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Abstract: Exponential polynomials arising in transfer functions of chemical
processes with recycle and time-delay preclude the use of standar control technics
designed for free-delay systems. In this work a simple and effective methodology
to derive an approximate discrete-time model free of delay of a continuous time-
delayed systems describing recycle and dead-time processes is proposed. The
method is based on the discretization of a sampled version of the time-delay term
in the original continuous model. Copyright c° 2005 IFAC
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1. INTRODUCTION

Recycle and time-delay systems are founded com-
monly in chemical processes. On the one hand,
recycle systems enable the energy and matter
to be recovered in an industrial process. On the
other hand, transport delays are intrinsic feature
of chemical plants either with or without recycle.
Thus, to obtain realistic dynamic behavior of a
simulated chemical process, a nonminimum-phase
element should be included in the loop, prefer-
ably time-delay (Shynskey, 2002). Moreover, typ-
ical models of many interconnected reactor and
separation units include both recycle and time-
delay.

1 Partially Supported by CONACyT-México under Grant
42093.

The design of the control system for process with
recycle and dead-time presents some specific dif-
ficulties, because neglecting the effect of the recy-
cle and dead-time leads to unsatisfactory perfor-
mance and in some cases instabilities may appear
in the closed-loop response. Recycle and dead-
time systems leads, in general, to transfer func-
tions with quasipolynomials including transcen-
dental exponential terms in both the denominator
and the numerator, and consequently the factor-
ization into rational transfer function and pure
delay is not possible. These denominator dead-
time induced terms preclude the use of standard
controller design techniques as the mathematical
methods employed by these techniques require
transfer functions with rational denominators.
Model approximation has been proposed to re-
move the exponential term from the denominator,



such as the method of moments (Papadourakis
et al., 1989) and Pade approximations (Malek-
Zavarei and Jamshidi, 1987).

Several control techniques have been proposed to
control both recycle and dead-time processes. To
improve the performance of time-delay systems,
special control techniques have been developed,
such as the Smith predictor, (Smith, 1957) and in-
ternal model control (Morari and Zafiriou, 1989).
All of them provide time-delay compensation
based on process dynamic models.

In this work, we propose a quite simple methodol-
ogy to approximate models of systems with recy-
cle and dead-time. The key of the methodology is
to introduce a discrete-time model with a sampled
virtual input dead-time at the state by a zero
order or a triangular hold, which can capture
the dynamics of the continuous-time model. The
main advantage of the proposed approximation
methodology is that a discrete-time model free of
time delay is obtained. Then, the control design
based on the approximate discrete-time model can
be addressed with different compensator designs,
such as simple PID controllers and more sophisti-
cated model-based controllers.

The paper is organized as follows. In Section 2,
we present a certain class of time-delay systems,
which will be used to represent continuous-time
models of both processes with dead-time and
recycle. In Section 3 the approximate discrete-
time model is derived. In Section 4, an example
taken from the chemical-process control literature
with potential application in chemical processes
is used to shown the validation of the proposed
approximation and the closed-loop behavior of
control designs based on the approximate discrete-
time models. Finally, conclusions are carried out
in Section 5.

2. A CLASS OF TIME-DELAY SYSTEMS

In this section, we present the class of time de-
lay systems that involve time delays at the in-
put signal and at the state. For typical recycle
processes, simple block diagram manipulations re-
sult in transfer functions that contain denomina-
tor dead-time terms. Thus, recycle processes with
time delay in both forward and recycle paths can
be considered within this class of invariant time
delay systems as shown below.

Consider the following class of linear time-delay
systems:

ẋ(t) = Ax(t) +A1x(t− h) +Bu(t− τ)
y(t) = Cx(t)
x(ϕ) = φ(ϕ), ϕ ∈ [−h, 0]

(1)

where x ∈ Rn is the state vector, u ∈ R is the
input, y ∈ R is the output, h ≥ 0 is the time-

delay associated to the state, τ ≥ 0 is the time-
delay associated to the input, φ(ϕ) is a continuous
function of initial conditions with −h ≤ ϕ ≤ 0.
Finally, A, A1 ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n
are matrices and vectors of systems parameters.

For simplicity in the presentation, and without
losing generality, we will consider the SISO case
systems, taking into account time delays in the
state and input. However, the extension of this
method to the multivariable case is straightfor-
ward. Taking the Laplace transform of the system
(1) leads to the following expression:

sX(s) =
¡
A+A1e

−hs¢X(s) +Be−τsU(s)
Y (s) = CX(s)

which can be re-written as follows:
Y (s)

U(s)
= C

£
sI − ¡A+A1e

−hs¢¤−1Be−τs (2)

The characteristic equation of the above equation
is described by a quasipolynomial of the form
det

¡
sI −A−A1e

−hs¢ = 0. The time-delay as-
sociated with the state h leads to an equation
with an infinite number of solutions. It is noticed
that the class of systems described by (1) can be
represented by differential-difference equations.

Remark 2.1. From a theoretical point of view the
stability of linear time invariant systems with time
delays at the input signal and the state has been
widely studied producing several methodologies to
evaluate their stability properties. In particular
in Mori and Kokame (Mori and Kokame, 1989)
and Wang (Wang, 1992), the stability properties
of systems described by (1) are analyzed leading
to sufficient conditions based on the value of the
time delays.

2.1 Recycle Systems as Time-Delay Systems

Consider the following recycle system,

Y (s) =
£
Gf (s) Gf (s)Gr(s)

¤ ∙U(s)
Y (s)

¸
(3)

where Gf (s) =
Nf (s)e

−ns

Df (s)
and Gr(s) =

Nr(s)e
−hs

Dr(s)
,

with Gf (s) and Gr(s) are the transfer function of
the forward and recycle path respectively. N∗(s)
andD∗(s) are polynomials in the Laplace complex
variable s, h ≥ 0 is the time-delay of the recycle
transfer function Gr(s) and n ≥ 0 is the time-
delay of the forward transfer function Gf (s). U(s)
and Y (s) are the Laplace transforms of the input
and output signals, respectively.

Simple block diagram manipulations give the fol-
lowing open-loop transfer function for the entire
plant,

Gt(s) =
Dr(s)Nf (s)e

−ns

Df (s)Dr(s)−Nf (s)Nr(s)e−hse−ns
(4)
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Fig. 1. General scheme of approximation.

The structure is the same as that in Eq. (2)
and exponential terms appears explicitly in the
denominator and numerator. Note that the corre-
sponding characteristic equation is described by a
quasipolynomial equation with a state time delay
dependence.

3. APPROXIMATE DISCRETE-TIME MODEL

The main purpose of this section is to propose
a simple and effective methodology to obtain an
approximate discrete time representation of the
original continuous time delay systems described
by (1).

Let us obtain a sampled time-delay model. We
consider the dead-time associated to the state as a
second (virtual) input to the system. Introducing
a zero order hold (ZOH) to the virtual input, as
shown in Figure 1, we have the following partially
sampled system:

ẋr(t) = Axr(t) +A1ξ(tk − h) +Bu(t− τ)
y(t) = Cxr(t)

x(t0 − h) = φ(ϕ)
(5)

where ξ(tk − h) is a piecewise constant function
which corresponds to the virtual (sampled) input
for system (1).

Theorem 3.1. Consider the system (1) and the
partially sampled system (5) (see Figure 1). Under
this sampling condition, the solution xr(t) of
system (5) is an approximation of the solution x(t)
of system (1) with respect to the sampling period
T .

Proof. Consider the solution of system (1) for
t0 ≤ t ≤ h and the initial condition ξ(t − h).
Notice that for t0 ≤ t ≤ h, the delayed state
x(t − h) is determined by the initial condition
function and then, it is possible to consider the
following systems for t0 ≤ t ≤ h:

ẋ(t) = Ax(t) +A1ξ(t− h) +Bu(t− τ)
ẋr(t) = Axr(t) +A1ξ(tk − h) +Bu(t− τ).

Defining the error signal as ex(t) = x(t) − xr(t),
the following dynamical system is obtained:

ėx(t) = Aex(t) +A1γ(t) (6)

where γ(t) is a function defined as

γ(t) = ξ(t− h)− ξ(tk − h),

γ(t) correspond to the error induced by the con-
sideration of the ZOH on the delayed state feed-
back loop of system (1). In order to show explicitly
the order of approximation of system (5) with
respect to (1) consider also the solution of system
(6) on the segment t0 ≤ t ≤ h, which is given by

ex(t) = Φ(t, t0)ex(t0) +

Z h

t0

Φ(t, s)A1γ(s)ds

considering the effect of the ZOH and the fact
that the initial condition is the same for systems
(1) and (5) it follows that

ex(t0) = ξ(t0)− ξr(t0) = 0

then,

ex(t) =

Z h

t0

Φ(t, s)A1γ(s)ds (7)

Since γ(t) = ξ(t− h)− ξ(tk − h) is a consequence
of the ZOH, then γ(t) is a function of order one
(with respect to the sampling period T ), this is
γ(t) = O(T ). The equation (7) can be seen as
an integration error between functions ξ(t − h)
and ξ(tk−h), therefore, considering a rectangular
(by the effect of the ZOH) numerical integration
method (quadrature formula), (Mathews, 1992)
it follows that the integral (7) represents also a
function of order one. To conclude the proof it is
suffice to consider the step method (Driver, 1977)
for the solution of system (6) over the segments
tk ≤ t ≤ tk + h.

From the above developments it can be seen that
the error ex(t) can be minimized by considering
a sampling and hold device of greater order, for
example, a first order hold, that correspond in
terms of numerical integration to the use of a
trapezoidal method. On the other hand, it is
important to note that the error of approximation
ex(t) depends directly over the sampling period T .
Therefore, increasing the frequency T → 0, will
also improve the approximation.

Now, let us get the discrete-time model. Consider
the solution xr(t) of the (partially sampled) sys-
tem (5), over the interval t0 ≤ t ≤ h, with the
sampled initial condition ξ(tk − h):

xr(t) = Φ(t, t0)x(t0) +

Z h

t0

Φ(t, s)A1ξ(tk − h)ds

+

Z h

t0

Φ(t, s)Bu(s− τ)ds.

ξ(tk − h) and u(t − τ) can be viewed as external
inputs. By considering a ZOH over the input u(t−
τ) it is possible to write
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Fig. 2. Approximate discrete time system.

xr(tk+1) = Φ(tk+1, tk)x(tk) +

Z tk+1

tk

Φ(tk+1, s)ds×
× [A1ξ(tk − h) +Bu(tk − τ)]

where Φ(tk+1, tk) = e(tk+1−tk)A = eTA.

Proposition 3.2. An approximate discrete-time model
for the continuous-time system (1) is given by

xk+1 = Āxk + Ā1x(tk − h) + B̄u(tk − τ)

with

Ā = Φ(tk+1, tk), Ā1 =
Z tk+1

tk

Φ(tk+1, s)dsA1

B̄ =

Z tk+1

tk

Φ(tk+1, s)dsB

Proof. From the above developments and from
Theorem 3.1 we have that xr(t) is an approxi-
mation for x(t), then for t0 ≤ t ≤ h, it can be
obtained the following approximate discrete-time
system

xk+1 = Āxk + Ā1ξ(tk − h) + B̄u(tk − τ) (8)

applying the above developments over the seg-
ments tk ≤ t ≤ tk + h, then it follows that the
initial condition ξ(tk−h) are equal to the delayed
state x(tk−h) obtained on the precedent segment
of time. This concludes the proof.

It is noticed, considering that the time delays h
and τ of system (1) are multiple of the sampling
period T , this is τ = m1T and h = m2T , (com-
mensurable delays) system (8) can be depicted as
in Figure 2.

Now let us obtain the discrete-time model of Re-
cycle Systems. As stated above, while the trans-
fer functions for the recycle system may be con-
structed from the individual linear transfer func-
tions for each of the subunits comprising the
plant, the resultant overall plant transfer function
will often contain denominator dead-time induced
terms. It is therefore necessary to simplify these
models before they can be used for control analysis
and control design purposes in a standard sense.
By exploiting the transfer function of the overall
recycle systems (4) we have the following result.

Proposition 3.3. An approximate discrete time
model for the continuous time recycle system (3)
is given by

Y (z) =
£
Gf (z) Gfr(z)

¤ ∙U(z)
Y (z)

¸
, (9)

where Gf (z) = (1 − z−1)Z(Gf (s)
s ) and Gfr(z) =

(1 − z−1)Z(Gfr(s)
s ), i.e., Gf (z) and Gfr(z) rep-

resent the z transform of Gf (s) and Gf (s)Gr(s)
respectively, considering a ZOH device.

Proof. The proof is direct from the results ob-
tained in the previous section, considering the
fictitious (two inputs) system

Y (s) =
£
Gf (s) Gf (s)Gr(s)

¤ ∙ U(s)
U1(s)

¸
and the corresponding discrete-time system

Y (z) =
£
Gf (z) Gfr(z)

¤ ∙ U(z)
U1(z)

¸
whereGf (z) andGfr(z) represent the z transform
of Gf (z) and Gf (s)Gr(s), respectively, consider-
ing a ZOH at the inputs.

From (9), the global transfer function for the ap-
proximate discrete-time model of recycle systems
with dead-time can be obtained as

Gt(z) =
Dfr(z)Nf (z)

Df (z)Dfr(z)−Df (z)Nfr(z)

with Nf (z), Nfr(z),Df (z) andDfr(z) are polyno-
mials in z such that Gf (z) =

Nf (z)
Df (z)

and Gfr(z) =
Nfr(z)
Dfr(z)

.

Once the transfer function of the approximate
discrete model Gt(z) = R(z)/W (z) has been
computed, a feedback control design based on the
approximate discrete time model can be addressed
with different compensator designs, such as simple
PI controllers, standard polynomial approaches,
and more sophisticated model-based controllers.
This will be illustrated in the following section
with an example.

4. EXAMPLE

A case study consisting of a chemical engineering
prototype recycle system with dead-time in both
the forward and recycle path, will be used to
demonstrate the steps of the methodology and the
closed-loop performance of a discrete time control
design based on a polynomial approach (del Muro-
Cuellar and Alvarez-Ramirez, 2003).

We have taken a recycle system and consisting of
two units: Gf (s) in the forward path and Gr(s) in



the recycle path. Each unit is a time-delay linear
system with the following transfer functions:

Gf (s) =
e−0.4s

s+ 1
, Gr(s) =

e−0.2s

s+ 1

Then, the description of the system is given by

Y (s) =
£
Gf (s) Gf (s)Gr(s)

¤ ∙U(s)
Y (s)

¸
(10)

=

∙
e−0.4s

s+ 1

e−0.6s

(s+ 1)
2

¸ ∙
U(s)
Y (s)

¸
or equivalently,

Y (s)

U(s)
=

(s+ 1)e−0.4s

(s+ 1)
2 − e−0.2s

where Y (s) is the output and U(s) is the input.

Let us consider the fictitious (two inputs) system

Y (s) =

∙
e−0.4s

s+ 1

e−0.6s

(s+ 1)2

¸ ∙
U(s)
U1(s)

¸
The corresponding discrete system with a ZOH at
the inputs and a sampling period T = 0.2, is given
by,

Y (z) =

∙
0.183

z3 − 0.818z2
0.01752z + 0.01534

z5 − 1.637z4 + 0.670z3
¸

×
∙
U(z)
U1(z)

¸
The above system is a discrete-time approxima-
tion of the continuous system (10). By considering
U1(z) = Y (z) we get the approximate discrete-
time model for system (10), based on a ZOH,

Y (z) =

∙
0.183

z3 − 0.818z2
0.0175z + 0.0153

z5 − 1.637z4 + 0.670z3
¸

×
∙
U(z)
Y (z)

¸
The accuracy of the approximation can be im-
proved by using a triangular hold (TH) at the
input U1(z) (with a ZOH at the input U(z)).
Following the procedure as above we get,

Y (z) =∙
0.183

z3 − 0.8187z2
0.0060z2 + 0.0218z + 0.0049

z5 − 1.637z4 + 0.6703z3
¸

×
∙
U(z)
Y (z)

¸
(11)

We can use the approximate discrete-time model
based on the triangular hold (11) in order to
design a discrete controller to the system (10).

The transfer function (11) can be re-written as,

Y (z)

u(z)
=

B(z)

A(z)
(12)

with
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Fig. 3. Output following a step unit input.

B(z) = 0.1813z3 − 0.2968z2 + 0.1215z
A(z) = z6 − 2.456z5 + 2.011z4 − 0.5548z3

− 0.0169z2 + 0.0129z + 0.00404

It can be seen from (12), that the discrete-time
model has a pole in z = −1. Then, if the dis-
crete model is adequate, a simple proportional
controller can follows step inputs. This property is
illustrated in Figure 3 on the continuous system,
with the control input u(kT ) = 1.2[v(kT )−y(kT )]
and v(kT ) = 1.

Based on the approximate discrete-time model
we design a pole-placement discrete controller
(del Muro-Cuellar and Alvarez-Ramirez, 2003),
in order to shown the potential applications of
the approximation methodology for control design
purposes. This methodology provides a two degree
of freedom controller that allows to follow step
reference inputs and to reject step disturbances
at the input.

The discrete-time controller has the following

structure: U(z) =
h
R(z)
S(z)Yref (z)− R(z)

S(z)Y (z)
i
, where

Yref (z) is the reference command and R(z), T (z)
and S(z) are polynomials in the complex vari-
able z. This control structure is equivalent to
an estimated (complete) state feedback procedure
endowed with integral action.

The characteristic polynomial D(z) induced by
the controller is

D(z) = A(z)S(z) +B(z)R(z) (13)

In order to obtain the controller, the character-
istic polynomial D(z) must be defined. To reject
external (step) loads, the polynomial S(z) should
contain the factor (z−1), i.e., S(z) = (z−1)S0(z).
In order to obtain proper transfer functions R(z)

S(z)

and T (z)
S(z) and a unique solution to the equation

(13), the degree of D(z) must be 2n, with n the
order of Gt(z).
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Fig. 5. Control input u(t) for example 1.

From the approximate discrete-time model (12)
we can get the following discrete controller:

T (z) = 0.6827z6 − 2.4576z5 + 3.6864z4 − 2.9491z3
+ 1.3271z2 − 0.3185z + 0.0319

R(z) = −2.1112z6 + 10.0611z5 − 19.0533z4
+ 18.4915z3 − 9.7678z2 + 2.6862z − 0.3037

S(z) = z6 − 4.7440z5 + 10.0977z4 − 12.2422z3
+ 8.7128z2 − 3.3621z + 0.5377

This discrete-time controller places all the closed-
loop poles at z = 0.6. Figure 4 shows the per-
formance of the closed-loop system under a unit
step input and a step disturbance (20%) applied
at t = 10 sec. In a short-time scale, 5 s, the system
follows the step input and rejects the step input
disturbance. Figure 5 shows the discrete control
input u(t), which is acceptable for practical im-
plementation purposes.

5. CONCLUSIONS

We have proposed a model approximation method-
ology with applications to dead-time and recycle
systems. Recycle processes with time delay in

both forward and recycle paths can be consid-
ered within a general class of invariant systems
involving time delays at the input signal and at
the state. By means of either a zero order or a
triangular hold on the time-delay at the state we
have derived a sampled time-delay model which
is used to obtain an approximate discrete-time
model free of dead-time of an original time-delay
continuous model. Using the presented method,
we can choose arbitrarily a suitable approxima-
tion of a delay element for a desirable design.
Although the suggested approach is restricted to
the class of recycle systems described here, it can
be applied to a wide class of linear systems in-
cluding non-minimum phase systems. Numerical
simulations on a recycle system with dead-time in
both the forward and direct paths show both the
effectiveness of the proposed model approximation
methodology and the good closed-loop behavior
of control designs based on approximate discrete-
time plant model.
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