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Abstract: Model predictive control has become a first choice control strategy in industry 
because it is intuitive and can explicitly handle MIMO linear and nonlinear systems with 
the presence of variable constraints and interactions. In this work a nonlinear state-space 
model has been developed and used as the internal model in predictive control for the 
ALSTOM gasifier. A linear model of the plant at 0% load is adopted as a base model for 
prediction. Secondly, a static nonlinear neural network model has been created for a 
particular output channel, fuel gas pressure, to compensate its strong nonlinear behaviour 
observed in open-loop simulation. By linearizing the neural network model at each 
sampling time, the static nonlinear model provides certain adaptation to the linear base 
model. Noticeable performance improvement is observed when compared with pure 
linear model based predictive control. Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
A gasifier is essentially a chemical reactor where 
coal reacts with air and steam to produce low 
calorific value fuel gas, which then can be burnt in a 
suitably adapted gas turbine. In modern advanced 
power generating plants, gasification helps burning 
coal in a new and environmentally clean process. 
 
Based on an industrial scale gasifier, the ALSTOM 
Power Technology Centre issued a benchmark 
challenge in 1997 and a second round challenge in 
2002.  The first round challenge included three linear 
models representing three operating conditions of the 
gasifier at 0%, 50% and 100% load respectively.  
The challenge requires the controller to control the 
gasifier at three load conditions to satisfy input and 
output constraints in the presence of step and 
sinusoidal disturbances. (see Dixon et al (2002)). An 
overview and comparison of various control 
approaches submitted to the first round challenge are 
given in (Dixon 1999).  
 
1To whom correspondence should be addressed  
(y.cao@cranfield.ac.uk). 

None of the proposed controllers managed to meet all 
the performance criteria while satisfying the 
specified constraints. The only model predictive 
control (MPC) approach proposed to the first round 
challenge by Rice et al (2002) involved the use of a 
linear MPC with an additional inner loop to stabilize 
the process. The inner loop controller is supervised 
by an outer loop to handle the process constraints.  
 
The second round of the challenge issued in 2002 
extended the original problem by providing 
participants with a nonlinear simulation model of the 
gasifier in MATLAB\SIMULINK (Dixon 2002). In 
addition to the original disturbance test, two extra 
tests: load change and coal quality disturbance tests 
were included. Recently, a group of control solutions 
for the benchmark problem were presented at 
Control-2004 at Bath University, UK in September 
2004. Most of controllers were reported as capable to 
control the system at disturbance and load change 
tests. This was not the case for the coal quality 
disturbance test because of the char flow rate 
saturation behaviour. In the previous work (Al Seyab 
et al 2004) a linear MPC employing Generalized 
Predictive Control (GPC) strategy was proposed.  
The operating condition at 0% load point was 



     

considered to be the worst case and a linearized 
model around this load condition was adopted for the 
internal model. The controller was able to attain all 
the required performance specifications within the 
input and output constraints at all load conditions. In 
this work, it is shown that the plant/model mismatch 
can be further reduced using a partially developed 
nonlinear model instead of a pure linear model. More 
specifically, a nonlinear neural network model is 
developed for a static single output channel, fuel gas 
pressure (PGAS) to compensate for its strong 
nonlinear behaviour observed in open loop 
simulation. The nonlinear model was then linearized 
at every sampling instance to provide adaptation to 
the main linear controller. A similar strategy can be 
used for the other output variables but this was found 
neither necessary nor very productive. The partial 
nonlinearity compensated model leads to 
considerable performance improvement. The rest of 
this paper is organized as follows. Section 2 includes 
a short description of the ALSTOM gasifier 
benchmark problem. The details of the MPC 
algorithm and the internal model are discussed in 
section 3. Section 4 explains the procedures of 
nonlinear system identification and controller design. 
Section 5 presents the simulation results, and in 
section 6 some conclusions are drawn from this 
work.  
 
 

2. SYSTEM DISCRPITION 
 
The ALSTOM gasifier is a ( 45× ) MIMO nonlinear 
plant. One of the inputs, limestone mass (WLS) is 
used to absorb sulphur in the coal and its flow rate 
must be set to a fixed ratio of 1:10 against another 
input (WCOL) . This leaves effectively 4 degrees of 
freedom for the control design. The plant inputs and 
outputs with their limits are given in Table 1. The 
full model of the gasifier has 25 states and the aim of 
the benchmark challenge is to design a controller to 
work with the given SIMULINK model as the plant 
to satisfy the control performance. The control 
specification includes sink pressure step and sine 
wave disturbance testes (at the three different 
operating points), load ramp change from 50% to 
100%, and coal quality change by ± 18%. The 
specifications of these tests that must be met are 
given in details in (Dixon 2002).  

 
 

3. INETRNAL MODEL DISCRPITION 
  

Linear models with linear constraints and quadratic 
objective function result in convex optimization 
problems easily solved using Quadratic Program-
ming (QP). To extend linear MPC to the control of 
nonlinear processes, a model is required that can 
represent the salient nonlinearities but possibly 
without the complication associated with general 
nonlinear models. Wiener model corresponds to a 
plant with linear dynamics but nonlinear static gain 
and can adequately represent many of nonlinearities 
commonly encountered in industrial processes 
(Sandra et al 1998, Dumont et al 1994). 
 

Table 1 Outputs and inputs variables and limits 
 

Outputs     Description            Allowed fluctuations                                 
 
CVGAS   Fuel gas calorific value  ±  0.01 MJ/kg  
MASS     Bed mass                         ±  500 kg 
PGAS      Fuel gas pressure            ±  0.1 bar 
TGAS      Fuel gas temperature      ±  1 K               . 
Inputs     Description        Maximum       Peak rate .                                
 
WCHR Char extraction rate 3.5 kg/s       0.2  kg/s2 

WAIR    Air flow rate          20 kg/s         1.0  kg/s2 
WCOL   Coal flow rate        10  kg/s       0.2  kg/s2 
WSTM   Steam flow rate       6   kg/s       1.0  kg/s2 
 

 
 
Fig.1. The nonlinear internal model. 
 
 In this work, the original linear MPC design (Al 
Seyab et al 2004) is extended to include some of the 
plant nonlinearities by developing a static nonlinear 
model in the form of Wiener configuration as shown 
in figure 1. Linear static gains are used for three 
outputs, CVGAS, MASS, TGAS, while, an artificial 
neural network (ANN) model is created for the forth 
output PGAS. The output selection was based on the 
open-loop step response comparison between the 
linear and nonlinear simulation model (see figure 2). 
The results showed that the linear model can 
correctly capture the dynamic behaviour in three of 
the four outputs for up to 20s (the practical prediction 
horizon length) under all load conditions. However, 
the forth output PGAS exhibits salient nonlinearities 
which cannot be predicted by the linear model. It is 
also observed that the effect of the unmeasured 
disturbance PSINK on the output variable PGAS is 
quite large, whilst the time constant of the response is 
very short compared to that of other outputs. 
Therefore, even for a short prediction horizon 
(P ≤ 20s), both transient and static behaviour of 
PGAS should be covered by a prediction model, 
while for other outputs only transient characteristics 
have dominant response. Hence, a static nonlinear 
model would not be very useful for the other 
variables unless a very long prediction horizon 
(about 410 s) is used which is clearly not practical. 
 
Assuming that the plant has manipulated inputs, 

unu ℜ∈~ and outputs yny ℜ∈~ , which have steady-state 
values, 0

~u and 0
~y  at the nominal operating point, the 

partially nonlinear predictive model can be described 
by the following discrete time state-space model: 
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where k stands for kth sampling time, u(k) = 

0
~)(~ uku −  and  0

~)(~)( ykyky −=   are deviation 
variables. Outputs are divided into two groups: yL(k) 
outputs vector corresponding to the linear variables 
CVGAS, MASS, and TGAS, and yNL(k) 
corresponding to nonlinear output, PGAS. The vector 
x(k) contains the internal states of the model. The 
matrix CL represents the linear static gain, while fNN 
is the nonlinear function modelled by a neural 
network. Initially, the plant is assumed to be at the 
nominal operating point with x(0)=0, u(0)=0, y(0)=0. 
 
The matrices A, B, and CL are obtained by linearizing 
the nonlinear plant model at 0% load condition. The 
ANN static model consists of two hidden layers and 
one output layer. The hidden layers transfer function 
is the nonlinear function Tansig–sigmoid type while 
a linear transfer function is used for the output layer. 
The mathematical form of the function  fNN  is given 
in a vector form as : 
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323)( bHWky NL +=                                              (2) 
 
where H1, H2  and  yNL are the output values of each 
layer. The values W1, W2, and W3 are the weight 
parameters while b1, b2, and b3 are the bias 
parameters. The function fs (.) is the sigmoid tangent 
function which is defined as, 1))2/(2()( 2 −+= − n

s enf . 
 
Because the model in equation 1 is nonlinear, the 
problem is no longer convex.  In order to use 
efficient QP algorithm, local linearization of the 
static ANN model around the current states is 
required. Future predictions of output based on 
current measurement yNL (k) can be approximated by 
the first two terms of the Taylor series expansion:  
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The partial derivative xfNN ∂∂ /  can be calculated 
from the neural network structure in equation 2 
using the chain rule as: 
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This results in a time-varying linear state-space 
model to be used in predictive control. 
 
 

4. PREDICTIVE CONTROL FORMULATION 
 
The prediction model to be used can be represented 
by the following state-space equation: 
 

 
Fig.2. Open-loop step response at 0% load condition. 
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where, [ ] [ ]( ) ( ) ( ) , ,T T
L NL L NLy k y k y k C C C= =

d(k) is the virtual output disturbance estimated from 
the outputs measurement to reduce the plant-model 
mismatch. Note, kn  in (3) is absorbed into d(k). At 
the kth sampling time, with currently measured 
outputs, 0

~)(~)( ykykym −= , and the current states 
x(k), the future output within the prediction horizon, 
P can be estimated from the future input (to be 
determined within the moving horizon, M) u(k) as 
follows. Taking   
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then,         )()( kdLkxUY +Ψ+Φ=                   (6)  
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Future input, U is determined so as to follow a 
reference, ),(kr  i.e. to minimize the performance 
cost: )()( rLYQrLY T −−  subject to input constraints, 

uuu ≤≤ , and input rate constraints, 

ukuku σ≤−+ )()1( . Using the predictive equation 
(6), a QP optimization problem is formulated.      
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where, 

)1( −ku  is the previous input applied to the plant, 
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Note, the weighted input cost and the output 
constraints are ignored to simplify the controller with 
little effects on the performance. The only tuneable 
parameters in this formulation are Q, P, M and 
sampling time. Thus, the control strategy can be 
easily implemented and tuned to satisfy required 
performance. Only the first nu rows of the vector U, 
which corresponds to u(k) are applied to the plant. 
The whole procedure is then repeated at the next 
sampling instance. 
 
 For the unconstraint case, the optimal solution, 
which corresponding to a state feedback control law, 
can be obtained analytically: 
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Let K be the first  un  rows of 1K , then the nominal 
stability (perfect model without input saturation) of 
the closed-loop can be checked by calculating the 
eigenvalue of the matrix A-BK. 

 

 

4. PREDICTIVE CONTROL DESIGN 
 

4.1 Nonlinear System Identification. 
 
The first design task to implement the above 
algorithm is to get an internal model using equation 
5. Three operating conditions are specified in the 
gasifier benchmark problem: 0%, 50%, and 100% 
load conditions. Since the performance requirements 
at 50% and 100% load conditions are relatively 
easier to achieve, it was decided to use the 0% load 
point as the nominal point to get the linearized state 
space model. The model obtained was then reduced 
to 16 states via pole-zero cancellation. The 16 states 
model is discretized with the sampling time selected. 
  
For the ANN static model of PGAS, the number of 
node in the first and second hidden layers was 16 and 
10 respectively with one node in the output layer. 
Data were generated through applying a zero mean 
normalized sequence of random pulses with their 
periods and amplitudes corresponding to the 
maximum and minimum expected variations and 
frequency in response to individual input change 
under different load conditions. The sets over 
different loads were then linked together and used in 
training and validation of the ANN. The performance 
of the trained PGAS Wiener model is given in figure 
2, which shows the model is capable to capture most 
characteristics behaviour of the plant. 
 
 
 

4.2 Predictive control design. 
 
Normally, the sampling time should be less than one 
tenth of bωπ /2 , where bω is the required bandwidth 
of the closed-loop. The performance specifications 
require the imposition of a sine disturbance with a 
period of 25s (0.04 Hz). Therefore, the sampling time 
should be less than 2.5s. On the other hand, the 
sampling time should not be too large so that in any 
step disturbance test, the output variables will not 
deviate from their setpoints more than the limit 
specified before the controller starts to response. 
Hence, the sampling time was selected to be 1 s. This 
satisfies both requirements. The control algorithm is 
implemented in the form of a SIMULINK s-function 
to replace the control block in the nonlinear baseline 
model. The QP problem is solved by calling 
‘quadprog’ of the MATLAB/Optimization Toolbox 
at each sampling time. This is the major computation 
burden in the present algorithm and is solely 
determined by the length of the control horizon, M. 
The prediction horizon, P has little effect on 
computation burden, and thus can be select relatively 
large to improve robust stability. In this study, M = 
7s and P = 17s. The weighting matrix, Q is diagonal 
and initially set to the inverse of the output error 
bounds. After online tuning, the final values were Q 
= diag[1.0 150 3.0 6102 × ]. Using the above 
configuration, nominal stability was achieved at all 
three load conditions. That is the magnitudes of all 
eigenvalues of Ai - BiK  are less than 1. Where, Ai  and 
Bi are the discrete state and control matrices at 
different load conditions. 
 
 

5. SIMULATION RESULTS 
 
5.1 Disturbance Tests. 
 
The following two disturbance tests were performed 
for three load conditions for 300 seconds: 

• Step change in sink pressure PSINK of -0.2 
bar at t = 30 s. 

• 0.04 Hz sinusoidal variation in PSINK of 
amplitude 0.2 bar beginning at t = 30 s. 

 
All the results to follow are compared with the linear 
MPC. The maximum and minimum values as well as 
the peak rate change of the input variables of two 
disturbance tests under different load conditions are 
shown in Table 2. The maximum absolute error 
between output variables and their setpoints and the 
integral of absolute error (IAE) of these variables are 
calculated in Table 3 where (M1) and (M2) refer to 
the linear and nonlinear MPC approaches under 
comparison, respectively. The results are collected in 
tables to compare with other ALSTOM gasifer 
control approaches published before. Due to the 
space limitations only some plots of input and output 
responses are displayed here. Figures 3 to 5 show the 
system performance at 50% and 0% load conditions. 
In the 50% load case, the results are plotted for 
t ≤ 100s to present the control performance in more 
details. After this time period, all the outputs 
response remained constant. The results in Table 2 
and 3 however are calculated until t=300s.  For 0% 



     

load sinusoidal test, results with extra simulation 
time are provided to confirm the satisfactory 
performance of output in meeting the given 
specifications. The results show that both controllers 
are capable of maintaining the output variables 
within the limits for the tests specified by ALSTOM. 
In the case of M2, an improvement in the whole 
system performance was observed.  In fact, all output 
variables have benefited from using more accurate 
PGAS internal model. Due to multivariable 
interactions, the improvement in other output 
variables sometimes is even larger than that in PGAS 
itself (Figures 4 and 5). This is explained as follows. 
The response of PGAS, particularly to disturbance 
PSINK is much faster than other output variables 
(Figure 1). The Improvement of nonlinear model is 
mainly in long term prediction (Figure 1). Hence, it 
has more effect on slow-response variables rather 
than PGAS, which is a fast-response variable. 
Moreover, the maximum drop of PGAS in Figure 4 
is the response to disturbance before the controller 
can take action, hence is not able to be reduced by 
changing internal model only.   
 
5.2 Coal quality change test. 
 
 Both controllers M1 and M2 show a similar 
capability and they are capable to control the system 
under coal quality change at about %10± . This is 
not the case when the change increases to %18±   
because the output TGAS deviates from the desired 
region after a cretin time. This divergence happened 
faster in the case of M2 controller at sine wave 
disturbance test at 0% load condition. This is a 
problem due to an inherent performance limitation. 
When the coal quality change is large, an input 
saturation of WCHR is unavoidable so that TGAS 
deviates a long way from the setpoint, i.e. 
temperature cannot be maintained at given setpoint 
without violating constraints of WCHR.  
 
5.3 Load Change Test 
 
In this test, the load is required to increase from 50% 
to 100% within time from 100 s to 700 s. The actual 
response is collected from the simulation and 
compared with the results when using M1 controller. 
For both controllers, good setpoint tracking 
performance is obtained. The outputs results show 
approximately similar behaviours for the two 
controllers, with a small improvement in the MASS 
response when using M2 approach. Also, the 
manipulated variables response is smoother in this 
case (see figures 6 -7).  
 
 

6. CONCULSION 
  
A simple predictive controller has been developed to 
control the ALSTOM gasifier benchmark process.   
LMPC employing GPC strategy is modified to 
include a partially nonlinear internal model.  A 
nonlinear class Wiener model is used to identify one 
of the process output variables (PGAS) which has 
strong nonlinearity while a linear model at 0% load 
condition is adopted for the other output variables. 
To regain the convex feature of the QP optimization 

problem, PGAS nonlinear model was linearized at 
every sampling time to update the linear model used 
for optimization. Thus, the internal model is actually 
a linear time-varying model. The new controller 
meets all the required performance specifications 
within given input and output constraints during sink 
pressure disturbance and load change tests and the 
results show a significant improvement in the system 
performance compared with the results obtained 
when only linear time-invariant model is used.  
 

 
Fig.3. Step disturbance: Inputs and limits at 50%. 
 

 
Fig.4. Step disturbance: Outputs and limits at 50%. 
 

 
Fig.5. Sine disturbance: Outputs and limits at 0%. 



     

 
Table 2 Input results 

 
Step,                .Maximum               Minimum.                Peak rate 
100%  Load   M 1       M 2          M 1          M2           M1       M2 .              
WCHR        1.9005    1.3663      0              0.49026    0.2        0.2 
WAIR         19.170    19.299      16.168     16.158      1.0        1.0 
WCOL        10.00      10.00        8.5253     8.5542      0.2        0.2 
WSTM        5.0793    4.7058      2.3046     2.3714      1.0        1.0 . 
Step , 50%   M1         M2           M1           M2           M1        M2 
WCHR        2.085     1.7589       0             0.5983       0.2        0.2 
WAIR         13.99     14.062      10.354     10.85         1.0        1.0 
WCOL        8.976      8.6559      6.8537     6.7943      0.2        0.2 
WSTM        5.001     4.3151      1.5638     1.7889       1.0        1.0 . 
Step , 0%    M1         M2           M1           M2           M1         M2 
WCHR       2.1534    2.0469      0.2274     0.9532       0.2         0.2 
WAIR        8.5508    8.7148      4.7147     4.781         1.0         1.0 
WCOL       7.7216    7.6251      5.1574     5.1398       0.2         0.2 
WSTM       4.2366    4.2366      1.0404     1.1511       1.0        1.0 . 
Sine, 100%  M1        M2           M1           M2            M1        M2 . 
WCHR       1.4640    1.725        0.3492     0.0742       0.2        0.2 
WAIR        18.923    19.049      15.747     15.628       0.577    0.671 
WCOL       9.7537    9.7444      7.2684     7.0443       0.2        0.2 
WSTM       3.6452    3.7488      1.5192     1.5676       0.603    0.610 
Sine , 50%  M1         M2            M1           M2           M1       M2  . 
WCHR       1.9503    1.8531     0.11527    0.21605    0.2       0.2 
WAIR        13.764    14.014     10.331      9.9657      0.623   0.7461 
WCOL        8.1287    8.1573     7.2684     7.0443      0.2       0.2 
WSTM       3.3492     3.548       0.6553     0.3868      0.678   0.5866 
Sine , 0%   M1           M2         M1           M2           M1       M2   . 
WCHR       2.3547    2.8559     0.12867    0              0.2       0.2 
WAIR        8.905      8.9219     3.2579      3.4465     0.623   0.7461 
WCOL       6.1213    6.4590     3.2334      2.860       0.2       0.2 
WSTM       3.8088    4.3271     0               0              0.678   0.5866 
 

 
Fig.6. Control signals at load change test.  
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