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1. INTRODUCTION

Sliding mode control can be viewed as a method
to artificially enforce a constrained motion charac-
terized by the fact that some functions of the state
vector, after a finite time, are steered to zero; these
functions are often called sliding outputs. The
constraint equations define suitable surfaces in the
state space, such that any motion constrained on
them, is characterized by some good property with
respect to a specified control aim (often the state
space is the error state space, when the control
aim is expressed in the form of a model tracking).
The role of the control law is twofold, since it has
to fulfill the constraint equations and then ensure
that the motion, projected on the relevant sur-
faces, is characterized by the desired behaviours.
Once the constraint equations are defined, the
problem arises of forcing the system’s state to

reach in a finite time the relevant surfaces and
to remain there.

In many practical situations the system equations,
which are available to the designer, are imprecise
models of the real phenomena or the model itself,
even if it is accurate, is so complex that it is
impractical to take into account this knowledge
in the controller design. The problem can be rep-
resented in terms of uncertain systems and the
controller has to guarantee the finite time fulfill-
ment of the constraint despite the uncertainties.
The aim of this paper is that of providing a
theoretical framework to analyse the behaviour
of the systems controlled by second order slid-
ing mode (Bartolini et al., 1998), (Fridman and
Levant, 2002), (Bartolini et al., 2003) when, due
to nonidealities of unspecified nature, the chosen
constraints are only approximatively satisfied.



A class of regular perturbations need to be iden-
tified, so that all the corresponding real state
trajectories converge to the unique solution (if
it exists) of the differential algebraic equations
representing the exact fulfillment of the chosen
constraints. This property, called approximability,
has been analysed in (Bartolini and Zolezzi, 1986),
(Zolezzi, to appear) for sliding mode control of
first order. This approach, called regularization
in (Utkin, 1992), is a basic procedure in the
mathematical analysis and validation of sliding
mode control techniques. In this paper we ob-
tain, for the first time, second order regularization
results of sliding mode control systems. A key
property of sliding mode control systems deals
with the behavior of real states, which fulfill only
approximately the sliding conditions due to non
idealities (of any nature), as compared with the
properties of the ideal states, which fulfill exactly
the prescribed sliding condition. The given system
fulfills the approximability property whenever all
real states converge (on the fixed bounded time
interval we consider) to the ideal state as the
non idealities disappear. This property, discussed
in (Utkin, 1992), was mathematically formalized
in (Bartolini and Zolezzi, 1986) and (Bartolini
and Zolezzi, 1993) for nonlinear control systems.
There, sufficient conditions for approximability
were found, generalizing the regularization results
of (Utkin, 1992), about first order sliding mode
control methods.

In this work we introduce new definitions of sec-
ond order approximability and we compare them
with the one related to first order methods. More-
over we obtain sufficient conditions for second or-
der approximability. Finally we discuss an exam-
ple of theoretical as well as practical significance.

2. PROBLEM STATEMENT

We consider sliding mode control systems

izf(t,w,u), u €U S(t,.’lf):O, OStST7(1)
on a fixed bounded time interval [0,7], where
z € RN, u € RE and s € RM, T > 0. We
assume f € C2([0,T] x RN x W) with W an open
set containing U, and s € C%([0,T] x RY).

Following the terminology of (Utkin, 1992), page
13, and the approach of (Bartolini and Zolezzi,
1986), (Bartolini and Zolezzi, 1993), we deal with
ideal states which fulfill exactly the sliding con-
dition s[t,z(t)] = 0 for every t, as opposite to
real states, fulfilling only approximately such a
condition.

A physically relevant property of (1), essential
to successfully implement sliding mode control
strategies, is the following. All real states of (1)

converge toward a well defined ideal state as
the non-idealities disappear. This property rules
out any ambiguous behaviour (according to the
terminology of (Utkin, 1992)), and constitutes
the basis for the regularization and validation
of sliding mode techniques. See (Utkin, 1992),
Chapter 2 for a discussion of this topic.

Such a property, called approzimability, was math-
ematically defined for the first time in (Bartolini
and Zolezzi, 1986) assuming the existence of the
equivalent control, and generalized in (Bartolini
and Zolezzi, 1993). For a different generalization
see (Nistri, 1989). Sufficient conditions for ap-
proximability are given in (Bartolini and Zolezzi,
1986), (Bartolini and Zolezzi, 1993) and (Zolezzi,
to appear). We refer to (Utkin, 1992) for a discus-
sion of the physical and control theoretic signifi-
cance of this property.

We refer to (Bartolini et al, 1998), (Fridman
and Levant, 2002), and (Bartolini et al., 2003)
for overviews of second order sliding modes and
applications. Real second order states and sliding
accuracy are considered in (Levant, 1993).

In this section we propose a new framework to
define rigorously these properties within second
order sliding mode methods. We present new
definitions of second order approximability, and
compare them with the corresponding first order
property.

A parameter ¢, belonging to a metric space with
a fixed element conventionally denoted by 0, will
be used to represent non idealities of any nature
in the real sliding. We write z. — z to denote
convergence of z., towards z for each sequence
ex — 0. The notation z.=z means uniform
convergence on [0, T.

The reaching phase is not at issue in our discussion
of approximability properties, only the behaviour
near the sliding manifold matters. First order slid-
ing mode control techniques employ discontinu-
ous feedback control laws in order to reach in a
finite time the sliding manifold. Then the appro-
priate meaning of solution to (1) corresponding
to discontinuous feedback is that of Filippov, see
(Utkin, 1992) and (Filippov, 1988).

Given T € IRY, we consider as admissible control
laws in (1) all functions u : [0,T] x RN — U
which are L ® B — measurable, i.e. measurable
with respect to the ¢ — algebra generated by the
products of the Lebesgue measurable subset of
[0, T and the Borel measurable subset of IR", and
which fulfill the following property. For any such
u, if the differential system in (1) has a classical
(i.e. almost everywhere), or a Filippov solution z
on [0,T] for any %, then wu[-,z(-)] € L*(0,T). We
denote by U, the set of all admissible controls.



To simplify the notations, we shall write £ =
f(t,z,u) on [0,T] meaning that u € Us and z
is either a classical of Filippov solution on [0, T.

The sliding mode control system (1) fulfills the
first order approzimability property whenever the
following is true. For every zo € RN such that
5(0,z09) = 0 there exists a unique sliding state y,
i.e. for some control u* € Uy, we have

Y= f(tayau*) on [OaT]a y(O) = Zo, (2)
Ly =0, 0<t<T. )

Moreover for every sequence (u.,ze) such that
&e = f(t,ze,u:) on [0,T] and s(t,z.)=30 we have
x>y provided z.(0) — y(0).

The above definition, compared with that pre-
sented in (Bartolini and Zolezzi, 1986), does not
require either uniqueness of the sliding control law
u* or existence of the equivalent control, moreover
s is allowed to depend on t as well.

Uniqueness of the sliding state is of course fulfilled
whenever the equivalent control is available, see
(Utkin, 1992), (Bartolini and Zolezzi, 1986).

We consider the first order ideal system made up
of control-state pairs (v, y) such that

{y:f(t:yav) on [OaT]; v € Uo;
St(t7 y) + Sz(tay)f(t7y7v) = 07

and the second order ideal system of control-state
pairs (u, z), both absolutely continuous in [0, 77,
such that for a.e. t € (0,7)

{2:f(t,z,u), u(t) € U; (4)
P(t,z,u) + Q(t,z,u)t =0

where P = sy + 280 f + ['Soaf + Saft + 82 faf,
Q = sufu, and f'sy.f denotes the vector of
components f'sjz.f, j=1,...,M.

We model the non idealities acting on the sec-
ond order ideal system (4) by using two different
terms. The first, denoted by b, = b.(t) € RM,
takes into account second order sliding non ideal-
ities, so that in the real second order system we
have § = b.. The second, denoted by ¢. = c¢.(t) €
IRX | takes into account non idealities in obtaining
Ue, 0 that in the real second order system we work
with w, = 4. + ¢ instead of w, = ..

The second order real control-state pairs are
thereby given by pairs (ue,z.), both absolutely
continuous in [0, 7], such that for a.e. t € (0,T")

Te = f(t,2e,ue), uc(t) € U;

P(t,z-,u:) + Q(t, ze, us )we = b(t); (5)
wo(t) = () + c(8).

About the non idealities ¢, we shall employ the
condition

c. =0 in W 1>(0,T) as ¢ = 0, (6)

which means that c. € L'(0,T) and sup{| fg ce(r)dr| :
0<t<T}—>0ase—0.

About b, we consider two different ways b, can
vanish as € — 0, namely

either b, — 0 in W=%°(0,T), (7
or b.—0 in W 1>(0,T). (8)

By (7) we mean that b, € L' (0,T) and sup{|0.(t)] :
0 <t<T} — 0 where §. = b. ae. in (0,7),
0-(0) = 6-(0) = 0. Accordingly, we formulate two
definitions of second order approximability of (1).

Definition 1. The control system (1) fulfills sec-
ond order approximability of the first kind if

Condition A: For every zo such that s(0,z¢) =0
there exists a unique sliding state y issued from z¢
corresponding to some continuous control u* (t) €
U.

Condition B: Given any sequences b, c. satisfy-
ing (6) and (8), we have z. =3y provided z. (0) —
y (0), ue (0) — u* (0) for every sequence z. fulfill-
ing (5).

Definition 2. The control system (1) fulfills sec-
ond order approximability of the second kind if
(A) and (B) are fulfilled except that (8) is replaced

by (7).

Since strong convergence in W~1°°(0,T) implies
the same in W=2°°(0,T), we have that second
kind implies first kind approximability. However,
if sup,_|be| € L'(0,7), a stronger condition than
(9), convergence of b, in W~%°(0,T) implies the
same in W=1:°°(0,T).

Roughly speaking, first kind approximability means
that such a robust behaviour of the control sys-
tem is guaranteed whenever § is uniformly small.
Second kind approximability means that the same
behaviour is present whenever s is small. This
property is similar to that required in the defi-
nition of first order approximability (by the quite
different first order methods).

3. APPROXIMABILITY RESULTS
The main result of this section is the following.

Theorem 1. (Bartolini et al., 2004)
Let

T
mm/@4m+kﬂmﬁ<+w, )
0



T
sup, / |Qlt, 22 (8), ue(B)|dt < +00,  (10)
0

If system (1) fulfills first order approzimability
and, for all xo with s(0,z¢) = 0, the corresponding
sliding state can be generated by a continuous
control, then (1) fulfills both second order approz-
imability properties.

Continuity of a sliding control is not a very
restrictive assumption, being fulfilled whenever
the equivalent control is available, as it often
happens in sliding mode control applications, see
(Utkin, 1992).

According to Theorem 1, if first order sliding
mode control methods cannot give rise to ambigu-
ous motions, no further ambiguous behaviour can
be induced by any second order control algorithm.
Hence the validation of second order methods re-
lies on checking known criteria yielding first order
approximability, as those known from (Bartolini
and Zolezzi, 1986), (Bartolini and Zolezzi, 1993)
and (Zolezzi, to appear).

Examples show that the converse to Theorem 1
fails. A sliding mode control system may fulfill
second kind approximability of second order, and
may fail to possess first order approximability.

We end this section obtaining sufficient conditions
for the convergence of second order real states to
ideal ones.

Let (ue,z:) fulfill (5) and put a.(t) = u.(0) +

fot wedr.

Let @ be everywhere nonsingular. Then, a.e. in
(0,7)

T = fo(t, 2e, ac), Qe = he(t,ze,0e)  (11)
where fg(t,.fb',u) = f[t;l";U—’Ye(t)]: ’YE(t) =
Ja eedr, he(t,z,u) = Q7 [t u— e ()] (be(t)—
Plt,z,u — v:(¢)])-

Let (u,z) fulfill (4). Thus z. are second order
real states, and z is any second order ideal state.
In stating the convergence result we employ the
following terminology. A function g = g(t, z,u) :
[0,T] x Q x U = RY is called:

locally p-integrably Lipschitz, if for every compact
L C RN x U there exists ¢ € LP(0,T) such that

|g(t>xl7 ul) - g(t7 'rlla U”)' < C(t) (|.Z', - $II| + |ul - U”|)

for a.e. t and every (z',u'), (z",u") in L;

locally p-integrably bounded if for every compact
L ¢ RN x U there exists ¢ € LP(0,T) such that
l9(t,z,u)| < ¢(t) for a.e. t and every (z,u) € L.

Theorem 2. (Bartolini et al., 2004)
The pair (ue,z:) =3 (u,2) provided

(u:(0),z-(0)) = (u(0), 2(0)), Q is everywhere non-
singular and the following hold:

o b =sup.|bs| € LP(0,T) for some p > 1 and
(beycc) = 0 in W=1(0,T);

o Q7' is locally g-integrably Lipschitz, zlz +
% =1; QP is locally 1-integrably Lipschitz
and locally r-integrably bounded for some r €
(1,p);

o [Q7'(t,2,u)| < Ao(t) + Bo(t) (o] + |u]) with
Ao, By € L¥(0,T) some a > ppTTT;

o Q7 (tz,u)P(t 2, u)| + |f(t 7,u)| < A(H) +
B(t) (|z| + |u|), with A, B € LP(0,T), some
B8 >1.

Corollary 1. (Bartolini et al., 2004)

Let us assume the hypotheses of Theorem 2. If
there exists a unique sliding state y such that
2.(0) = y(0) = 2(0), 3[0,2(0)] = 0 = [0, 2(0)]
then z.y.

4. EXAMPLE

In this section we present an example related to
second order approximability.

Let ya(t) € C?([0,T]) be an available signal
such that |§4(t)] < L for every t. Consider the
sliding mode control system &; = 3, 2 = wu,
lu| < L; s(t,z1) = 1 —yq, 0 < ¢t < T.
Here N = 2 and K = M = 1. Since QQ =
Sz fu = 0 everywhere, the approximability criteria
developed in (Bartolini and Zolezzi, 1986) do not
apply. We check first order approximability via
Corollary 4.1 of (Zolezzi, to appear). The required
properties of linear growth and local Lipschitz
continuity of the dynamics are obviously fulfilled,
as well as convexity of f(t,z,U). Given zo9 €
IR? such that s(t,zo) = 0, i.e. 219 = v4(0), if
Z20 = Ya(0) there exists a unique sliding state
y issued from zg, namely y = (yq,9q)', which
corresponds to the continuous control u = §jg (in
the a.e. sense). Hence, by Theorem 1, second order
approximability holds. Then, in a finite time, 1
copies yq and x2 copies g4. This happens for every
non idealities b., c. acting on the system and
fulfilling (6), (7) or (8), (9), independently of the
particular second order sliding mode algorithm
employed to control the system.

5. CONCLUSIONS

We introduced new definitions of approximability
for nonlinear second order sliding mode control
systems. We compared such robustness properties



with those already known for first order methods.
Sufficient conditions were obtained for second
order regularization.
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