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Abstract: We propose a novel control scheme for teleoperators consisting of
a pair of multi-degree-of-freedom (DOF) nonlinear robotic systems under a
constant communication time delay. By passifying the communication and control
blocks together, the proposed control scheme guarantees energetic passivity of
the closed-loop teleoperator in the presence of parametric uncertainty and a
constant communication delay without relying on widely utilized scattering or
wave formalisms. The proposed control scheme also achieves master-slave position
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1. INTRODUCTION

Energetically, a closed-loop teleoperator is a two-
port system (see figure 1). Thus, the foremost
goal of the control (and communication) design is
to ensure interaction safety and coupled stability
(Colgate, 1994) when it is mechanically coupled
with a broad class of slave environments and hu-
man operators. For this, energetic passivity (i.e.
mechanical power as the supply rate (Willems,
1972)) of the closed-loop teleoperator has been
widely utilized as the control objective (Anderson
and Spong, 1989; Niemeyer and Slotine, 1991;
Lawrence, 1993; Stramigioli et al., 2002; Lee and
Li, 2003a; Lee and Li, 2002). This is because 1)
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the feedback interconnection of the passive teleop-
erator with any passive environments/humans is
necessarily stable (Colgate, 1994); and 2) in many
cases, slave environments are passive (e.g. pushing
a wall) and humans can be assumed as passive
systems (Hogan, 1989). Also, passive teleopera-
tor would be potentially safer to interact with,
since the maximum extractable energy from it
is bounded, thus, possible damages on environ-
ments/humans are also limited.

How to ensure passivity of the time-delayed bi-
lateral teleoperation was a long standing prob-
lem. In (Anderson and Spong, 1989), scatter-
ing theory was proposed to passify the delayed-
communication, and passivity of the teleoperator
is ensured for arbitrary constant time-delay. In
(Niemeyer and Slotine, 1991), this result is ex-
tended and the notion of wave variables was intro-
duced. Since these two seminal works, scattering



theory (or wave formalism) has been virtually the
only way to enforce passivity of the delayed bilat-
eral teleoperation (Stramigioli et al., 2002; Chopra
et al., 2003; Yokokohji et al., 1999; Niemeyer and
Slotine, 2004).

In this paper, we propose a novel bilateral con-
trol scheme for teleoperators consisting of a pair
of multi-DOF nonlinear robots under a constant
communication time delay. By passifying the com-
bination of the communication and control blocks
together (see figure 1) rather than achieving
their individual passivity as in scattering based
schemes, the proposed control scheme guarantees
energetic passivity of the closed-loop teleoperator
in the presence of parametric uncertainty and
constant time-delay of arbitrary magnitude. The
proposed control scheme also ensures asymptotic
convergence of the position coordination which is
guaranteed only implicitly in the scattering based
approaches. The proposed control scheme is also
symmetric, i.e. the master and slave control and
communication modules are of the same form.

The rest of this paper is organized as follows.
The control problem is formulated in section 2. In
section 3, control law is designed and its properties
are detailed. Simulations are performed in section
4 and concluding remarks are given in section 5.

2. PROBLEM FORMULATION

2.1 Plant

Let us consider a nonlinear mechanical teleopera-
tor consisting of a pair of n-DOF robotic systems:

M1(q1)q̈1(t) + C1(q1, q̇1)q̇1 = T1(t) + F1(t), (1)

M2(q2)q̈2(t) + C2(q2, q̇2)q̇2 = T2(t) + F2(t), (2)

where qi, Fi, Ti ∈ <n are configurations, hu-
man/environmental force, and controls, andMi(qi),
Ci(qi, q̇i) ∈ <n×n are symmetric and positive-
definite inertia matrices and Coriolis matrices s.t.
Ṁi(qi)−2Ci(qi, q̇i) are skew-symmetric (i = 1, 2).

Considering a constant time-delay τ ≥ 0 (see
figure 1), we will define the controls T1(t), T2(t)
in (1)-(2) to be functions of the current and
stored local information and the remote informa-
tion delayed by the constant time-delay τ ≥ 0 s.t.
Ti(t) := Ti(qi(t), q̇i(t), qi(t − τ), q̇i(t − τ), qj(t −
τ), q̇j(t− τ)) ∈ <n, where i, j ∈ {1, 2}, i 6= j.

2.2 Control Objectives

We would like to design the controls T1(t), T2(t)
to achieve the following master-slave position co-

ordination: when (F1(t), F2(t)) = 0,

qE(t) := q1(t)− q2(t)→ 0, t→∞. (3)
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Fig. 1. Closed-loop teleoperator as a two-port system.

We would also like to achieve the bilateral force

reflection: when (q̈1(t), q̈2(t), q̇1(t), q̇1(t))→ 0,

F1(t)→ −F2(t). (4)

For safe interaction and coupled stability, we
would like to enforce the following energetic pas-

sivity condition for the two-port teleoperator (1)-
(2): there exists a finite constant d ∈ < s.t. ∀t ≥ 0,

∫ t

0

[
FT
1 (θ)q̇1(θ) + F T

2 (θ)q̇2(θ)
]
dθ ≥ −d2, (5)

i.e. maximum extractable energy from the two-
port closed-loop teleoperator is always bounded.
Let us also define controller passivity condition
(Lee, 2004; Lee and Li, 2003b) : there exists a
finite constant c ∈ < s.t. ∀t ≥ 0,

∫ t

0

[
TT
1 (θ)q̇1(θ) + T T

2 (θ)q̇2(θ)
]
dθ ≤ c2, (6)

i.e. energy generated by the two-port controller
(figure 1) is always limited.

Lemma 1. (Lee, 2004; Lee and Li, 2003b) For the
mechanical teleoperator (1)-(2), controller passiv-
ity (6) implies energetic passivity (5).

Proof: Let us define the total kinetic energy

κf (t) :=
1
2 q̇

T
1 M1(q1)q̇1 +

1
2 q̇

T
2 M2(q2)q̇2, (7)

then, using the dynamics (1)-(2) and its skew-
symmetric property, we have

d

dt
κf (t) = T T

1 q̇1 + TT
2 q̇2 + FT

1 q̇1 + FT
2 q̇2. (8)

Thus, by integrating above equality with the con-
troller passivity condition (6) and the fact that

κf (t) ≥ 0, we have, ∀t ≥ 0,
∫ t

0
[FT

1 (θ)q̇1(θ) +
FT
2 (θ)q̇2(θ)]dθ ≥ −κf (0)− c2 =: −d2.

3. CONTROL DESIGN

To achieve coordination (3), force reflection (4),
and passivity (5), we design the master and slave
controls T1(t), T2(t) to be

T1(t) := −(Kd + 2Kv + Pε)q̇1(t)

+Kv q̇1(t− τ) +Kv q̇2(t− τ)

−Kpq1(t− τ) +Kpq2(t− τ), (9)

T2(t) := −(Kd + 2Kv + Pε)q̇2(t)

+Kv q̇2(t− τ) +Kv q̇1(t− τ)

−Kpq2(t− τ) +Kpq1(t− τ), (10)



whereKv,Kp ∈ <n×n are symmetric and positive-
definite proportional-derivative (PD) control gains,
Kd ∈ <n×n is the the dissipation gain to enforce
energetic passivity and designed to satisfy the
following “gain-setting” condition s.t.

Kd −
2sinwτ

w
Kp < 0, ∀w ∈ <, (11)

(i.e. Kd − 2sinwτ
w

Kp is positive-semidefinite), and
Pε ∈ <n×n is an additional dissipation gain (e.g.
inherent device damping) to be exploited for the
position coordination proof in theorem 2. Since
τ − sinwτ

w
≥ 0, ∀w ∈ <, one possible solution for

the condition (11) is given by

Kd = 2Kpτ. (12)

Theorem 2. Consider the mechanical teleoperator
(1)-(2) under the controls (9)-(10) designed to
satisfy the gain-setting condition (11).

1) The closed-loop teleoperator is passive (i.e. sat-
isfies (5)) regardless of parametric uncertainty in
(1)-(2) (i.e. robust passivity (Lee and Li, 2003b));

2) Suppose that the human operator and slave
environment are energetically passive, i.e. ∃ finite
constants d1, d2 ∈ < s.t.

∫ t

0

−FT
? (θ)q̇?(θ)

︸ ︷︷ ︸

mechanical power inflow to

human/environment

dθ ≥ −d2?, (13)

∀t ≥ 0 (? ∈ {1, 2}), i.e. the maximum ex-
tractable energy from them are bounded. Then,
q̇1(t), q̇2(t) ∈ L∞. Thus, if the human and
slave environment are L∞-stable input-output
impedance maps, F1(t), F2(t) ∈ L∞;

3) Suppose that the human and slave environ-
ment are passive in the sense of (13). Suppose

further that M jk
i (qi),

∂M
jk

i
(qi)

∂qm
i

and
∂2M

jk

i
(qi)

∂qm
i
∂ql

i

are

all bounded, where M jk
i (qi) and qmi are the jk-th

and the m-th components of Mi(qi) and qi. Then,
qE(t) = q1(t)−q2(t) is bounded ∀t ≥ 0. Moreover,
if (F1(t), F2(t)) = 0, (qE(t), q̇E(t))→ 0 (i.e. (3) is
achieved);

4) If (q̇1(t), q̇2(t), q̈1(t), q̈2(t)) → 0, then, F1(t) →
−F2(t)→ −Kp(q1(t)−q2(t)) (i.e. (4) is achieved).

Proof: 1) Let us denote the mechanical power
generated by the controls (9)-(10) by

sc(t) : = T T
1 (t)q̇1(t) + T T

2 (t)q̇2(t)

= sv(t) + sp(t)− P (t),

where P (t) is the following quadratic form:

P (t) :=

(
q̇1(t)
q̇2(t)

)T [
Pε 0
0 Pε

](
q̇1(t)
q̇2(t)

)

, (14)

and the terms sv(t) and sp(t) are defined by

sv(t) :=− 2q̇T1 Kv q̇1 + q̇T1 Kv
¯̇q1 + q̇T1 Kv

¯̇q2

− 2q̇T2 Kv q̇2 + q̇T2 Kv
¯̇q2 + q̇T2 Kv

¯̇q1, (15)

sp(t) :=− q̇T1 Kdq̇1 − q̇T1 Kpq̄1 + q̇T1 Kpq̄2

− q̇T2 Kdq̇2 − q̇T2 Kpq̄2 + q̇T2 Kpq̄1, (16)

where we denote (?(t),?(t− τ)) by (?, ?̄).

Similar to the Lyapunov-Krasovskii functionals
(Gu and Niculescu, 2003), we define

Vv(t) :=
1
2

∫ 0

−τ

q̇TL (t+ θ)Kv q̇L(t+ θ)dθ ≥ 0, (17)

where qL(t) := q1(t) + q2(t) ∈ <n, and its time-
derivative is given by

d

dt
Vv(t) =

1
2

[
q̇TL (t)Kv q̇L(t)− q̇TL (t− τ)Kv q̇L(t− τ)

]
.

Then, using the above equality and the fact that

2
[
q̇T1 Kv q̇1 + q̇T2 Kv q̇2

]
≥ q̇TLKv q̇L, (18)

the supply rate sv(t) in (15) can be written as

sv(t) ≤ −q̇TLKv q̇L + q̇TLKv
¯̇qL

= − 1
2 q̇

T
LKv q̇L + q̇TLKv

¯̇qL − 1
2
¯̇qTLKv

¯̇qL
︸ ︷︷ ︸

=−
1
2 [q̇L−

¯̇qL]
T
Kv[q̇L−

¯̇qL]

+ 1
2
¯̇qTLKv

¯̇qL − 1
2 q̇

T
LKv q̇L

︸ ︷︷ ︸

=−
d
dt

Vv(t)

≤ − d

dt
Vv(t), (19)

where we denote (?(t),?(t−τ)) by (?, ?̄). Thus, by
integrating the inequality (19), we have

∫ t

0

sv(θ)dθ ≤ −Vv(t) + Vv(0). (20)

Let us consider the supply rate sp(t) in (16). Then,
using the definition of qE(t) = q1(t)− q2(t) in (3)
and the following inequality similar to (18) s.t.

2
[
q̇T1 Kdq̇1 + q̇T2 Kdq̇2

]
≥ q̇TEKdq̇E , (21)

we have

sp(t) ≤ − 1
2 q̇

T
E(t)Kdq̇E(t)− q̇TE(t)KpqE(t− τ)

= − 1
2 q̇

T
E(t)Kdq̇E(t)−

d

dt
Vp(t)

+ q̇TE(t)Kp

[∫ t

0

q̇E(θ)dθ −
∫ t−τ

0

q̇E(θ)dθ

]

︸ ︷︷ ︸

=qE(t)−qE(t−τ)

, (22)

where Vp(t) is the spring potential energy, i.e.

Vp(t) :=
1
2q

T
E(t)KpqE(t). (23)

Let us define truncated signal ˜̇qtE(θ) of q̇E(t) s.t.

˜̇qtE(θ) :=

{

q̇E(θ) if θ ∈ [0, t]

0 otherwise
, (24)

with its Fourier transform given by V t
E(w) =

∫ +∞

−∞

˜̇qtE(θ)e
−jwθdθ =

∫ t

0
q̇E(θ)e

−jwθdθ (j =
√
−1).

Then, using and Parseval’s identity (Goldberg,
1961), the gain-setting condition (11), and the



fact that Ṽ t∗
E (w)KdṼ

t
E(w) and Ṽ t∗

E (w)KpṼ
t
E(w)

are even-functions w.r.t. w, we have: ∀t ≥ 0,
∫ t

0

sp(θ)dθ ≤ −Vp(t) + Vp(0)

− 1
2

∫ +∞

−∞

Ṽ t∗
E (w)KdṼ

t
E(w)dw

+

∫ +∞

−∞

Ṽ t∗
E (w)Kp

1− e−jwτ

jw
Ṽ t
E(w)dw

= −Vp(t) + Vp(0)

− 1
2

∫ +∞

−∞

Ṽ t∗
E (w)

(

Kd −
2sinwτ

w
Kp

)

Ṽ t
E(w)dw

≤ −Vp(t) + Vp(0), (25)

where we denote the complex conjugate transpose
of a complex vector ? ∈ C

n by ?∗ (i.e. ?∗ = ?̄T ).

Thus, by summing up (20) and (25) with the fact
that Vv(t) ≥ 0 and Vp(t) ≥ 0, ∀t ≥ 0, we can prove
controller passivity (6) s.t. for all ∀t ≥ 0,

∫ t

0

TT
1 (θ)q̇1(θ) + T T

2 (θ)q̇2(θ)dθ

=

∫ t

0

[sv(θ) + sp(θ)] dθ −
∫ t

0

P (θ)dθ

≤ Vv(0) + Vp(0) =: c2, (26)

where Vv(0) will be zero if (q̇1(t), q̇2(t)) = 0 ∀t ∈
(−∞, 0] and Vp(0) is the initial spring potential
energy. Thus, from lemma 1, energetic passivity
(5) follows. Since controller passivity (6) doesn’t
depend on the parameters in (1)-(2), this achieved
passivity is robust against parametric uncertainty.

2) By integrating the equality (8) with the con-
troller passivity (26) and the human/slave envi-
ronment passivity (13), we have, for all t ≥ 0,

κf (t) + Vv(t) + Vp(t) (27)

≤ κf (0) + Vv(0) + Vp(0)−
∫ t

0

P (θ)dθ + d21 + d22.

where P (t) ≥ 0 (14). Therefore, κf (t) is bounded,
thus, q̇1(t), q̇2(t) are also bounded ∀t ≥ 0 (i.e.
q̇1(t), q̇2(t) ∈ L∞). Moreover, if the human
and slave environment are L∞-stable impedance
maps, F1(t), F2(t) ∈ L∞.

3) Boundedness of qE(t) = q1(t) − q2(t) is a
direct consequence of the inequality (27) and the
definition of Vp(t) in (23).

First step of the convergence proof is to show that
(q̇1(t), q̇2(t)) → 0. Suppose that F1(t), F2(t) = 0,
∀t ≥ 0. Then, from (27) with d1 = d2 = 0 and the
boundedness of Pε,M1(q1),M2(q2), we have:

κf (t) ≤ κf (0) + c2 −
∫ t

0

P (θ)dθ

≤ κf (0) + c2 − γ

∫ t

0

κf (θ)dθ, (28)

∀t ≥ 0, where P (t) and c are defined in (14) and
(26), and γ > 0 is a constant scalar. Here, since

κf (t) ≥ 0, the term
∫ t

0
κf (θ)dθ is monotonically

increasing and upper bounded, thus, it converges
to a limit. Therefore, following Barbalat’s lemma,
if κf (t) is uniformly continuous, κf (t) will also
converge to 0 (i.e. (q̇1(t), q̇2(t)) → 0). To show
this, let us consider d

dt
κf (t). Then, from (8) with

F1(t) = F2(t) = 0, we have d
dt
κf (t) = T T

1 (t)q̇1(t)+
TT
2 (t)q̇2(t), where q̇1(t), q̇2(t) are bounded (from

item 2 of this theorem), and T1(t), T2(t) are
also bounded from their definitions (9)-(10) with
bounded qE(t) = q1(t)− q2(t) (from item 2 of this
theorem). Thus, κf (t) is uniformly continuous,
therefore, κf (t)→ 0 and (q̇1(t), q̇2(t))→ 0.

Second step is now to show (q̈1(t), q̈2(t)) → 0 to
establish q1(t)→ q2(t). Let us consider the teleop-
erator dynamics (1)-(2) with F1(t) = F2(t) = 0,
where, as shown in the above paragraph, the con-
trols T1, T2 in (9)-(10) are bounded. Also, from

the boundedness assumption of
∂M

jk

i
(qi)

∂qm
i

, the Cori-

olis terms Ci(qi, q̇i)q̇i (i = 1, 2) in (1)-(2) are
bounded. Thus, the accelerations q̈1(t), q̈2(t) are
also bounded ∀t ≥ 0. Now, let us consider the
acceleration q̈i(t) in (1)-(2) (with Fi(t) = 0):

q̈i = −M−1
i (qi)Ci(qi, q̇i)q̇i +M−1

i (qi)Ti(t), (29)

i = 1, 2. Then, the time-derivatives of the terms in
the right hand side of (29) are all bounded due to
the boundedness of q̈i(t), q̇i(t), qE(t),

d
dt
M−1

i (qi) =

−M−1
i (qi)

d
dt
Mi(qi)M

−1
i (qi) (from the bounded-

ness assumption of
∂M

jk

i
(qi)

∂qm
i

) and d
dt
Ci(qi, q̇i)

(from the boundedness assumption on
∂2M

jk

i
(qi)

∂qm
i
∂ql

i

).

This implies that the right hand side of (29) is
uniformly continuous. Thus, q̈1(t), q̈2(t) are also
uniformly continuous. Therefore, following Bar-
balat’s lemma, (q̈1(t), q̈2(t))→ 0 as (q̇1(t), q̇2(t))→
0. Moreover, from the dynamics (1)-(2) with
(q̈1(t), q̈2(t), q̇1(t), q̇2(t))→ 0 and F1(t) = F2(t) =
0 t ≥ 0, we have Kp(q1(t) − q2(t)) → 0, i.e.
q1(t)→ q2(t), since Kp is positive-definite.

4) Suppose that (q̇1(t), q̇2(t), q̈1(t), q̈2(t)) → 0.
Then, from the dynamics (1)-(2) with the controls
(9)-(10), we have:

F1(t)→ −Kp(q1(t)− q2(t)),

F2(t)→ −Kp(q2(t)− q1(t)), (30)

where we use q̇i(t − τ) → 0 and qi(t − τ) → qi(t)
as (q̇1(t), q̇2(t), q̈1(t), q̈2(t))→ 0.

In the human/environment passivity condition
(13), the negative sign in the integration comes
from the fact that the power inflows to those sys-
tems are given by (−Fi(t))

T
q̇i(t) where −Fi(t) is

the reaction force. Also, boundedness of M jk
i (qi),

∂M
jk

i
(qi)

∂qm
i

and
∂2M

jk

i
(qi)

∂qm
i
∂ql

i

can be achieved if the

master and slave configuration spaces are com-
pact and their inertia matrices are smooth. This
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Fig. 2. Stable interaction with master-slave position co-
ordination and force reflection under 2sec time-delay.

condition is satisfied in many practical robots (e.g.
revolute joint robots).

The proposed control law (9)-(10) requires sym-
metric delays (i.e. forward and backward delays
are the same) and their accurate estimates. To
relax this requirement which might limit appli-
cability of the proposed scheme, we recently ex-
tend it to the case where the delays are constant
but asymmetric and their estimate are inaccurate.
Due to the space limitation, we don’t include it
into this paper and leave it for future publication.

The key step in the proof of theorem 2 is the
Parseval’s identity in (25) which we assume to be
true. A sufficient condition for this is that q̇E(t) ∈
L2 (Goldberg, 1961). As the following lemma
shows, this condition can be guaranteed if the
human and slave environment are passive in the
sense of (13), and the Coriolis matrices in (1)-(2)
are bounded w.r.t. (i.e. regardless of) q1, q2. The
Parseval’s identity was also used in (Colgate and
Schenkel, 1997) to ensure the energetic passivity
of haptic-interfaces under zero-order-hold.

Lemma 3. Suppose that the human and slave en-
vironment are passive in the sense of (13) and de-
fine L∞-stable impedance maps. Suppose further

that
∂M

jk

i
(qi)

∂qm
i

are bounded, where M jk
i (qi) and qmi

are the jk-th and the m-th components of Mi(qi)
and qi (i = 1, 2). Then, if q̇1(0), q̇2(0), qE(0) are
bounded, q̇1(t), q̇2(t) ∈ L2. Thus, q̇E(t) ∈ L2, and
the Parseval’s identity (25) is justified.

Proof: If q̇1(t), q̇2(t), qE(t) are bounded, Ti(t) will
be bounded (from (9)-(10)), and also Fi(t) will
be bounded, since the human and slave environ-
ment are assumed to be L∞-stable impedance
map (i = 1, 2). Moreover, from (1)-(2) with the

bounded
∂M

jk

i
(qi)

∂qm
i

(i.e. the Coriolis matrices are

bounded functions w.r.t q1, q2), q̈1(t), q̈2(t) will
also be bounded. Therefore, if q̇1(0), q̇2(0), qE(0)
are bounded, q̈1(0), q̈2(0) are also bounded.

With these bounded q̇i(0), q̈i(0), qE(0) (i = 1, 2),
we can find t̄ > 0 for a sufficiently large M̄ > 0
s.t. ∀t ∈ Ī := [0, t̄),

∫ t

0
P (θ)dθ < M̄ , where

P (t) is given in (14). Thus, on Ī, the Parseval’s
identity (25) holds and, following the inequality
(27), q̇1(t), q̇2(t), qE(t) are all bounded.

Suppose that q̇1(t) /∈ L2 or q̇2(t) /∈ L2. Then,

because
∫ t

0
P (θ)dθ is continuous on Ī (since

q̇1(t), q̇2(t) are bounded ∀t ∈ Ī) and monotonically
increasing ∀t ≥ 0, there should exist to and a
sufficiently large M̄ > 0 s.t. 0 < to < t̄ and
M <

∫ t0

0
P (θ)dθ < M̄ where M := κf (0)+Vv(0)+

Vp(0) + d21 + d22. However, this is not possible,
because, on the interval Ī, the Parseval’s identity
(25) holds, thus, from (27), we have: for all t ∈ Ī,

0 ≤κf (t) + Vv(t) + Vp(t)

≤κf (0) + Vv(0) + Vp(0) + d21 + d22 −
∫ t

0

P (θ)dθ.

This implies that
∫ t

0
P (θ)dθ ≤M ∀t ∈ Ī (i.e. P (t)

should be uniformly bounded by M on Ī and can-
not blow up) and contradicts with the assumption

that M <
∫ t0

0
P (θ)dθ. Therefore, q̇1(t), q̇2(t) ∈ L2

and q̇E(t) ∈ L2. Thus, following (Goldberg, 1961),
Parseval’s identity (25) is valid ∀t ≥ 0.

4. SIMULATION

We consider a pair of 2-links planar robots. We
also model the human as PD-type position track-
ing controller (spring+damper). To evaluate the
contact stability, we implement a lightly damped
wall in the slave environment at x = 0.35m react-
ing only along the x-direction. We set the gains
Kd and Kp in (9)-(10) following the condition
(12), while the dissipation gain Pε is set to be
0.01Kd. We also impose time-delay τ = 2sec.
During 0 − 50sec, the human operator stabilizes
the slave before the wall. Then, 50− 150sec, s/he
pushes the slave into the wall, and 150 − 200sec,
s/he retracts the slave from the wall.

As shown in figure 2, interaction with the wall
is stable with 2sec time-delay. Master-slave posi-
tion coordination is also achieved when the slave
does not interact with the wall. When the slave
interacts with the wall, slave force is reflected to



the human through the deformation of the spring
gain Kp in the control (9)-(10). A force peak in
figure 2 around 58sec occurs when the human
starts moving the master. This is because of the
dissipation gain Kd in (9)-(10), which, according
to the gain-setting condition (12), needs to be
high when we want to achieve high spring gain
Kp for better force reflection. If we decrease Kd to
mitigate this force peak, we also need to decrease
Kp to satisfy the gain-setting condition (12), then,
fidelity of force reflection would be compromised.
Thus, under the gain-setting condition (12) (i.e.
passivity requirement), we have bandwidth trade-
off between motion agility and force reflection.

5. CONCLUSIONS

We propose a novel passive bilateral control law
for nonlinear mechanical teleoperators under a
constant communication time-delay. In contrast
to widely-utilized scattering theory (or wave for-
malism) based approaches where the control and
communication blocks are passified individually
and position coordination is ensured only implic-
itly, the proposed control scheme enforces en-
ergetic passivity of the closed-loop teleoperator
by passifying the combination of the communi-
cation and control blocks, and also, by explic-
itly communicating position signals, ensures the
master-slave position coordination when there is
no mismatched environment and human forces.
The proposed scheme also achieves force reflec-
tion in static manipulations. Thus, performance
and transparency are enhanced substantially with
guaranteed interaction stability. The proposed
control scheme is symmetric in the sense that
the communication and control structure for the
master and slave systems have the same forms.
Simulation is performed to validate the properties
of the proposed control scheme.
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