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1. INTRODUCTION

Data security has been an issue of increasing
importance in communications as the Internet
and personal communication systems are being
made accessible worldwide. On the other hand,
numerous efforts have been made to use chaos
for enhancing some features of communication
systems. For this purpose, different approaches
for chaos synchronization have been proposed (see
e.g. Pecora and Carroll, 1990; Wu and Chua,
1993; Special Tssue on Chaos, 1997; 2000; Chen
and Dong, 1998; Cruz and Nijmeijer, 1999; 2000;
Special Tssue, 2000; Sira-Ramirez and Cruz, 2001;
Aguilar and Cruz, 2002; Lépez and Cruz, 2004).
The aim of this work is to illustrate a method for
synchronizing chaotic oscillators. The objective
is achieved by using the model-matching prob-
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lem from nonlinear control theory (Di Benedetto
and Grizzle, 1994; Tsidori, 1995). This approach
presents the advantage that is systematic and
useful to synchronize identical and nonidentical
chaotic oscillators, further it uses unidirectional
coupling, that let the coupling signal uses less
transmission channels. Moreover, this approach
makes that chaos synchronization has applications
on some communication schemes. The attention
is at first focused on chaos synchronization and fi-
nally, we illustrate the potential application to pri-
vate/secure communication using different chaotic
communication schemes.

2. PROBLEM FORMULATION

Consider a dynamical system described by

&= [(x)+g(@)u,
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{ y=nh(z), )
where the state x(f) € R", the input w () €
R, and the output y(¢) € R, being f(z) and



¢ (z) smooth and analytical functions. In addition,
consider another dynamical system described by

Ty = fu(Tm M A(Tm) Un,
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where the state z s (£) € R"¥, the input uyy (¢) €
R, and the output yy (t) € R. fy(xpy) and
gum (1) are smooth and analytical functions. We
assume that z° is an equilibrium point of system
(1), ie., f(z°) = 0. Similarly, x5, is an equilib-
rium point of system (2). Assume that dynamical
systems (1) and (2) under certain conditions have
chaotic behavior. Then, the chaotic oscillator (1)
synchronizes with the chaotic oscillator (2), if

Tim [y () — s ()] = 0, 3)

no matter which initial conditions z(0) and
2 (0) have, and for suitable input signals u (t)
and wuy (¢). Then, output synchronization
problem between chaotic oscillators (1) and (2) is
considered. In the next section we describe how to
satisfy condition (3) from the perspective of the
model-matching problem from nonlinear control
theory.

3. MODEL-MATCHING PROBLEM

Now, consider the chaotic oscillators (1) and (2)
like a plant P and model M, respectively. We
want to design a feedback control law u(t) for
P which, irrespectively of the initial states of P
and M, makes the output y () asymptotically
converges to the output ¥ (£) produced by M
under an arbitrary input ;s (). This problem is
the well-known model-matching problem (MMP)
from nonlinear control theory (Di Benedetto and
Grizzle, 1994; Isidori, 1995). In this work, we
adopt the following solution: the MMP is reduced
into a problem of decoupling the output of a
suitable auxiliary system from the input s (£) to
the model M. This auxiliary system is defined as
follows

. { tp = fep(zg)+ g (xp)u+ gy (Tp) un,
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with state zp = (z,25)" € R™™ inputs w (t)
and uyy (t), and
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The control objective of the model-matching prob-
lem is contained in the following definition.

Definition 1 (Model-matching problem, MMP):
Given the plant P and the model M around their
respective equilibrium points x° and x5, and a

point x3,, the MMP consists in finding u(t) € R
for system E such that, the output of the auziliary
system F (fedback by v (%)), yg (t) — 0 as t — oo.

In the sequel the MMP will be treated in terms of
a relative degree associated with the outputs y (t)

and Y (%).

Definition 2 (Relative degree [Isidori, 1995]):
The single-input single-oulput nonlinear oscillator
(1), is said to have relative degree r at a point
z° if

(1) LyLkn(z) =0
for all = in a neighborhood of z° and k <7 — 1.

2. Lyl 'h(2z°) #0.
In Definition 2, Lyh(x)= 22 f (v) and Llkh(z) =

k
ﬁ%@) g (z). A similar definition can be given
for the relative degree of model (2), rj; near z3,.
Suppose that the output y () of P and the output
yup (t) of M have a finite relative degree r and
731, respectively. It is well known that the MMP
is locally solvable if, and only if (Isidori, 1995),

7 <7ry. (5)

Now, we show the representation of the auxil-
iary system F Eq. (4) in a different coordinate
frame. In this paper, we restrict our results to
fully linearizable plants P, i.e., 7 = n. From the
definition of 7 and 7575 A (), ... 7L}“lh (z), and
ot (Zar) - ,L};th (xp), are a set of inde-
pendent functions from P and M, and can be
chosen as new coordinates §;(xz) = L;flh(x)
and &y (wyr) = LY, hoar (war) with i = 1, m,
around z° and x;, respectively. Let us now con-

sider the auxiliary system F and the new coordi-
nates (Isidori, 1995):

(C(xE)va) :¢(xE) :¢(xva)7

where ((zp)=((; (28) ..., C, (wp))" and ¢, (zp)
=L e (vp) = & (x) =& (wn) i =1,...,n.

Thus, the closed-loop auxiliary system, using the
following control law

1
U =—FT""--
LyLy h(x)

+ Los L, s () ) (6)

(v — L¥h(x) + L} har (zu)

takes the form
Q = Ci+17
C'n, =V =—C Cl — .. —Cp—1 C'nm
Tar = far (@ar) + gu (Tar) ung,
ye = (- (7)

1=1,...,n—1,

From (7) we identify two subsystems:



(1) The subsystem described by

Ty = [ (@mr) + gu (Tar) wnrs

which represents the dynamics of M, and
(2) The subsystem described by

¢=4%¢
with
0 1 0 0
0 0 1 0
At= o ’
o o0 o0 --- 1

—C —C —C2 - —Cp—1

which represents the dynamics of yg (t). The
model M is stable by assumption and if we
chose the control law u (t) so that the eigen-
values of A* have real part negative, then the
closed-loop system will be exponentially sta-
ble and the output synchronization con-
dition (3) holds.

Since yg (t) = ¢, (1) =& (x)— &y (zar) — O, no-
tice that £ (z) and &, (z ) are diffeomorphisms.
So, if P and M are identical chaotic oscillators,
&(x) — &,y (zpy) and, if the mappings have the
same structure and tends to be equals, then the ar-
guments too, i.e., z(t) — zp (£). Moreover, from
the control law (6) we can see that, u (t) — wyy (%),
to decouple uy (£) from E. Thus, for identical
chaotic oscillators, complete synchronization
is achieved. For nonidentical chaotic oscillators
only output synchronization is guarantied.

4. CHAOS SYNCHRONIZATION

In this section, we make use of the previous
material to synchronize identical and nonidenti-
cal chaotic oscillators. Figure 1 shows the block
diagram of chaos synchronization using model-
matching approach. Controller C has like input
signals to z (t), z (t), and v (). Tt has like out-
put signal to u (¢) that is the input signal of the
plant, and e(t) = yg (t) = y (t) — yu () is the
oulput synchronization error between the output
signals of P and M. Rossler system and Lorenz
system are used in order to illustrate chaos syn-
chronization, although the proposed approach can
be applied to any chaotic oscillator that holds (5)
and for all plant P with a strong relative degree.

4.1 Complete synchronization

Consider the Rossler system given by (Rossler,
1976):

T =— (.1172 + .’,173) s (8)
j”? =z + ax27

Zg=a+zg (T — ).

With the parameter values @ = 0.2 and p = 7, the
Réssler system (8) exhibits chaotic dynamics. We
can write it in the form (1) by means of adding
a control law u (t) into some equation, we choose
rewrite it as follows

.’iﬁ'l —T9 — T3 0
T | = T1 + Qxo + 1 0 |,
P: . ~
T3 a+z3 (T — p) 1
Y = T2.

(9)
The system (9) will be called the plant P. The
relative degree of P is » = 3. Let us propose a
reference model M for P, using another Rossler
system writing it in the form (2) and taking the
same relative degree 7y = 3. Notice that, both
systems have the same relative degree, 7 = 7y,
that is, (5) holds, and there exists solution to the
MMP, so we can achieve output synchronization

between systems (9) and (10), i.e., the condition
(3) is satisfied. So, we have

Tan —Tp2 — T3 0
M Taz | = Tar1 + QT a2 +10 Jun,
) \ &3 a+xps Ty — ) 1
Ym = Tp2-

(10)
The same parameter values for P and M are
considered. To solve the MMP, and with this,
the original output synchronization problem, we
need take an auxiliary system (4) and thus we re-
duce the problem described before to disturbance
decoupling problem. Then we take s () like a
“disturbance” signal and we seek the control law
(6) for system F that is given by

u=—v+ <a2 - 1) (x1 — zan1)

+8 (@ = 2) (w2 — warz) + @ (@5 — wa13)
+x3 (w1 — p) —ap3 (Tarn — p) Fup. (11)

The auxiliary system (4), after a change of
coordinates: (; = T2 — Ty, (4 = T1 —
Tyn+ a(xe —wy2), and (3 = @z —zp1) +

&2 — ]) (.1172 — .’,UMQ)—(.’,I’J?, — .’I,'Mg) s takes the form
(7), with v = —C¢ = —co{; — ¢1 {3 — ¢2 (5, and
C = ( 2727 9 ) Some simulations were done. The
initial conditions z (0) and z; (0) were (1,1,1)

Fig. 1. Block diagram of chaos synchronization
using model-matching approach.
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Fig. 2. Rossler-Rossler synchronization. Solid line
Ym = Tz, dashed line y = x4 (top of figure).
Error signal ¢ = yp = y — yy (middle of
figure). Output synchronization between z ys9
and 2y (bottom of figure). Control u takes
action when ¢ = 20 sec.

and (2,—2,2), respectively. Figure 2 shows the
output of the plant z2 () following the output of
the model 2 () (top of figure), the error signal
e(t) = yp (t) = y(t) — yu (¢) (middle of figure),
and the typical phase plot confirming synchroniza-
tion between the outputs y (t) and ¥y (t) (bottom
of figure). The control u () takes action after 20
seconds.

4.2 Output synchronization

Now consider the coupling between two noniden-
tical chaotic oscillators as P and M for instance,
a Lorenz system (Lorenz, 1963) like a model with

relative degree ry; = 3 (for all x; such that
Tarl 75 0):
T o (a2 — Ta) 0
M Tz | =P — e — Tann@ars |4+| O Juar,
) \Zwms Typ1Tym2 — 0T 3 1
YM = TMm1-

(12)
Let us to consider again the same plant described

by (9). Thus, the control law u(¢) for output
synchronization between (9) and (12) is given by

u= —{U— {(&2—])x1+a<a2—2)x2—ax3
—& — z3(x; — Y] +0olo(0+F—2p3) @ p2—Tar1)
— (o4 1) (Pzarn — T2 — TaiTars)

—x 1 (Tannare — bz ps)] —oxpnun ). (13)

The results are exemplified by numerical simula-
tions. Initial conditions for P and M are z (0) =
(3,1,1) and z; (0) = (1,1.5,0.1), respectively.
Parameter values are 0 = 10, # = 28, b = 8/3,
a = 0.2, and p¢ = 7. Figure 3 shows Lorenz-
Réssler output synchronization: a) ya = 1, b)
ZTg versus T, €) ¥ = Zg, and d) error signal
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Fig. 3. Lorenz-Réssler output synchronization. a)
YM = Tpr1, D) To VErsus Ty, €) Y = T2, and
d) error signal ¢ = yg = y — yu. Control
takes action after 25 sec.

e = yg =y — yp. Control law takes action after
25 sec.

Remark 1. In this case, unlike the previous one,
synchronization between the outputs of both sys-
tems was only obtained. No other state of the
plant synchronizes with those of the model.

5. PRIVATE COMMUNICATION

This section does not pretend to propose secure
chaos-based communication systems. It tries to
illustrate the flexibility of the model-matching ap-
proach for chaotic communication. Nevertheless,
certain security properties are found.

5.1 Chaotic communication using two channels

In order to illustrate the proposed approach to
transmit private information signals, a chaotic
communication scheme using two transmission
channels is now designed. It is based on the
output synchronization between identical or non-
identical chaotic oscillators. To this purpose,
consider that u(f) can be separated in u =
75 (2) [ (@ar) + 2 (2)], with

uy (zar) =vi(xn) + LY, har (2ar)
—l—LgML?A;th (1) wanr,
ug (z) =vg (z) — L}h (),
1
v (@m) = co&pn (Tar) + o+ Cno1 Epn (Tar) 5
02 (3) = 0 &, () — . — a1, (3)

Yo () =

as we can see from (6).

This let us to propose the following coupling
scheme with two transmission channels shown in
Fig. 4, in which v (-) is the output from a new
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Fig. 4. Analog communication scheme using two
transmission channels.
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Fig. 5. Transmission and recovering of a binary
message using Lorenz-Rossler output syn-

chronization.

control block Ci, ug (-) is the output of Cy and
w(t) is the output of C. A remarkable feature
is that, in the proposed scheme, the signal that
is sent to obtain synchronization is a nonlinear
function of the state x s (), but is not the own
state. So, with this scheme we obtain high privacy
because it is possible to hide a message through
the coupling signal u (-) = uy (-)+m (t), and with
this to increase the transmission security, because
yp (t) does not contain any message. Then, a
third person cannot recover the hidden message
with the reported methods in (Short, 1994; 1996).
This message is recovered by comparison between
the output y(¢) and yu (¢) at the receiver end,
ie, m*(t) = k* (y(t) —yup (¢)), with a gain k.
Figure 5 shows a binary signal obtained from a
picture like the private message (top of figure),
the transmitted coupling signal including the hid-
den binary message (middle of figure), and the
recovered message at the receiver end (bottom of
figure), using Lorenz-Rossler output synchroniza-
tion.

5.2 Chaotic communication using a single channel

The scheme in Fig. 6 uses a single transmission
channel. The message m (t) is injected into the
transmitter through the input signal w s (). The
output signal of the transmitter is a nonlinear
function w; () whereas it is possible to take like
output of receiver to u (t), which, when synchro-
nization is achieved between the outputs of PP and
M, then w(t) — wupy (t) = m(t), and thus we

Uy =m n

, u—m*
Transmitter —>

Receiver

A 4

Fig. 6. Analog communication system using a
single transmission channel.
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Fig. 7. Transmission of private information using
a single channel.

obtain the recovered message m* (¢). This scheme
is only useful for identical oscillators because in
this case all states of P synchronizes with those
of M and u(t) has not to compensate any asyn-
chronous states, so that u (t) — uy (t). Figure 7
shows the transmission through a single transmis-
sion channel using Rdssler-Rdssler synchroniza-
tion, in which, control u (¢) takes action after 20
seconds and the private message is sent after 40
seconds, when complete synchronization has been
achieved. Since, this scheme does not send any
single chaotic signal, but it sends the nonlinear
function u, (-), any chaotic attractor can be recon-
structed in order to extract the hidden message by
means of the reported existing methods in (Short,
1994; 1996).

5.8 Chaotic switching

In the scheme shown in Fig. 8, we have proposed
p like the parameters of P. The same way, p and
p’ have been proposed like the parameters for
controller C;. During both PP and C are on p then
there exists synchronization or, at least, output
synchronization and during C; is on p’ there
exists an error different from zero. This scheme
commonly is known like chaotic switching or chaos
shift keying. Figure 9 shows the transmission of
binary information using nonidentical oscillators:
Lorenz-Rossler output synchronization. To make
this possible consider that yg (t) — 0 when m =
0 and yg(t) - O when m = 1, interpreting
yp (t) = 0 like “0” logical and yg () # O like
“1” logical. Tn this example the parameter 7 of
Lorenz system (12) is switching in C; between two
values: p =7 = 28 when m = 0 and p’ =7 = 29
when m = 1 in accordance with p* = 7 4+ m, with
p* = (p,p'). The message is recovered faithfully
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Fig. 8. Digital communication system of private
information by chaotic switching.

5[ T T T T 7
a) 05 q
0

Amplitude
°

e L
okt PForvw one

a
o

o
o

o
o
=]

o

R
ot

-

5l &

-

sl 14

g

0
time (sec)

Fig. 9. Transmission of a binary signal by chaotic
switching using Lorenz-Rossler output syn-
chronization: a) original message, b) recov-
ered message at the receiver by output syn-
chronization error detection, ¢) absolute mag-
nitude of the error signal, d) rounding and
iterative signal processing, and €) recovered
binary message.

after a brief iterative signal processing. Since,
this scheme does not switch between two chaotic
attractors of identical oscillators, but it switches a
controller parameter, it is a secure cryptosystem,
where the hidden message through the coupling
signal cannot be reconstructed by means of the
reported existing methods in literature (see e.g.
Pérez and Cerdeira, 1995).

6. CONCLUDING REMARKS

A systematic method to synchronize chaotic os-
cillators (in continuous-time) is presented. In par-
ticular, we used the MMP from the nonlinear
control theory (see (Aguilar and Cruz, 2002) for
the discrete-time context). We have obtained com-
plete synchronization for identical oscillators and
output synchronization for nonidentical oscilla-
tors. In addition, some communication schemes
based on complete and output synchronization
are proposed, using: two transmission channels,
a single transmission channel, and chaotic switch-
ing. The advantages over other cited approaches
are: The approach is systematic, it uses unidi-
rectionally coupled oscillators, gains for controller
are small and synchronization is obtained after a
short transient behavior. Moreover, the transmis-
sion schemes are secure.

REFERENCES

Aguilar, A. and Cruz, C. (2002) “Synchronization
of two hyperchaotic systems: model-matching
approach,” WSEAS Trans. on Systems 1(2),
198-203.

Chen, G. and Dong, X. (1998) From Chaos to
Order, World Scientific, Singapore.

Cruz, C. and Nijmeijer, H. (1999) “Synchro-
nization through extended Kalman filtering,”
New Trends in Nonlinear QObserver Design,
eds. Nijmeijer, H. & Fossen, T.I., Lecture
Notes in Control and Information Science
244, Springer-Verlag, 469-490.

Cruz, C. and Nijmeijer, H. (2000) “Synchroniza-
tion through filtering,” Int. J. Bifurc. Chaos
10(4), 763-775.

Di Benedetto, M.D. and Grizzle, J.W. (1994)
“Asymptotic model matching for nonlinear
systems,” IEEE Trans. Automatic Control
39(8), 1539-1549.

Kocarev, Lj., Halle, K.S., Eckert, K. and Chua,
L.0. (1992) “Experimental demostration of
secure communications via chaotic synchro-
nization,” Int. J. Bifurc. Chaos2(3), 709-713.

Lépez-Mancilla, D. and Cruz, C. (2004) “An
analysis of robustness on the synchroniza-
tion of chaotic systems under nonvanishing
perturbations using sliding modes,” WSEAS
Trans. on Mathematics 3(2), 364-369.

Lorenz, E.N. (1963) “Deterministic nonperiodic
flow,” J. Atmosph. Sci., 20, 130-141.

Nijmeijer, H. and Mareels, L.M.Y. (1997) “An
observer looks at synchronization,” [EEE
Trans. Circuits Syst. I 44(10), 882-890.

Pecora, L.M. and Carroll, T.L. (1990) “Synchro-
nization in chaotic systems,” Phys. Rev. Letl.
64, 821-824.

Pérez, G. and Cerdeira, H.A. (1995) “Extracting
messages masked by chaos,” Phys. Rev. Lelt.,
74(11), 1970-1973.

Réssler, O.E. (1976) “An equation for continuous
chaos,” Phys. Lelt., A57, 397-398.

Short, K.M. (1994) “Steps toward unmasking se-
cure communications,” Int. J. Bifurc. Chaos
4, 959-977.

Short, K.M. (1996) “Unmasking a modulated
chaotic communications scheme,” Int. J. Bi-
furc. Chaos 62, 367-375.

Sira-Ramirez, H. and Cruz, C. (2001) “Synchro-
nization of chaotic systems: A generalized
hamiltonian systems approach,” Inl. J. Bi-
furc. Chaos 11(5), 1381-1395.

Special Issue (2000) on “Control and synchroniza-
tion of chaos,” Int. J. of Bifurc. Chaos, 10(3-
4).

Wu, C.W. and Chua, L.O. (1993) “A simple way
to synchronize chaotic systems with applica-
tions to secure communication systems,” Int.
J. of Bifurc. Chaos, 3(6), 1619-1627.



