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Abstract: In a recent paper we have introduced a third party intrusion scheme to decode 
the transmitted message in chaotic-pulse-position modulation using a Kalman Filter. In 
the present work, we improve the design of this intrusion scheme to not only allow us to 
recover the transmitted message but also enable the estimation of the signal power m . 
This is a much more complicated task than the past one as the system model obtained 
becomes nonlinear. To achieve this goal, we have used a modified version of the 
Extended Kalman Filter fed with a polynomial approximation. We have conducted 
experiments using the quadratic map and the logistic map. The outcome of these 
experiments shows that both the original message and the signal power m  can be 
effectively recovered. The Bit Error Rate performance of this scheme is compared to that 
of the chaotic-pulse-position modulation for different Signal to Noise Ratios. Also the 
efficacy of estimation of the value of m  is shown as well as the degree of the polynomial 
map used. Overall, these results cast a doubt on the security of the chaotic-pulse-position 
modulation scheme.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Chaotic signals may have a significant impact on 
tomorrow’s spread spectrum communication 
systems. From the random-like nature of these 
signals to their sensitivity to initial conditions, these 
signals offer a wide range of promising properties 
which may revolutionize the field of secure 
communication. Since the possibility of using chaotic 
signal for digital modulation was mentioned in 
(Abel, and Schwarz, 2002), various chaotic 
modulation schemes have been introduced to 
guarantee security (Rulkov, et al., 2001; Cheong, et 
al., 2003; Kolumban, et al., 1998a). In this paper we 
will be interested in Chaotic-Pulse-Position 
Modulation (CPPM).  

Recently, in (Hounkpevi, and Yaz, 2004) we have 
raised a question regarding the security claim of 
CPPM. As security is a key reason for using chaotic 
signals in spread spectrum digital communications, 
we find it essential to address this particular problem 
in any proposed chaotic modulation system. At the 
present time, there are very few results that address 
this important security issue in chaotic 
communications. In fact, most articles on chaotic 
modulation so far, are confined to testing if the 
message can be regenerated at the receiver and if the 
Bit Error Rate (BER) is at an acceptable level for 
some specified values of the Signal to Noise Ratio 
(SNR). Mostly, unproven security claims rely on the 
fact that the signal is random-like (Hasler, and 
Maistrenko, 1997; Kolumban, et al., 1998b). In our 



previous work (Hounkpevi, and Yaz, 2004), we have 
directed our attention to the CPPM modulation 
scheme. We have performed experiments to test if 
CPPM is as secure as claimed. In these experiments, 
we have shown that it is possible to recover the 
transmitted message as an unintended third party 
without knowing either the initial condition or the 
chaotic map used to transmit the message.  

In that work (Hounkpevi, and Yaz, 2004), we 
assumed that the signal power was known or that at 
least the sign of its coefficient was known. This 
assumption led to a linear (Kalman) filtering solution 
to the demodulation problem. In the present paper, in 
addition to the original message, also the value of the 
signal power (or equivalently the coefficient of the 
message signal) is being estimated. Although this is 
an extension of our previous work, it is a much more 
complicated task as the new model is nonlinear and 
Kalman filtering can no longer be used as in 
(Hounkpevi, and Yaz, 2004).  We apply the 
Extended Kalman Filter to this nonlinear estimation 
problem with some modifications to enhance its 
convergence properties. We have performed 
simulation experiments using CPPM at the 
transmitter and at the receiver; we have used our 
Modified EKF fed with a polynomial approximation 
to recover the original message. The results obtained 
show that not only can we recover the message but 
we can also estimate the power of the signal. The Bit 
Error Rate (BER) for various SNRs is shown and 
compared to that of CPPM. Parameter estimation 
errors are also shown to prove the feasibility of this 
task. Finally, the degree of the polynomial map is 
estimated.    

In section 2 a brief introduction to CPPM is given. 
In Section 3 we present our third party intrusion 
scheme. Simulation results are in section 4. Section 5 
contains conclusions.   
 
 

2. CPPM 
 
In this modulation scheme, a chaotic signal in the 
form of a pulse train is sent across the channel. First, 
a pulse train with inter-pulse intervals determined by 
a chaotic map ( )F ⋅  dynamics is generated by a 
chaotic pulse generator according to: 

 
( )1n nT F T −=  (1) 

The generated pulse train is then used as a carrier 
which modulates a binary message signal ( )1nS ±  : 
 

( )1n n nT F T d mS−= + +  (2) 

 
where m  is the signal amplitude, and d  a constant 
delay. 
At the decoder, the consecutive time interval 1nT −  
and nT  are measured and the estimate of the message 
is generated by  
 

( )( )
^

1 /n n nS T F T d m−= − −  (3) 

 
The nonlinear function and the parameters should be 
the same in the receiver and the transmitter for the 
encoded message to be recovered. Therefore, it can 
be argued that an unauthorized receiver who does not 
know the dynamics of the system or the initial 
condition cannot recover the transmitted message. It 
is this claim that is the subject of our investigation 
here. 
 
 

3. THIRD PARTY INTRUSION SCHEME FOR 
CPPM 

 
In reality, the received signal is equal to the 
modulated message plus a channel noise nW assumed 
to be AWGN (Additive White Gaussian Noise) with 
zero mean and covariance W . A realistic model of 
the third party intruder assumes no knowledge of the 
chaotic map used in the transmitter, the initial 
condition of the chaotic signal 0T , the delay d , or the 
amplitude m  of the message (or 2m  the signal 
power, assuming that +1, -1 are equally likely to be 
transmitted). In this development, the message nS  
will be modeled as a binary distributed random 
variable. By approximating the map by a second 
degree polynomial 2a bx cx+ + , the signal at the 
receiver is  
 

2
1 1n n n n n n n ny a b y c y mS W− −= + + + +  (4) 

To be able to estimate m  together with the 
parameters a , b , c  of the map, we set up the signal 
model as follows. 
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The state to be estimate is now
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resulting estimation problem is more complicated to 
solve as the observation equation contains state 
multiplicative noise. This poses a nonlinear 
estimation problem with no known globally optimal 
solution.  
Let: 
 

2
1 1[1, , , ]n n n nC y y S− −= , (6) 
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we can rewrite our system as 
 

1n n

n n n n

X X
Y C X W

+ =⎧
⎨ = +⎩

 (8) 

 
where nC  is time-varying and stochastic. 
To estimate the state, we separate nC  into two parts: 
 

~

nn nC C C
−

= +  (9) 
 

where 2
1 1[1, , ,0]n n nC y y

−

− −=  is the mean value or the 

deterministic component and  
~

[0,0,0, ]n nC S=  is the 
stochastic component. 
EKF state estimate update equation is given by the 
recursion 
 

^ ^ ^

1n nn n n nX X K Y C X
−

+
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (10) 

 
nK  is the Kalman gain obtained by 

1
2{ } (4, 4)

T T

n n nn n n n nK P C C P C E S P W
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and nP  is the estimation error covariance obtained 
from  
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and (4,4)nP is the 4 - 4 element of nP . 
Upon substitution, these two equations yield: 
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and 
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Due to unobservability problems, we have modified 

nC
−

 to 2
1 1[1, , , ]n n n nC y y γ

−

− −=  where nγ  is a zero mean 
noise with a very small variance. This also helps to 
guarantee the error covariance matrix nP  does not 
stop prematurely. In our simulation, a computer 
generated value for nγ  is used. 

Under this condition, equation (10) gives us the 
minimum variance estimate of the parameters a , 
b , c , and m . 
After parameter estimation with EKF, the original 
message is recovered by: 
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Two well known chaotic maps have been used in 

these experiments; the quadratic and the logistic 
map. The BER performance for different SNRs is 
evaluated and compared to that of the original 
CPPM. The normalized error between the actual 
value and the estimated value of m  is also given. In 
the following section, we describe the simulation set 
up and the results obtained. 
 
 

4. SIMULATION EXPERIMENTS 
  
The quadratic map used is 2

1n nx x g+ = −  where we 
selected 2g = , and the logistic map used is 

1 (1 )n n nx gx x+ = − , where 3.741g = . We computed 
the BER as the ratio of the number of samples that 
were incorrectly decoded to the total number of 
samples. The SNR was determined as the ratio of the 
signal power to the channel noise power. For each of 
these maps, the BER is computed for different values 
of the SNR and is compared to the simulated BER 
performance obtained with CPPM (Rulkov, et al., 
2001). The BER vs. SNR for the quadratic map is 
given in Figure 1. The BER vs. SNR for the logistic 
map is shown in Figure 2.  

For both maps, we can see that the BER of our 
scheme is competitive with that of CPPM. For high 
SNRs, which correspond to low noise power, CPPM 
performs slightly better than our scheme. This is 
predictable as the receiver at CPPM has the exact 
value of the parameter and our scheme does not (we 
generate estimates). For low SNRs, which 
correspond to high noise power, our scheme 
performs slightly better than CPPM. This is due to 
the fact that noise has corrupted the received signal 
and the parameters at the CPPM receiver do not 
match exactly that of the transmitted signal any 
more. However, due to its noise reduction power, 
EKF has been able to reduce the noise and therefore 
resulted in a better estimate.  

This shows that we have been able to recover the 
message as an unintended third party using this new 
scheme. We have also plotted the error resulting 
from the estimation of m. Shown in Figure 3 is the 
normalized error for the quadratic map, and in Figure 
4 is the normalized error for the logistic map. It is 
clear that this error is very small (in the order of 

310− ) and consequently, the estimation was 
successful. We have therefore achieved our goal. 
Figures 5–10 show the normalized error between the 
estimate and the true value for the parameters of the 
chaotic map by EKF. 

 



 
Figure 1. BER of the new intrusion scheme - 
quadratic map 
 
 
 
 
 

 
Figure 2. BER of the new intrusion scheme - logistic 
map 
 
 
 
 
 

 
Figure 3. Error for estimation of m - quadratic map 

 
Figure 4. Error for estimation of m - logistic map 
 
 
 
 
 
 

 
Figure 5. Error for estimation of a- quadratic map 
 
 
 
 
 
 

 
Figure 6. Error for estimation of a – logistic map 
 
 



 
Figure 7. Error for estimation of b -  quadratic map 
 
 
 
 
 

 
Figure 8. Error for estimation of b - logistic map 

 
Figure 9. Error for estimation of c - quadratic map 
 
 
 
 
 

 
Figure 10. Error for estimation of c - logistic map 

 
 
 
 
 
 
 

Table 1. Error resulting from estimating the degree of the chaotic map 
 

 
 
 
 
 
 
 

 
 
 



The third party intrusion scheme assumes no 
knowledge of the chaotic map used which implies no 
knowledge of the degree of the map. So how did we 
know that we can use an EKF fed with a second 
order approximation in the above simulation? The 
answer to this question is that the first task to be 
performed by our intrusion scheme is the estimation 
of the degree of the chaotic map. This is done by 
using a bank of EKFs placed at the receiver, each 
having polynomial of different degrees. We provided 
a set of simulation experiments to show that these 
simulations can be done. In this simulation, we 
consider a bank of 5 EKFs each having polynomial 
with degree varying from 1 to 5. The test set that we 
use consists of 16 different maps: 10 quadratic maps 

2
1n nx x g+ = −  (where g =1.7, 1.75, 1.77, 1.8, 1.85, 

1.88, 1.9, 1.95, 1.98, 1.99), 5 logistic maps 
1 (1 )n n nx gx x+ = − , (where g = 3.741, 3.8, 3.85, 3.9, 

3.93) and 1 cubic map 2
1 (1 )n n nx gx x+ = − , (where 

g =-2.3). In each case, the EKF having the 
polynomial whose degree corresponds to that of the 
map leads to the minimum error 

(
^
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1 , 10000
N

i i
i

y y N
N

ε
=

= − =∑ ) with the smallest 

order. This is illustrated in Table 1. With the degree 
of the map successfully estimated, we have 
completed the set of tasks that need to be performed 
for the effective recovery of the transmitted message 
by an unintended receiver. 

 
5. CONCLUSION 

 
In a previous paper, some security issues related to 
the use of chaotic-pulse-position modulation were 
considered. It was shown that it is possible to recover 
the message as an unintended third party without 
knowing the initial state or the chaotic map used to 
transmit the message. In this paper, which is an 
extension of our previous work, we have shown that 
it is possible to recover the original message based 
on less knowledge of the underlying modulation 
dynamics. Experimental results obtained for two 
major chaotic maps; the quadratic and the logistic 

maps truly question the security feature of CPPM. In 
conclusion we need to point out that the goal of our 
research is not to describe CPPM as a poor 
modulation scheme. However, we hope that our 
contribution will point out to a security risk and 
therefore will result in more research to increase the 
security of this communication scheme. 
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