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Abstract: In a recent paper we have introduced a third party intrusion scheme to decode
the transmitted message in chaotic-pulse-position modulation using a Kalman Filter. In
the present work, we improve the design of this intrusion scheme to not only allow us to
recover the transmitted message but also enable the estimation of the signal powerm .
This is a much more complicated task than the past one as the system model obtained
becomes nonlinear. To achieve this goal, we have used a modified version of the
Extended Kalman Filter fed with a polynomial approximation. We have conducted
experiments using the quadratic map and the logistic map. The outcome of these
experiments shows that both the original message and the signal power m can be
effectively recovered. The Bit Error Rate performance of this scheme is compared to that
of the chaotic-pulse-position modulation for different Signal to Noise Ratios. Also the
efficacy of estimation of the value of m is shown as well as the degree of the polynomial
map used. Overall, these results cast a doubt on the security of the chaotic-pulse-position
modulation scheme. Copyright © 2005 IFAC
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1. INTRODUCTION

Chaotic signals may have a significant impact on
tomorrow’s  spread  spectrum = communication
systems. From the random-like nature of these
signals to their sensitivity to initial conditions, these
signals offer a wide range of promising properties
which may revolutionize the field of secure
communication. Since the possibility of using chaotic
signal for digital modulation was mentioned in
(Abel, and Schwarz, 2002), various chaotic
modulation schemes have been introduced to
guarantee security (Rulkov, et al., 2001; Cheong, et
al., 2003; Kolumban, et al., 1998a). In this paper we
will be interested in Chaotic-Pulse-Position
Modulation (CPPM).

Recently, in (Hounkpevi, and Yaz, 2004) we have
raised a question regarding the security claim of
CPPM. As security is a key reason for using chaotic
signals in spread spectrum digital communications,
we find it essential to address this particular problem
in any proposed chaotic modulation system. At the
present time, there are very few results that address
this  important security issue in  chaotic
communications. In fact, most articles on chaotic
modulation so far, are confined to testing if the
message can be regenerated at the receiver and if the
Bit Error Rate (BER) is at an acceptable level for
some specified values of the Signal to Noise Ratio
(SNR). Mostly, unproven security claims rely on the
fact that the signal is random-like (Hasler, and
Maistrenko, 1997; Kolumban, et al., 1998b). In our



previous work (Hounkpevi, and Yaz, 2004), we have
directed our attention to the CPPM modulation
scheme. We have performed experiments to test if
CPPM is as secure as claimed. In these experiments,
we have shown that it is possible to recover the
transmitted message as an unintended third party
without knowing either the initial condition or the
chaotic map used to transmit the message.

In that work (Hounkpevi, and Yaz, 2004), we
assumed that the signal power was known or that at
least the sign of its coefficient was known. This
assumption led to a linear (Kalman) filtering solution
to the demodulation problem. In the present paper, in
addition to the original message, also the value of the
signal power (or equivalently the coefficient of the
message signal) is being estimated. Although this is
an extension of our previous work, it is a much more
complicated task as the new model is nonlinear and
Kalman filtering can no longer be used as in
(Hounkpevi, and Yaz, 2004). We apply the
Extended Kalman Filter to this nonlinear estimation
problem with some modifications to enhance its
convergence properties. We have performed
simulation experiments using CPPM at the
transmitter and at the receiver; we have used our
Modified EKF fed with a polynomial approximation
to recover the original message. The results obtained
show that not only can we recover the message but
we can also estimate the power of the signal. The Bit
Error Rate (BER) for various SNRs is shown and
compared to that of CPPM. Parameter estimation
errors are also shown to prove the feasibility of this
task. Finally, the degree of the polynomial map is
estimated.

In section 2 a brief introduction to CPPM is given.
In Section 3 we present our third party intrusion
scheme. Simulation results are in section 4. Section 5
contains conclusions.

2. CPPM

In this modulation scheme, a chaotic signal in the
form of a pulse train is sent across the channel. First,
a pulse train with inter-pulse intervals determined by
a chaotic map F(-) dynamics is generated by a

chaotic pulse generator according to:
T,=F(T,,) (1)

The generated pulse train is then used as a carrier
which modulates a binary message signal S, (il) :

T,=F(T,_)+d+msS, )

n

where m is the signal amplitude, and d a constant
delay.
At the decoder, the consecutive time interval T,_;

and 7, are measured and the estimate of the message
is generated by

A

S, =(T, ~F(T,.)~d)/m 3)

The nonlinear function and the parameters should be
the same in the receiver and the transmitter for the
encoded message to be recovered. Therefore, it can
be argued that an unauthorized receiver who does not
know the dynamics of the system or the initial
condition cannot recover the transmitted message. It
is this claim that is the subject of our investigation

here.

3. THIRD PARTY INTRUSION SCHEME FOR
CPPM

In reality, the received signal is equal to the
modulated message plus a channel noise ¥, assumed
to be AWGN (Additive White Gaussian Noise) with
zero mean and covariance W . A realistic model of
the third party intruder assumes no knowledge of the
chaotic map used in the transmitter, the initial
condition of the chaotic signal 7, the delay d , or the
amplitude m of the message (or m’ the signal
power, assuming that +1, -1 are equally likely to be
transmitted). In this development, the message S,
will be modeled as a binary distributed random
variable. By approximating the map by a second
degree polynomial a +bx+cx’, the signal at the
receiver is

yn :an +bnyn71+cnyjfl +mSn+Wn (4)
To be able to estimate m together with the

parametersa, b, c of the map, we set up the signal
model as follows.
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The state to be estimate is now , and the

n

m

resulting estimation problem is more complicated to
solve as the observation equation contains state
multiplicative noise. This poses a nonlinear
estimation problem with no known globally optimal
solution.

Let:

C, =Ly, ,v...S1. (6)
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we can rewrite our system as

Xn+1 = Xn
@®)

Yn = CIIXH + Wn

where C, is time-varying and stochastic.

To estimate the state, we separate C, into two parts:
C -C+C, ©)

where én =[l,y, ,,v.,,0] is the mean value or the

deterministic component and (i‘n =[0,0,0,S,] is the

stochastic component.
EKF state estimate update equation is given by the
recursion

X :Xn+Kn(Yn -C, an (10)

K is the Kalman gain obtained by

n

T

T T -1
K,=PC, (Cn P, Cn+E{Sn2}Pn(4,4)+WJ (11)
and P, is the estimation error covariance obtained
from

P =APA +V -

n'n“'n

(. T e (12)
AP, Co| Co B, Co+ E{SIP,(44)+W | Co P4,
and P, (4,4) is the 4 - 4 element of P,.
Upon substitution, these two equations yield:
T/ _ T -1
K, =PC, (CW P C,,+P,,(4,4)+Wj (13)
and
Pn+l = AnPnA){ +V -
(14)

-1
_T(_ _T _
A,P,C, (C,, P,C, +Pn(4,4)+W] Cn P A

Due to unobservability problems, we have modified

- - , .
C to C =[Ly, ,,»,,.7,] where y, isazero mean
noise with a very small variance. This also helps to
guarantee the error covariance matrix P, does not

stop prematurely. In our simulation, a computer
generated value for y, is used.

Under this condition, equation (10) gives us the
minimum variance estimate of the parameters a,
b,c,andm.

After parameter estimation with EKF, the original
message is recovered by:

A A

1, lf(Tn —-a-bT, | —cTnzlj/m 20

A

A

Sy = (15)

-1, lf(Tn —a-bT | —cTnzlj/m <0

Two well known chaotic maps have been used in
these experiments; the quadratic and the logistic
map. The BER performance for different SNRs is
evaluated and compared to that of the original
CPPM. The normalized error between the actual
value and the estimated value of m is also given. In
the following section, we describe the simulation set
up and the results obtained.

4. SIMULATION EXPERIMENTS

The quadratic map used is x,,, =x. —g where we
selected g =2, and the logistic map wused is
x,,, =gx,(1-x,), where g=3.741. We computed

the BER as the ratio of the number of samples that
were incorrectly decoded to the total number of
samples. The SNR was determined as the ratio of the
signal power to the channel noise power. For each of
these maps, the BER is computed for different values
of the SNR and is compared to the simulated BER
performance obtained with CPPM (Rulkov, et al.,
2001). The BER vs. SNR for the quadratic map is
given in Figure 1. The BER vs. SNR for the logistic
map is shown in Figure 2.

For both maps, we can see that the BER of our
scheme is competitive with that of CPPM. For high
SNRs, which correspond to low noise power, CPPM
performs slightly better than our scheme. This is
predictable as the receiver at CPPM has the exact
value of the parameter and our scheme does not (we
generate  estimates). For low SNRs, which
correspond to high noise power, our scheme
performs slightly better than CPPM. This is due to
the fact that noise has corrupted the received signal
and the parameters at the CPPM receiver do not
match exactly that of the transmitted signal any
more. However, due to its noise reduction power,
EKF has been able to reduce the noise and therefore
resulted in a better estimate.

This shows that we have been able to recover the
message as an unintended third party using this new
scheme. We have also plotted the error resulting
from the estimation of m. Shown in Figure 3 is the
normalized error for the quadratic map, and in Figure
4 is the normalized error for the logistic map. It is
clear that this error is very small (in the order of
10°) and consequently, the estimation was
successful. We have therefore achieved our goal.
Figures 5-10 show the normalized error between the
estimate and the true value for the parameters of the
chaotic map by EKF.
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Table 1. Error resulting from estimating the degree of the chaotic map

Chaotic map 1™ order 2™ onder 3 order 4% order 5™ ander

Quadraic; 17 0.0084 1026004 9 15¢-005 121e004 133 004
uadratic: 175 0.0367 8 S6e-005 £ 51e-005 £ 24 6005 7 516005
Quadratic: 177 0.0081 1.126-004 1206 004 131e-004 181e- 004
Quadraic: 15 0.0901 5 B70.005 731e-005 87160035 §.01e- 003
Quadratic: 185 0.0111 2 14e-004 2706004 151e-004 122 004
Ouadraic: 158 0.0308 9 15e-003 5 21e-005 5148003 7 306003
Quadratic: 19 0.0042 5 Ode-003 7 16e-005 7126005 6 .61e- 005
Quadraic; 195 0.0122 3 [13e-004 3 21e-004 177004 1256 004
uadratic: 198 0.0015 0 70e-005 2 18e-005 2076005 8 33e- 005
Quadraic: 199 0.0026 10%e-004 5 33e-005 9 23e-0035 7 #5e-005
Logistic: 3741  0.0031 0 13e-005 15%s 004 4450004 4 326004
Logistic: 38 0.0056 1716004 1542004 1106004 1.42¢- 004
Logistic: 385 0.0012 £ [176-005 4 456005 4326005 3 316003
Logistic: 39 0.0017 5 13¢-003 £ 028 -005 8756003 8 616003
Logistic: 303 0.0024 0 3fe-005 £ 156-005 7106005 1.91e- 004
Cubic: -2.3 0.0715 1.126-004 9 61e-005 5246005 6.71e- 005




The third party intrusion scheme assumes no
knowledge of the chaotic map used which implies no
knowledge of the degree of the map. So how did we
know that we can use an EKF fed with a second
order approximation in the above simulation? The
answer to this question is that the first task to be
performed by our intrusion scheme is the estimation
of the degree of the chaotic map. This is done by
using a bank of EKFs placed at the receiver, each
having polynomial of different degrees. We provided
a set of simulation experiments to show that these
simulations can be done. In this simulation, we
consider a bank of 5 EKFs each having polynomial
with degree varying from 1 to 5. The test set that we
use consists of 16 different maps: 10 quadratic maps
x,,=x.—g (where g=1.7, 1.75, 1.77, 1.8, 1.85,
1.88, 1.9, 195, 1.98, 1.99), 5 logistic maps
x,,, =gx,(1-x,), (where g=3.741, 3.8, 3.85, 3.9,

3.93) and 1 cubic map x,,6 =gx (1-x'), (where

g=-2.3). In each case, the EKF having the

polynomial whose degree corresponds to that of the
map leads to the minimum error

l N
(g—ﬁ[zz;

order. This is illustrated in Table 1. With the degree
of the map successfully estimated, we have
completed the set of tasks that need to be performed
for the effective recovery of the transmitted message
by an unintended receiver.

y,—¥|, N=10000) with the smallest

5. CONCLUSION

In a previous paper, some security issues related to
the use of chaotic-pulse-position modulation were
considered. It was shown that it is possible to recover
the message as an unintended third party without
knowing the initial state or the chaotic map used to
transmit the message. In this paper, which is an
extension of our previous work, we have shown that
it is possible to recover the original message based
on less knowledge of the underlying modulation
dynamics. Experimental results obtained for two
major chaotic maps; the quadratic and the logistic

maps truly question the security feature of CPPM. In
conclusion we need to point out that the goal of our
research is not to describe CPPM as a poor
modulation scheme. However, we hope that our
contribution will point out to a security risk and
therefore will result in more research to increase the
security of this communication scheme.
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