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1. INTRODUCTION and Davison, 2002), where it was shown that GSHF
can be used to change the structure of the digraph of
Application of generalized sampled-data hold func- interconnected systems to simplify the control design
tions (GSHF) in control was first introduced by Cham-  problem, and conditions under which GSHF’s can re-
mas and Leondes (Chammas and Leondes, 1979). Theyit in a hierarchical discrete-time equivalent system,
advantages of using GSHF’s in control systems in- were obtained. It turns out that for a system with a
stead of conventional zero-order holds (ZOH) were hijerarchical structure, the decentralized control design
investigated by Kabamba (Kabamba, 1987). The ap-problem simplifies, since it reduces to a centralized

plication of sampling in decentralized control systems control design for each individual subsystem.
was studied inJ. Ozginer and Davison, 1985). and

the results obtained in (Aghdam and Davison, ¥99 The results presented here are a continuation of the
showed that GSHF controllers can significantly im- €arlier work started in (Aghdam and Davison, 2,002)’
prove the overall performance of certain classes OfWhICh studied the conditions under which GSHF’s can

decentralized systems. reduce alarge _decentralized c_on_trol_problem to sev_eral

smaller centralized ones by eliminating the interaction
The results discussed above were all concentrated Ohetween certain control agents. In order to cover a
performance improvement in control systems. A new set of plants larger than the one defined in (Aghdam
application of GSHF's was investigated in (Aghdam and Davison, 2002), the present development seeks to
minimize the &ects of the interconnections instead of
completely removing them.
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strength of sets of interconnections to obtain an “ap- give bases for the controllability subspaces of each
proximate” hierarchical structure—defined in (Aghdam input u;, where j € m (defined in (1b)). Then, by
and Davison, 2002). The existence of global minimiz- applying a GSHF to theg-th control input of the
ers is studied in Subsection 2.1 and guidelines for ansystem, one can design the associgtéld column of
optimal rearrangement of the control agents are intro- the discrete-time input matrix as a linear combination
duced in Subsection 2.2. Measures for interconnectionof the vectors defining the basis of the continuous-time
strength and the degree of “hierarchicalness” appearj-th controllability subspace.
also in Section 2. Section 3 presents numerical exam-
ples and Section 4 briefly discusses the importance ofProposition 1. If GSHF's are applied to (1), then the
the results obtained. resulting discrete-time equivalent system, which is
controllable and observable for almost all sampling
periods, can be written as:

2. MAIN RESULT m
X[k + 1] = Agx[K] + > by uj[K]
Consider the following strictly proper continuous-time j=1
decentralized LTI system witim control agents: yilKl = ¢ix[K], jem,
: U where each column of the discrete-time input matrix
X = Ax(O + Z bju; (1) (18)  canbe expressed as:
j=1

yi®) =cx(t), jem:=(L....m  (ib) by, = Weex )

wherex(t) € R" is the state vectom;(t) € R% and andy; € R" is defined by the particular GSHF used.

yj(t) € R" are the control input vector and output

vector of agent #respectively; and\, bj, andcj are  PROOF. From Lemma 1 in (Aghdam and Davison,
matrices of appropriate dimensions. Assume that (1) 199%), the matricesbq,, j € m, can be designed

is controllable and observable. within the controllable subspaces @&,0;), j € m,

or equivalently as a linear combination of the basis of
such subspaces. Since the columns of the controllabil-
ity grammiansi ., provide bases for such subspaces,
the matricedq, can be written as givenin (2). m

If the plant (1) is a large-scale interconnected system,
the design of its decentralized controllers can be a
demanding task. However, when certain conditions are
satisfied, GSHF's can modify its structure so that the
interactions between subsystems are eliminated or, at

least, reduced. Centralized control techniques can therDefinem distinct integerss, ...,i; € m. LetC; rep-
be applied to each subsystem to attain local control :

objectives. Thus_, the 993' now Is to determ!ne if and rows ofC. In order to reduce the notational burden and
how much the interactions _between ce_rtaln CO”“TOI ease understanding of the following developments,
agents can be reduced by using generalized sampling.\sider independently a given colunjirand a pre-
determined index; associated with it. Replace the
L _ _ notation ¢, with ¢ and keep in mind that, for each
2.1 Minimizing the strength of a set of interconnections - gice ofij, there is a uniquely defingd By rewriting

) » C; asCy, one can now define the partial discrete-time
]
In .(Aghda'.“ and Daw;on, 2002) conditions under controllability and observability grammians as:
which the interconnections between subsystems can

be completely removed using GSHF's were discussed.

resent the matrix consisting of thfg = {ig,..., 01}

[eS]

When these conditions are not satisfied, the question 2 _ AkY (C=pk

arises: is it possible to reduce the magnitude of certain Weo ; (CgAd) (CgAd) @)
interconnections by applying sampled-data hold func- o

tions? The motivation to this question is that systems W3, = Z (Agbdij)(Agbdij)' 4)
with sufficiently weak interconnections often have the =,

property that decentralized control can stitleetively
be applied, using centralized control design methods _ _ _ _
applied to the subsytems as illustrated in Example 1 Solving the interconnection weakening problem re-
of this paper. quires the definition of a quantitative measure regard-
. . ing the strength of the interconnections of the system.
For stable systems, the main results in (Aghdam and a¢ this point, the notions of Hankel-norm and observ-
Davison, 2002) can be rewritten in terms of observ- gpijiry and controllability grammians are very useful
ability and controllability grammians. To this end, pecayse of their explicit relationship. The Hankel-
one may note that the continuous-time controllability q-m of a stable system is given by the square root of
grammians. the maximum eigenvalue of the product of the observ-
' T eV ability and controllability grammians (Glover, 1984).
chj - fo (eA b,j)(eA b'i) dt Since the magnitude of an eigenvalue is always less

respectively.



Fhan or equal to the norm of the corresponding mgtrix, withCz =[¢ ... ¢ forj=2....m

it turns out that the Hankel-norm of a transfer matrix is ] .

less than or equal to the square root of the norm of the "€ €xistence of solutions to (8) fzolpws_f%om the
product of the associated grammians. This means thafact that the matrix-normWVq,;; (xi)II>,q = ¢, " are
the norm of the product of the grammians provides a guadratic functions and can be rewritten in the stan-
measure of the gain, or strength, of the transfer matrix. 9ard formx’Pg;,x with Pg;; square and symmetric.

One can then define a measure for the strength of a sef "erefore, they define a nonempty feasible set for any
of interconnections that links the set of inputsmto ~ ©i; > 0- The problem (8) can then be expressed as:

the set of outputs c m as: miny’ P v:.
)(i-E]R’(\/'j LiXi;
Soilti;) = IWao,Wae (i IIE, (5) P v (10)
where, from (2) and (4W e (xi;) is given by: ST = A
. wherePy; and Pz are positive semidefinite sym-
W2 (yi) = AWeoxi ) (A*Weoxi. " metric matrices that satisfy kM(qu) c ker(Pz;;) and
dg\tl; KZ:;)( dvveo II)( dvVeor |J) ker(\Ncqj)cker(P;*’il).
and|| - [[r denotes the Frobenius norm. Such a norm The optimization problem (10) falls into the terrain

is defined for a given matriX as|[X|[r = VTr(XX"), of quadratically constrained quadratic programming
where Tr() represents the trace operator. Then, in the (QQP) and the existence of its global solution has been

particular case when= ij ando = ¢ = {i,...,ij-1}, thoroughly studied (Mdr and Sorensen, 1983; Fortin
the interconnection strength is given by: and Wolkowicz, 2003).
Sz, (i) = Wai, (i IIE (6) In the case in whiclP;; is full rank andp;; is pos-
andWj (xi,) = WaoWaq (xi,). Hence, the problem itive, the opti_mizgtipn constraint. in (10) descripes a
is to find vectorsyi , j = 2, ... mthat solve: nonempty ellipsoid in t'hgij coordlpates and a unitary
) N sphere in the normalized coordinates. A basic opti-
X,T_'rllsf,ij(Xij)’ Xi € RE. (7)  mization result (Fraleigh and Beauregard, 1995) states
i

_ _ that the maximum and the minimum of a quadratic
The problem (7) has a bounded solution only if a function over the surface of the unitary sphere are

vectoryi; € R" exists such that &; / dyi; = 0 and given by the largest and the smallest eigenvalues of
®S7; (xi) 0 the ot_)je_:ctive function _mat_rix, resp_ectively. Theref_ore,
2’—11 = 2[2 AL AZK] the minimum of the objective function can be obtained
Pxi; = by computing the eigenvalues of the matrix equivalent
2 Py, to P;, in the normalized coordinates.
is positive_definite with each constant mati;, ~ In the case in whictPz; is not full rank, results
defined a7, = Wdo;AQchj- from operations research can be used to determine

the existence of a global minimizer. Accordingly, one

Given that the trivial solutiongi, = 0, € {2,...,m} must rewrite (8) in the standard form:

must be excluded to preserve controllability, it turns

out that the two conditions given above are equivalent Xﬂi{{‘n‘% i),
to those stated in (Aghdam and Davison, 2002). This S o (11)
implies that the strength of certain interconnections stz (i) =

cannot be minimized withoutfiecting other intercon- whereg; (vi,) = x{ Pz xi; andez ; (xi)) = x; Pz xij—
nections in the same column of the transfer function pi, are semi-convex because bd®h, and h; . are
o i

matrix. Nevertheless, it is possible to minimize the positive semidefinite. Their associated hessians,
influence of a set of interconnections while preserving

that of the others. This new problem can then be for- Qzi, = V27, (i) = 2Pz,
mulated as a constrained optimization problem given Qrj = Vzgoz*,ij()(ij) = 2Pz,
by: _ yield the condition:
i Se, (a): @® WQrw=0 = wQzw>0 (12)
st.S8z; (xij) = pijs which, when satisfied for anw # 0, ensures that a

global minimizer exists (Mdr, 1993). An equivalent

wherep;. € R* is a design parameteE*, =m-¢ and i -
! condition similar to

the constraint function is given by:

Sz, 0y) = Wi [ ©) rank| P7;, P7 | =n (13)
andWg, j, = Wao. Waq (xi). In analogy toC;and ~ appears in (Gander, 1981). Both (12) and (13) are
(3), Wqo. is given by too restrictive since they require that Ker() N

’ - ker@;,ij) = {0}, which implies that the discrete-time
—acY (C= Ak equivalent system is completely controllable from
W3,. = Z(cg*Ad) (CzAy) q y pletely

pry each input; (rank(quJ) = n) and that kelV4o;) N



kerWgq.) = {0}. The next theorem, also extracted 2.2 Optimal reordering of the control agents
from (Moré, 1993), provides more complex but less
conservative optimality conditions. The extent to which the sampled system will resem-
ble a hierarchical system depends on the numerical
Theorem1. (Moré, 1993)Let bz, R" = R and properties of the plant parameters and on the way the
O, R" — R be quadratic functions defined &A. control agents are ordered. Thus, the design proce-
Assume that the condition: dure must identify, among the! different orders of
the control agents, the most convenient one by first
min ¢z (vi;) <0< maxez; (xi)  (14)  defining a quantitative measure of “hierarchicalness”.
X es X < Such a quantitative metric will then be a function of
the possible orders of the control agents #(m),
where P(-) represents all the possible permutations
of its argument set. For instance, the possible orders
r for a 3-input system arél, 2,3}, {1,3,2}, {2,1,3},
{2,3,1}, {3,1,2}, and{3,2,1}. Each indexij,j € m

holds and thaW?pz; # 0. A vectoryj, is a global
minimizer of problem (11) if and only ipz ;, (xi;) = O
and there is a multiplie; € R such that the Kuhn-
Tucker condition

Vo, (i) + ;ljvwl_*,ij(/\’;h) -0 (15) takes the value of th¢-th element for each of these
ordered sets (for examplg, = 3,i, = 2, andiz = 1
is satisfied with for the order3,2,1}).
Vo7 (0i) + V207 (7)) (16) For a given order, define the degree of hierarchical-
AR A ness as: Sr )
positive semidefinite. ¥ = min 6 (18)
j=2,..., mSi?,ii()’eil),

The minimum ofez ; (vi,) is given by—p;,, which is WhereSfTii(XU_) an_dSﬁ’ii{Xii) are defined in (6) ar'1d ©)
negative by definition. Its maximum value is positive respectively/ = {iy,....ij1}, £ = m—¢, andy; . ij €
and unbounded:; therefore, (14) is satisfied. In turn, them, are the solutions to the minimization problem (8)
conditions (15) and (16) can be rewritten as follows: ~for each of the columns of the transfer function matrix.
. According to this metric, if a continuous-time system
(PZij + ’IJP?*,ii))Afii =0 (17a) has a perfectly hierarchical discrete-time equivalent,
P +/A11PZ*1- >0 (17b) its degr_ee of hierarchica_lness would ¥¢r) = oo,
! ! Otherwise, the large¥(r) is, the closer the discrete-
WCQJXH #0 (7c) time equivalent system is to a hierarchical structure.
Wo: xi; # 0, (17d) The definition (18) provides clear guidelines for a con-
: trol design procedure, whose first step should consist
where the last two inequalities must be imposed to of finding the maximal degree of hierarchicalness by
prevent loss of controllability and observability. Thus, solving the optimization problem:
ifa squFion to (17) exists, a global minimiz'grj fo (8) P = max (D). (19)
also exists such that no column vectwy is zeroed rep(m)
and such that the conditions of Theorems 1 and 2 in

(Aghdam and Davison, 2002) are not satisfied The best can then be obtained according to the choice

of the m — 1 constants;;. Different criteria can be
defined to choose the constants; for example, one can
H‘ind measures of strength of the interconnections un-
der the diagonal in each column of the transfer func-
tion matrix as if a ZOH was applied. These measures
can then define values of the associgtgdso as to
preserve the strength of the interconnections under the
Notice that weak interconnections are desirable when,main diagonal of the transfer function matrix. Many
for example, an already stable large-scale system doesther criteria can be proposed and the properties of the
not satisfy the required performance measures. If theplant as well as the control objective will determine
interconnections are strong, then each control agentwhich one is the most suitable.

would dfect the performance of its neighbors. In

contrast, if the interconnections are weak, each local

controller may not significantlyféect the operation of 3. NUMERICAL EXAMPLES

the other agents. The system can then be discretized ) ) )

with a set of GSHF’s that minimizes the strength of Example 1. Consider the continuous-time system rep-
the desired interconnections in order to isolate the résented by the following matrices:

subsystems; thus, centralized control techniques can -10 O

Remark 1. The norm operator is defined only for sta-
ble systems and therefore the measure of strengt
Sailxi;) is meaningful only for stable interconnec-
tions.

be applied to each control agent. This is possible A=l 2 -1-03|B- _i _01 o - 158
because discretization does ndiieat the stability of - e - _1 9 - _1 2

the plant. 01 -1



This system is stable and the roots of its characteristic 0.21982 — 0.3710z + 0.1536

polynomial are located &t1 + 0.5477i —1}. Assume 0u(2 = R 285302 + 27138 — 0.8607
that the settling time must be reduced to 3sec. This 0.00052 — 0.001% + 0.0009
can be achieved if the all the poles of the system are 0122 = B 285302 + 27138 — 0.8607
placed ats = —-1.5. To this end, one can minimize 0'055&2 B 0.1562+ 0.0503
S12(xi,) and place the system poles by means of cen- 01(2) = 85307 1 27135 — 0.8607
tralized control techniques applied to each individual - a2 - :
subsystem. a(?) = 0.193& - 0.3664 + 0.1733

. _ N 2% - 2.85302 + 2.713& - 0.8607
Let Wy, be the discrete-time controllability gram-

mian of the pair A,b;), when a ZOH is used to
sample its control channel. The control channel #2
is to be sampled using a GSHF so as to weaken the (2 _766342 + 123234 — 5.1337

Consider now the decentralized dynamic feedback:

interconnection berciaen. input #2 and output #1. A vi(d ~ F 010022 — 14990 + 09154 (20a)
solution to the optimization problem (8) with = ~
0.05sec andr, = [Wao,Wee, |l iS given by ys = (2 _ -9.8539%7 + 16.482&—7.1037, (20b)
[0_0277 00816 00528]. YQ(Z) 7 —-0.188672 — 1.806( + 1.4296
. - which was obtained through Kalman filter designs
s s s applied independently to the subsystegig(z) and

ii 022(2) to place their poles at = e 157, The poles of
3. 3 12 the overall discrete-time equivalent closed-loop sys-
u =, tem are given by0.4661 0.7077 + 0.2807i 0.8986

10 0.9173 + 0.031710.9526 0.9400 + 0.0111} and the
oo o (radiseg) 5 (radrsec time response to initial conditiong0) = [1 1 1]
S g appears in Fig. 3 (DT control), together with the re-

sponse of the open-loop system. Fig. 3 also shows

=" 3 J the response of the non-discretized system when con-
F° 3o |“- trolled with a continuous-time design (CT control)

. W which is equivalent to the previous one in the sense

> Cseey :u ase that the same weighting matrices were used for the

Kalman filters and that the subsystems’ poles were
Fig. 1. Example 1: Magnitude response for each inter- placed as = —1.5. Itis clear that the discrete-time de-
connection when the plant is sampled with ZOH centralized controllers (20a) reduce the settling time to
(dashed lines) and GSHF (solid lines). approximately 3sec while the continuous-time design
failed to achieve the same results.

é’ E’ 1 25
= = — Open loop
° L 0 z — DT control
3 50 5 100f TS~ A\ N 15 -~ CT control
=, o =, 0 . > SN
o) 5 a0 Sl ’2 — Open loop 0s
o 200 3 = DT control o
-3.14 o 3.14 -3.14 o 3.14 -- CT Contrc’l See-mtTT
S W (rad/seg) w (rad/sec s 2 4 6 s 10 0% 2 4 6 8 10
2 s @ (sec) (b) (s
° 12 12
g 2 1 — DT control 1 — DT control
= e = - - CT control - - CT control
\-&1 \-{(:1 0.8 0.8
S’ 200 ;’ L 06 o 06
400 > 0.4 = 0.4
e ﬂ) (r;lc?/sec) R | faE T — 02 R
0 = 0 ==
. . -0.2 -0.2
Fig. 2. Example 1: Phase response for each intercon- T 0 s @ s
nection when the plant is sampled with ZOH
(dashed lines) and GSHF's (solid lines). Fig. 3. Example 1: (a) output response in control

agent #1; (b) output response in control agent #2;

The frequency response of the resulting discrete-time  (€) control signal in control agent #1; (d) control
model appears in Figs. 1 and 2, which show that the  Signal in control agent #2.

GSHF reduces the magnitude of the response of the

transfer functiong;»(2) by at least 25dB compared

to the ZOH. The transfer functions of the sampled Example 2. Consider a system with the following ma-
system are given by: trices:



22 0 0 4. CONCLUSIONS
-1-4 0 -1
A= 0 1-20 This paper provides conditions under which the inter-
1 2 0 -3 connections of a large-scale system can be weakened
1100 40 20 S0 as to obtain a discrete-time model with a structure
B=|1040|Cc=|0-2111 that approaches a hierarchical one. An application to
0 00-1 10 10 inteconnection weakening is presented with simula-

tions that show that such a procedure can simplify
. . L the decentralized control design of stable systems. In
The solution to (19) for this plant is given by the general, the results show that GSHF’'s can be used

reordering sequenca = 3, i = 1, andis = 2. simplify the design of decentralized controllers for
The associated maximum degree of hierarchicalness

is ¥(r) = 5.9470x 10P and the minimizers are given multivariable systems.
by y1 = [0.0087 00488 00901 -0.0269] and

x2 =[0.4570 00068 04700 01819]. REFERENCES
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