particular, there exists symmetric, positive
definite C such that V m(x)− 1

2xT Cx is convex for
all m ∈M.

The method we will use to obtain these value
functions/HJB PDE solutions will be through
the associated semigroups. For each m define the
semigroup

Sm
T [φ] .=sup

w∈W

T∫
0

1
2 (ξm

t )T Dmξm
t −

γ2

2
|wt|2 dt+φ(ξm

T )

where ξm satisfies (2). By (McEneaney, 1998), the
domain of Sm

T includes Gδ for all δ > 0.

Theorem 2.2. Fix any T > 0. Each value function,
V m, is the unique smooth solution of V = Sm

T [V ]
in the class Gδ for sufficiently small δ > 0. Further,
given any V ∈ Gδ, limT→∞ Sm

T [V ](x) = V m(x)
(uniformly on compact sets).

Recall that the HJB PDE of interest is (1) with
Hm given by (5). The corresponding value func-
tion is



Ṽ (x) = sup
w∈W

sup
µ∈D∞

J̃(x,w, µ)

.= sup
w∈W

sup
µ∈D∞

sup
T<∞

T∫
0

lµt(ξt)− γ2

2
|wt|2 dt (7)

where
lµt(x) = 1

2xT Dµtx,

D∞ = {µ : [0,∞) →M : measurable },
and ξ satisfies

ξ̇ = Aµtξ + σµtwt, ξ0 = x. (8)

Define the semigroup

S̃T [φ] = sup
w∈W

sup
µ∈DT

T∫
0

lµt(ξt)− γ2

2
|wt|2 dt + φ(ξT )

where DT = {µ : [0, T ) →M : measurable }.

Theorem 2.3. Fix any T > 0. Value function Ṽ is
the unique continuous solution of V = S̃T [V ] in
the class Gδ for sufficiently small δ > 0. Further,
given any V ∈ Gδ, limT→∞ S̃T [V ](x) = Ṽ (x)
(uniformly on compact sets). Lastly, there exists
cV > 0 such that Ṽ (x)− 1

2cV |x|2 is convex.

3. MAX-PLUS DUAL OPERATORS

We use ⊕,⊗ to indicate max-plus addition and
multiplication; max-plus integration (supremiza-
tion) is indicated by an ⊕ superscript on the
integral sign. Let IR = IR ∪ {−∞}. Recall that
a function, φ : IRn → IR is semiconvex if given
any R ∈ (0,∞) there exists βR ∈ IR such that
φ(x) + βR

2 |x|2 is convex over BR(0) = {x ∈ IRn :
|x| ≤ R}. We say φ is uniformly semiconvex with
constant β if φ(x) + β

2 |x|2 is convex over IRn. Let
Sβ = Sβ(IRn) be the set of functions mapping IRn

into IR which are uniformly semiconvex with con-
stant β. Note that Sβ is a max-plus vector space
(also known as a moduloid) (Fleming and McE-
neaney, 2000), (McEneaney, 2003), (Baccelli, Co-
hen, Olsder and Quadrat, 1992), (Cohen, Gaubert
and Quadrat, 2004), (Litvinov, Maslov and Sh-
piz, 2001). Combining Theorems 2.1 and 2.3, we
have

Theorem 3.1. There exists β ∈ IR such that given
any β > β, Ṽ ∈ Sβ and V m ∈ Sβ for all m ∈ M.
Further, one may take β < 0 (i.e. Ṽ , V m convex).

The following semiconvex duality result (Fleming
and McEneaney, 2000), (McEneaney, 2003) re-
quires only a small modification of convex dual-
ity and Legendre/Fenchel transform results (c.f.
(Rockafellar and Wets, 1997)).

Theorem 3.2. Let φ ∈ Sβ . Let C be a symmetric
matrix such that C + βI > 0 (i.e. C + βI positive
definite) with either C > 0 or C < 0. Define
ψ : IRn×IRn → IR by ψ(x, z) = − 1

2 (x−z)T C(x−
z). Then, for all x ∈ IRn,

φ(x)= max
z∈IRn

[ψ(x, z) + a(z)] (9)

.=

⊕∫
IRn

ψ(x, z)⊗ a(z) dz
.= ψ(x, ·)¯ a(·)

where for all z ∈ IRn

a(z)= −
⊕∫

IRn

ψ(x, z)⊗ [−φ(x)] dx (10)

= −{ψ(·, z)¯ [−φ(·)]} .=
{
ψ(·, z)¯ [φ−(·)]}− .

We will refer to a as the semiconvex dual of φ.

Semiconcavity is the obvious analogue of semicon-
vexity. Let S−β be the set of functions mapping IRn

into IR ∪ {+∞} which are uniformly semiconcave
with constant β (φ(x)− (β/2)|x|2 concave over all
of IRn).

Lemma 3.3. Let φ ∈ Sβ , and let a be the semi-
convex dual of φ. Then a ∈ S−β . Further, suppose
b ∈ S−β is such that φ = ψ(x, ·)¯ b(·). Then b = a.

For simplicity, we will henceforth specialize to the
case where ψ(x, z) .= (c/2)|x − z|2. It will be
critical to the method that S̃τ [ψ(·, z)] ∈ S−(c+ε)

for some ε > 0. This is the subject of the next
theorem.

Theorem 3.4. We may choose c > 0 such that
Ṽ , V m ∈ S−c, and such that there exists τ > 0
and η > 0 such that ,

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(c+ητ) ∀ τ ∈ [0, τ ].

Henceforth, we suppose c, τ, η chosen so that the
results of Theorem 3.4 hold. Now for each z ∈ IRn,
S̃τ [ψ(·, z)] ∈ S−(c+ητ). Therefore, by Theorem 3.2

S̃τ [ψ(·, z)](x) = ψ(x, ·)¯ B̃τ (·, z) (11)

where for all y ∈ IRn

B̃τ (y, z) =
{
ψ(·, y)¯ [S̃τ [ψ(·, z)](·)]−}− (12)

It is handy to define the max-plus linear operator

with “kernel” B̃τ as ̂̃Bτ [a](z) .= B̃τ (z, ·) ¯ a(·) for
all a ∈ S−c. Note that (11), (12) introduce the
dual-space operator kernel B̃τ which propagates
the dual equivalently to propagation in the origi-
nal space by S̃τ .



Proposition 3.5. Let φ ∈ S−c with semiconvex
dual denoted by a. Define φ1 = S̃τ [φ]. Then
φ1 ∈ S−(c+ητ), and φ1(x) = ψ(x, ·) ¯ a1(·) where
a1(x) = B̃τ (x, ·)¯ a(·).

Theorem 3.6. Let V ∈ S−c, and let a be its
semiconvex dual (with respect to ψ). Then V =
S̃τ [V ] if and only if

a(z)=

⊕∫
IRn

B̃τ (z, y)⊗ a(y) dy

= B̃τ (z, ·)¯ a(·) = ̂̃Bτ [a](z) ∀ z ∈ IRn.

Corollary 3.7. The value function Ṽ is given by
Ṽ (x) = ψ(x, ·)¯ã(·) where ã is the unique solution
of ã(y) = B̃τ (y, ·)¯ ã(·) ∀y ∈ IRn or equivalently,

ã = ̂̃Bτ [ã].

Similarly, for each m ∈ M and z ∈ IRn,
Sm

τ [ψ(·, z)] ∈ S−(c+ητ) and

Sm
τ [ψ(·, z)](x) = ψ(x, ·)¯ Bm

τ (·, z) ∀x ∈ IRn

where

Bm
τ (y, z) =

{
ψ(·, y)¯ [

Sm
τ [ψ(·, z)]

]−(·)
}−

.

As before, it will be handy to define the max-plus
linear operator with “kernel” Bm

τ as B̂m
τ [a](z) .=

Bm
τ (z, ·) ¯ a(·) for all a ∈ S−c. Further, one also

obtains analogous results (by similar proofs). In
particular, one has the following

Theorem 3.8. Let V ∈ S−c, and let a be its
semiconvex dual (with respect to ψ). Then V =
Sm

τ [V ] if and only if a(z) = Bm
τ (z, ·) ¯ a(·) ∀z ∈

IRn.

Corollary 3.9. Each value function V m is given
by V m(x) = ψ(x, ·) ¯ am(·) where each am is
the unique solution of am(y) = Bm

τ (y, ·) ¯ am(·)
∀y ∈ IRn.

4. DISCRETE TIME APPROXIMATION

The method developed here will not involve any
discretization over space nor any basis functions.
Of course this is obvious since otherwise one could
not avoid the curse-of-dimensionality. The dis-
cretization will be over time, where approximate µ
processes will be constant over the length of each
time-step.

We define the operator S̄τ on Gδ by

S̄τ [φ](x)= sup
w∈W

max
m∈M

[ τ∫
0

lm(ξm
t )− γ2

2
|wt|2 dt

+φ(ξm
τ )

]
(x)

= max
m∈M

Sm
τ [φ](x)

where ξm satisfies (2). Let

Bτ (y, z) .= max
m∈M

Bm
τ (y, z) =

⊕
m∈M

Bm
τ (y, z).

The corresponding max-plus linear operator is

B̂τ =
⊕

m∈M
B̂m

τ .

Lemma 4.1. For all z ∈ IRn, S̄τ [ψ(·, z)] ∈
S−(c+ητ). Further, S̄τ [ψ(·, z)](x) = ψ(x, ·) ¯
Bτ (·, z).

One has Sm
τ ≤ S̄τ ≤ S̃τ for all m ∈ M. With τ

acting as a time-discretization step-size, let

Dτ
∞ =

{
µ : [0,∞) →M| for each n ∈ N ∪ {0},
there exists mn ∈M such that

µ(t) = mn ∀ t ∈ [nτ, (n + 1)τ)
}

,

and for T = n̄τ with n̄ ∈ N define Dτ
T similarly

but with domain [0, T ) rather than [0,∞). Let
Mn̄ denote the outer product of M, n̄ times. Let
T = n̄τ , and define

¯̄S
τ

T [φ](x) = max
{mk}n̄−1

k=0∈Mn̄

{
n̄−1∏
k=0

Smk
τ

}
[φ](x)

where the
∏

indicates operator composition.

We will be approximating Ṽ by solving V = S̄τ [V ]

via its dual problem a = B̂τ [a] for small τ .
Consequently, we will need to show that there
exists a solution to V = S̄τ [V ], that the solution
is unique, and that it can be found by solving the
dual problem. We begin with existence.

Theorem 4.2. Let

V (x) .= lim
N→∞

¯̄S
τ

Nτ [0](x) (13)

for all x ∈ IRn where 0 here represents the zero-
function. Then, V satisfies

V = S̄τ [V ], V (0) = 0. (14)

Further, 0 ≤ V m ≤ V ≤ Ṽ for all m ∈ M, and
consequently, V ∈ Gδ.

Similar techniques to those used for V m and Ṽ
will prove uniqueness for (14) within Gδ.

Theorem 4.3. V is the unique solution of (14)
within the class Gδ for sufficiently small δ > 0.
Further, given any V ∈ Gδ, limN→∞ ¯̄S

τ

Nτ [V ](x) =
V (x) for all x ∈ IRn (uniformly on compact sets).



Henceforth, we let δ > 0 be sufficiently small such
that V m, Ṽ , V ∈ Gδ for all m ∈M.

Theorem 4.4. Let V ∈ S−c, and let a be its
semiconvex dual. Then V = S̄τ [V ] if and only if
a(y) = Bτ (y, ·)¯ a(¯) ∀y ∈ IRn.

Corollary 4.5. Value function V given by (13) is
in S−c, and has representation V (x) = ψ(x, ·) ¯
a(·) where a is the unique solution of a = B̂τ [a].

The following result on propagation of the semi-
convex dual will also come in handy.

Proposition 4.6. Let φ ∈ S−c with semiconvex
dual denoted by a. Define φ1 = S̄τ [φ]. Then
φ1 ∈ S−(c+ητ), and φ1(x) = ψ(x, ·) ¯ a1(·) where
a1(y) = Bτ (y, ·)¯ a(·) ∀y ∈ IRn.

The next result indicates that one may approxi-
mate Ṽ , the solution of V = S̃τ [V ], to as accurate
a level as one desires by solving V = S̄τ [V ] for
sufficiently small τ . Recall that if V = S̄τ [V ], then
it satisfies V = ¯̄S

τ

Nτ [V ] for all N > 0 (while Ṽ

satisfies V = S̃Nτ [V ]), and so this is essentially
equivalent to introducing a discrete-time µ ∈ Dτ

Nτ

approximation to the µ process in S̃Nτ .

Theorem 4.7. Given ε > 0 and R < ∞, there
exists τ > 0 such that

Ṽ (x)− ε ≤ V (x) ≤ Ṽ (x) ∀x ∈ BR(0).

5. ALGORITHM AND EXAMPLES

Due to space limitations, we cannot give the
steps in the actual algorithm that is generated
by the above theory. However, we note that at
each time step, one generates a set of quadratic
functions, where the coefficients in these functions
are obtained purely analytically. The approximate
solution can be obtained at any point by taking
the maximum of these quadratic functions. In the
absence of any pruning techniques, the number of
quadratic functions at iteration N grows like MN .
For large N , this is indeed a large number. There
exist means (such as pruning) for reducing this
growth, but we do not discuss them here. Never-
theless, for small values of M , we obtain a very
rapid solution of such nonlinear HJB PDEs, as
will be indicated in the example to follow. Further,
the computational cost growth in space dimension
n is limited to cubic growth. We emphasize that
the existence of an algorithm avoiding the curse-
of-dimensionality is significant regardless of the
practical issues.

A number of examples have so far been tested.
In these tests, the computational speeds were

very great. (Again, some practical issues involving
pruning and initialization are not discussed here
due to space limitations.) This is due to the fact
that M = #M was small. The algorithm as
described above was coded in MATLAB (with a
very simple pruning technique and initialization).
The quoted computational times were obtained
with a standard 2001 PC. The times correspond
to the time to compute V N

.= ¯̄S
τ

Nτ [0]. The
plots below require one to compute the value
function and/or gradients pointwise on planes in
the state space. These plotting computations are
not included in the quoted computational times.

Consider a four-dimensional example with con-
stituent Hamiltonians, Hm, whose Am are

A1 =


−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.5 0.1
0.0 −0.1 0.0 −1.5

 ,

A2 = (A1)T ,

A3 =


−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.6 −0.1
0.0 −0.05 0.1 −1.5

 .

The Dm and Σm were simply

D1 = D2 = D3 =


1.5 0.2 0.1 0.0
0.2 1.5 0.0 0.1
0.1 0.0 1.5 0.0
0.0 0.1 0.0 1.5

 ,

and

Σ1 = Σ2 = Σ3 =


0.2 −0.01 0.02 0.01
−0.01 0.2 0.0 0.0
0.02 0.0 0.25 0.0
0.01 0.0 0.0 0.25

 .

The results of this four-dimensional example ap-
pear in Figures 1–4. In this case, the results have
been plotted over the region of the affine plane
x3 = 3, x4 = −0.5 given by x1 ∈ [−10, 10]
and x2 ∈ [−10, 10]. The backsubstitution error
has been scaled by dividing by |x|2 + 10−5. The
computations required approximately 40 seconds.
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Fig. 1. Value function (4-D case)
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Fig. 2. Partial with respect to x1 (4-D case)
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Fig. 3. Partial with respect to x4 (4-D case)

−10
−5

0
5

10 −10
−5

0
5

10
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Fig. 4. Scaled backsubstitution error (4-D case)

In order to indicate that the form of HJB PDE so-
lutions obtained by this approach are not limited
to the type of shapes appearing in the previous ex-
ample, we include an additional partial derivative
plot from another example, and this is depicted
in Figure 5. There is not space here to give the
full details of the example, but we note that this
example includes constant and linear terms in the
Hm so as to yield a system where the behavior
changes when the state exceeds a certain bound.
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