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Abstract: We consider a new state-space parametrization for linear time series models:
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1. INTRODUCTION

In this paper a new state-space parametrization for
linear time series models is introduced: data driven co-
ordinates (DDC). DDCprovides an atlas of uncountably
many overlapping charts for the manifold of (stable)
p×m transfer functions of fixed McMillan degreen.
Each coordinate neighborhood is a generic subset of
this manifold. Hence,DDChas similar desirable prop-
erties as more traditional overlapping parametrizations
and classical canonical forms. Moreover, the choice
of charts out of an uncountable set of possible charts
can be done in a data-driven manner in the course of
the estimation procedure in a very simple way. In this
respect,DDCresembles the parametrization by data

driven local coordinates (DDLC); while (DDLC) still
provides slightly better results, this parametrization
has the advantage of not beinglocal. The application
of DDCto maximum likelihood identification is exem-
plified. The charts we use are by no means the only
possible ones and we conjecture that there is a wide
margin for improvement here.

Let us denote byW p,m
n the set of stablep×m con-

tinuous time transfer functions of McMillan degree
n with the topology induced byH 2

+. Recall that sta-
bility amounts to analyticity in the right half plane
C+ andH 2

+ denotes the Hardy space of stable matrix
valued functions with its usual inner product. Un-
less explicitly stated otherwise, all statements are to
be understood in continuous time in the sequel. By



Sc ⊆ Rn2+mn we denote the set of stable and control-
lable real matrix pairs (e.g.(A1,B1)) and bySm we
denote the set of all stable and minimal state-space
realizations (e.g.(A1,B1,C1,D1)⊆Rn2+n(m+p)+mp). It
is easily seen thatSc is generic (i.e. open and dense) in
the set of all stable matrix pairs and thatSm is generic
in the set of all stable state-space realizations.

Consider the mappingπ attaching transfer functions to
system matrices:

π : Sm → W p,m
n

(A1,B1,C1,D1) 7→
(

A1 B1

C1 D1

)
= C1(sI−A1)−1B1 +D1

(1)

As is easily seen,π is continuous and it is an open
mapping (where the relative topology corresponding
to the Euclidean norm is considered inSm); see e.g.
(Ribarits, 2002).

The paper is organized as follows: In Section 2 we
introduce a continuous time parametrization. Section
3 then introduces two variants ofDDC: First, the con-
tinuous time parametrization derived in Section 2 is
translated to the discrete time case by means of the
bilinear transform, leading to what is calledDDCcont.
A second approach uses the same (state) feedback
structure as in the continuous time case to derive a
parametrization directly in discrete time (DDCdis). In
Section 4 simulation experiments are presented, where
DDCis compared to more common parametrizations in
a maximum likelihood identification setting. Finally,
Section 5 contains the conclusions.

2. PARAMETRIZATION IN CONTINUOUS TIME

Although in most applications we deal with real coef-
ficient matrices, we develop our results for the com-
plex case. So, ifA is a complex matrix,A∗ denotes
its transpose conjugate, whileA′ denotes its transpose.
Also note that a rational matrix valuedm×m transfer
functionQ(s) is called inner if it is stable and satisifies
Q∗(s)Q(s) = Im, wheres= iω, for (almost all)ω ∈R;
notice that we haveQ∗(s) = Q(−s)′.

We will need a simple result in interpolation theory
(see (Ball et al., 1990) for the formulation of the
problem). LetA ∈ Cn×n be stable, i.e. its eigenvalues
are in the open left half planeC−, and letU ∈ Cn×m

be given. Moreover, letΓ denote any closed curve
around the spectrum of−A∗ which stays entirely in
C+. We want to find the solutions to the generalized
interpolation problem, i.e. we want to find an inner
functionQ(s) of fixed McMillan degreen such that

1
2πi

∫

Γ
Q(s)U∗(sI+A∗)−1ds= V∗ Q(∞) = Im (2)

Lemma 1.Let (A ,U,V) be given, whereA ∈ Cn×n is
stable andU,V ∈Cn×m. Assume that the solutionP to
the Lyapunov equationAP+ PA∗+UU∗−VV∗ = 0
is positive definite. Then there exists a unique inner

Q(s) of McMillan degreen satisfying the interpolation
conditions (2) and it is given by

Q(s) =

(
−A∗−BU∗ B

− (U−V)∗ I

)
B = P−1(U−V) (3)

Moreover,P−1 is the controllability Gramian corre-
sponding to the pair(−A−BU∗,B).

PROOF. See (Gombani and M.Olivi, 2000).

The following Sylvester equation will be of great
importance below:

A1Y +YA∗+B1U
∗ = 0 (4)

Theorem 2.Let the matrix pair(A ,U) ∈ Sc be given.
Define the setV(A ,U) of transfer functions and the
functionφ(A ,U) as follows:

V(A ,U) := {W(s) =

(
A1 B1

C1 D1

)
∈W p,m

n :

the solutionY in (4) is non singular} (5)

φ(A ,U) :

{
V(A ,U) → Rn(m+p)+pm

W(s) 7→ (Y −1B1,C1Y ,D1)

Then the family(V(A ,U),φ(A ,U),(A ,U) ∈ Sc) forms
an atlas for the setW p,m

n whose topology coincides
with the one induced by the topology ofH 2

+ and each
coordinate neighborhoodV(A ,U) is generic inW p,m

n .
The inverse map is given by

φ−1
(A ,U)(B,C,D) =

(
−A∗−BU∗ B

C D

)
(6)

where the domain of definition is given by triples
(B,C,D) such that (6) is stable and minimal.

PROOF. Notice first that the spectra ofA1 and
σ(−A∗) are disjoint, and thus the solution to (4) is
well known to be unique; it is also easily seen that the
definition ofφ(A ,U)(W) is independent of the realiza-
tion and thus the function is well defined.

We claim thatφ(A ,U) is a homeomorphism between

V(A ,U) and an open subset ofRI n(m+p)+pm. To see
this, we use the Douglas-Shapiro-Shields factorization
W = WQ whereW is antistable andQ is inner and
the degree ofQ is minimal. It’s well known (and
simple to check) that, for any given realization ofQ,
we can choose a realization forW so that the pair
(A,B) is the same. Now, a realization forQ can be
chosen as in (3), whereB = P−1(U −V) and V is
given by (2). ThusV depends continuously onQ.
Thus so doP andB. Since the DSS factorization for
rational functions is continuous, we get thatB depends
continuously onW. But then, so doesA; as for C,
defining H(Q) = span{ξ∗(sI−A)−1B, and denoting



by PH(Q) the projection ontoH(Q), and using the well
known projection formula, we see that

PH(Q)W = 〈W,(sI−A)−1B〉= (CP)P−1(sI−A)−1B

and soC represents the projection ofW onto H(Q)
in the basis(sI−A)−1B, and thus it is a continuous
function ofW. The function is clearly injective (two
different functions cannot have the same realization).
Surjectivity is clear by construction. The inverse map
is thus well defined and it is given by (6). Continuity
is also obvious.

The setsV(A ,U) are open. In fact, for given(A ,U), the
set of state-space systems defined by the conditions
(4) anddetY = 0, is closed and algebraic. Hence, the
condition definingV(A ,U) yields an open and dense
set of state-space systems unless the set is empty. To
rule out the latter possibility, putA1 = A andB1 = U
(for given(A ,U)), which clearly yields a non singular
solution to (4). As the mappingπ in (1) is an open and
continuous mapping, this shows that the setV(A ,U) is
generic inW p,m

n for any given(A ,U) ∈ Sc.

If (A1,U1) and (A2,U2) define two charts such that
V(A1,U1) ∩V(A2,U2) 6= /0, the computation of the func-

tion φ(A1,U1) ◦φ−1
(A2,U2) entails the solution of the linear

system (4) and the inversion of this solution (which
exists by assumption). Thus the function is clearly
continuous and differentiable with its inverse.

Finally, we show that for anyW ∈ W p,m
n with

state-space realization(A1,B1,C1,D1) there exists a
V(A ,U) 3 W. Set P to be the solution toA1P +
PA∗1 + B1B∗1 = 0. Then, settingA := P−1A1P and
U := P−1B1, we obviously haveA1 = −PA∗1P−1−
B1B∗1P−1 =−A∗−B1U∗ and thusW ∈ V(A ,U).

3. PARAMETRIZATION IN DISCRETE TIME

We now discuss two possibilities to apply Theorem 2
to the discrete time case. LetZp,m

n denote the set of
discrete time stablep×m transfer functions of degree
n with the topology induced byH (∂D)2

+, the Hardy
space of discrete time stable matrix valued functions
with its usual inner product. Likewise, letZp

n denote
the set of discrete time stable and strictly minimum
phasep× p transfer functions of degreen induced
with the relative topology.

3.1 DDCcont

The following mapping is known under the termbilin-
ear transformation:

ρ1 : C→ C z 7→ 1−z
1+z

= s (7)

Note thatρ1 is a bijection on the compactified com-
plex plane (with inverseρ−1

1 (s) = z = 1−s
1+s) mapping

the complement of the closed unit disk onto the open
left half plane. Therefore, the mapping

Z(z) = W(ρ1(z))) (8)

preserves the stability and minimum-phase property.
In terms of state-space representations(Ac,Bc,Cc,Dc)
for W(s) and(A,B,C,D) for Z(z) the transformation
(8) can be chosen to be of the form given below:

Theorem 3.Let (Ac,Bc,Cc,Dc) be a (not necessar-
ily minimal) state-space representation of some (not
necessarily stable) continuous time transfer function
W(s) and letλi(Ac) 6= 1, i = 1, . . . ,n hold true. Then
(A,B,C,D) = ρ(Ac,Bc,Cc,Dc) is a state-space repre-
sentation of the discrete time transfer functionZ(z)
given in (8) where

ρ(Ac,Bc,Cc,Dc) = (A,B,C,D) (9)

A = (I +Ac)(I −Ac)−1 B =
√

2(I −Ac)−1Bc

C =
√

2Cc(I −Ac)−1 D = Dc +Cc(I −Ac)−1Bc

The mappingρ has the following properties:

(i) ρ is ahomeomorphismbetween the set of minimal
and stable (and strictly minimum phase) continuous
time systems and the set of minimal and stable (and
strictly minimum phase) discrete time systems.

(ii) ρ preserves observational equivalence (∼) for min-
imal systems:(Ac,Bc,Cc,Dc) ∼ (Ac,1,Bc,1,Cc,1,Dc,1)
⇔ ρ(Ac,Bc,Cc,Dc) ∼ ρ(Ac,1,Bc,1,Cc,1,Dc,1)

(iii) The controllability and observability Gramians
stay invariant under the transformationρ.

Its inverse is given by

ρ−1(A,B,C,D) = (Ac,Bc,Cc,Dc) (10)

Ac = (I +A)−1(A− I) Bc =
√

2(I +A)−1B

Cc =
√

2C(I +A)−1 Dc = D−C(I +A)−1B

PROOF. All results are well known. For a proof of
this particular Theorem see e.g. the proof of Theorem
A.4.1 in the appendix of (Ribarits, 2002).

Theorem 4.(DDCcont). Let the controllable and (dis-
crete time) stable matrix pair(Ad,Ud) be given and
let (A ,U) = ((I +Ad)−1(Ad− I),

√
2(I +Ad)−1Bd) be

the corresponding controllable continuous time stable
matrix pair. Furthermore, for any given(Ad,Bd,Cd,Dd),
let (A1,B1,C1,D1) = ρ−1(Ad,Bd,Cd,Dd) denote the
corresponding continuous time state-space matrices.
Define the setV(Ad,Ud) of transfer functions and the
functionφ(Ad,Ud) as follows:



V(Ad,Ud) := {Z(z) =

(
Ad Bd

Cd Dd

)
∈ Zp,m

n : the

solutionY in (4) is unique and non singular}

φ(Ad,Ud) :

{
V(Ad,Ud) → Rn(m+p)+pm

Z(z) 7→ (Y −1B1,C1Y ,D1)
(11)

Then the family (V(Ad,Ud),φ(Ad,Ud),(Ad,Ud) stable
and controllable) forms an atlas for the setZp,m

n whose
topology coincides with the one induced by the topol-
ogy of H (∂D)2

+ and each coordinate neighborhood
V(Ad,Ud) is generic inZp,m

n . The inverse map is given
by

φ−1
(Ad,Ud)(B,C,D) =

(
Ad Bd

Cd Dd

)
(12)

where(Ad,Bd,Cd,Dd) = ρ(−A∗−BU∗,B,C,D).

PROOF. From (i) and (ii) in Theorem 3 it follows
that any overlapping form e.g. for stable continuous
time state-space representations directly induces an
overlapping form for stable discrete time state-space
representations. We use this fact and apply (9) to the
continuous time state-space matrices parametrized in
(6) to get the parametrization byDDCcont given in (12).

Remark 5.Note that an atlas for the setZp
n can be

defined completely analogously asρ in (9) also pre-
serves the strict minimum phase property. Similarly,
stability need not be imposed, i.e. an atlas for the set
of p×m transfer functions of fixed McMillan degree
can be defined. Clearly, the parameter spaces, i.e. the
image of the corresponding sets of transfer functions
under the mappingφ(Ad,Ud) change, but remain open
subsets of a Euclidean space.

Remark 6.The derivatives of the continuous time
state-space matrices with respect to the parameters
are easily computed as the state-space matrices are
an affine function of the parameters; see (6). In order
to determine the derivatives of the discrete time state-
space matrices, we use equation (13) below. Note that
a ‘dot’ stands for the derivative with respect to some
entry in the parameter vector:




vecȦ
vecḂ
vecĊ
vecḊ


 = (13)




(I −Ac)−1′ ⊗ (I +A) 0 0 0
B′⊗ (I −Ac)−1

√
2Im⊗ (I −Ac)−1 0 0

(I −Ac)−1′ ⊗C 0 (I −Ac)−1′ ⊗
√

2Ip 0

B′⊗ 1
2

C
1√
2

Im⊗C B′⊗ 1√
2

Ip Im⊗ Ip







vecȦc
vecḂc
vecĊc
vecḊc




The derivation of formula (13) is straightforward; see
Section 5.4 in (Ribarits, 2002).

A common problem in system identification is the
optimization of a criterion function over the manifold
Zp,m

n . In many cases this optimization has to be per-
formed by means of an iterative search procedure. In
the course of such a search procedure,DDCcont offers a
simple way to change charts by an appropriate choice

of (A ,U) = ((I + Ad)−1(Ad − I),
√

2(I + Ad)−1Bd).
Starting from a state-space realization(Ad,Bd,Cd,Dd)
of Z(z), where(A1,B1,C1,D1) = ρ−1(Ad,Bd,Cd,Dd),
one can change charts e.g. by setting

I (A ,U) = (P−1A1P,P−1B1) ⇒ Y = I , (Ad,Ud) =
((I + A)(I −A)−1,

√
2(I −A)−1U) ⇒ φ(Ad,Ud)(Z) =

(B1,C1,D1) with new controllability GramianP

I (A ,U)= (P−
1
2 A1P

1
2 ,P−

1
2 B1)⇒ Y = P

1
2 , (Ad,Ud)=

((I + A)(I −A)−1,
√

2(I −A)−1U) ⇒ φ(Ad,Ud)(Z) =

(P−
1
2 B1,C1P

1
2 ,D1) with the identity as new controlla-

bility Gramian

Here P denotes the controllability Gramian, i.e. the
solution toA1P+ PA∗1 + B1B∗1 = 0, which coincides
with the controllability Gramian of the discrete time
system(Ad,Bd,Cd,Dd). Similarly, a change of charts
can be performed by a proper choice of(A ,U) in
such a way that the new realization becomes Lypunov
balanced; see Section 4.

3.2 DDCdis

Another possibility is to consider equation (4) directly
in discrete time. Hence,(A1,B1,C1,D1) and (A ,U)
are to be understood in discrete time in the sequel.

Theorem 7.(DDCdis). Let a controllable and (discrete
time) stable matrix pair(A ,U) be given. Define the set
V(A ,U) of transfer functions and the functionφ(A ,U) as
follows:

V(A ,U) := {Z(z) =

(
A1 B1

C1 D1

)
∈ Zp

n : the solution

Y in (4) is unique and non singular}

φ(A ,U) :

{
V(A ,U) → Rn(m+p)+pm

Z(z) 7→ (Y −1B1,C1Y ,D1)
(14)

Then the family (V(A ,U),φ(A ,U),(A ,U) stable and
controllable) forms an atlas for the setZp

n whose
topology coincides with the one induced by the topol-
ogy of H (∂D)2

+ and each coordinate neighborhood
V(A ,U) is generic inZp

n . The inverse map is given by

φ−1
(A ,U)(B,C,D) =

(
−A∗−BU∗ B

C D

)
(15)

PROOF.

The proof proceeds along the same lines as the proof
of Theorem 2 and is omitted.

Remark 8.Theorem 7 applies to the setZp
n . However,

it can be straightforwardly be used to derive an over-

lapping parametrization for the setZp,(p+m)
n of transfer

functions of the form(K(z),L(z)) where K(z) is a
stable and strictly minimum phase transfer function
(corresponding to the noise model) andL(z) is a stable



transfer function. In terms of a state-space realization,
this corresponds to

xt+1 = Axt +But +Kεt

yt = Cxt +Dut +Eεt

}
(K(z),L(z)) = C(z−1I −A)−1(B,K)+(D,E)

(16)

In fact, neither the stability nor the strict minimum
phase property need to be imposed (see Remark 5).

Note thatDDCdis also offers the possibility to change
charts easily e.g. in the course of a search algorithm.
Starting from a state-space realization(A1,B1,C1,D1)
of Z(z), one can change charts e.g. by setting

I (A ,U)= (−(A1−B1D−1
1 C1)∗,−(D−1

1 C1)∗)⇒ Y =
I ⇒ φ(A ,U)(Z) = (B1,C1,D1) with new controllability
GramianP

I (A ,U)=−(P−
1
2 (A1−B1D−1

1 C1)∗P
1
2 ,P−

1
2 (D−1

1 C1)∗)
⇒ Y = P

1
2 , ⇒ φ(A ,U)(Z) = (P−

1
2 B1,C1P

1
2 ,D1) with

the identity as new controllability Gramian

Here P denotes the controllability Gramian, i.e. the
solution toP−A1PA∗1−B1B∗1 = 0. Similarly, a change
of charts can be performed by a proper choice of
(A ,U) in such a way that the new realization becomes
Lypunov balanced; see Section 4.

Note that by the above mentioned choices of(A ,U)
the parametersB1 and C1 determine the zeros and
poles of the transfer function independent of each
other! If, for instance, one wants to change the poles
of (A1,B1,C1, I) without changing its zeros, then a
change ofB1 with an unchangedC1 will do. The
converse direction is obvious for any choice of(A ,U):
Changing the zeros of(A1,B1,C1, I) without changing
its poles has to be accomplished by a change ofC1

without changingB1.

4. SIMULATION STUDIES

For the sake of a numerical comparison,800 differ-
ent minimal, stable and strictly minimum phase time
series models (without exogenous inputs) of the form

xt+1 = Axt +Bεt , yt = Cxt + εt (17)

are randomly generated. Here,(εt) is a white noise
process, and the outputyt is two dimensional. The
models are of order2, 4, . . . , 16. The model orders
are given in the first row of the tables below. For each
order,100models are generated.

Simulation data comprisingT = 500output observa-
tions are created, where the white noise sequence(εt)
is chosen to be Gaussian distributed with covariance
matrix

Σ =
(

1 2
2 5

)

All computations are carried out using the sys-
tem identification toolbox of the software package
MATLAB, version6.5.1.199709 (R13) . Initial
estimates are computed by means of a subspace proce-
dure (n4sid ). It is ensured that the initial models are

minimal, stable and minimum phase. The identifica-
tion procedure itself is performed by using the built-in
functionpem. The optionSearchDirection is set
to Gn (a plain Gauss-Newton type algorithm is used
for minimizing the criterion function).

In the sequel, we compare two variants ofDDC
(DDCrebal

cont andDDCdis) with the echelon canonical form
(Can) and the parametrization by data driven local
coordinates (DDLCbal, starting from a Lyapunov bal-
anced realization of the initial subspace estimate).
Note that forDDCrebal

cont a change of charts is performed
such that the realizations remain Lyapunov balanced
in the course of the optimization algorithm; see the
paragraph below Remark 6. ForDDCdis charts are
chosen according to the first choice described in the
paragraph below Remark 8 (without rebalancing in the
course of the optimization procedure).

It should be noted that the echelon canonical form is
also kown under the termobservable canoncial form;
see e.g. Chapter 2 in (Hannan and Deistler, 1988)
and Appendix 4A in (Ljung, 1999).DDLC, which has
been introduced in (McKelveyet al., 2004), doesnot
provide an identifiable parametrization, and it does
not describe a generic subset ofZp

n . In fact, it need
not even describe an open subset ofZp

n ; see (Ribarits
et al., 2004) for an analysis ofDDLC. However, it
serves as an important benchmark because it is the
current standard parametrization used in the system
identification toolbox ofMATLAB.

Table 1. Percentage of failed runs.

2 4 6 8 10 12 14 16
DDLCbal 0 0 1 1 0 0 0 0
Can 0 0 4 12 15 17 23 28
DDCrebal

cont 1 0 4 2 2 1 4 8
DDCdis 1 13 11 22 24 18 28 36

For each order (each column corresponds to a fixed or-
der) and each parametrization (each row corresponds
to a fixed parametrization), Table 1 shows the percent-
age of failed runs out of the100 estimation experi-
ments. An identification experiment is considered to
have failed if the algorithm yields a final parameter
estimate where the value of the likelihood function is
more than20%worse than the value of the likelihood
function at the true system. Concerning thesuccess
rates, DDCrebal

cont clearly outperforms the classical ech-
elon canonical form, but is a bit worse thanDDLCbal.
DDCdis does not perform well.

Table 4.A shows the average number of iterations for
successful experiments, and Table 4.B yields the same
information for the experiments which failed. Con-
cerning thespeed of ‘convergence’(i.e. the number of
iterations until a termination criterion is met),DDCrebal

cont
on average needs the same number of iterations as
DDLCbal, but considerably fewer iterations than the
classical echelon canonical form. During the estima-
tion process one can also record the Gauss-Newton
approximation to the Hessian of the criterion function



Table 3. Average maximum condition number of the Gauss-Newton approximations to the
Hessians for successful runs (A) and for failed runs (B). Test cases with no successful,

respectively failed, runs are indicated by0.

A 2 4 6 8 10 12 14 16
DDLCbal 2.9e+7 2.4e+9 2.1e+9 2.5e+9 2.5e+9 5.2e+9 7.1e+8 8.5e+9
Can 1.3e+18 1.2e+17 1.8e+17 1.0e+19 2.8e+18 1.6e+16 1.5e+20 9.9e+19
DDCrebal

cont 9.0e+7 2.6e+8 1.6e+10 3.8e+10 1.3e+11 2.6e+10 4.5e+10 9.6e+9
DDCdis 3.0e+11 1.5e+13 2.4e+12 1.9e+16 5.4e+16 2.2e+14 7.6e+13 2.5e+15
B
DDLCbal 0. 0. 2.6e+7 2.6e+5 0. 0. 0. 0.
Can 0. 0. 4.9e+18 1.5e+18 1.6e+17 7.1e+21 5.1e+20 2.0e+19
DDCrebal

cont 1.6e+16 0. 1.2e+10 6.6e+10 1.6e+9 4.4e+6 1.5e+10 4.6e+12
DDCdis 1.1e+11 3.9e+11 2.6e+15 2.6e+11 1.2e+11 3.1e+12 2.7e+12 3.8e+17

Table 2. Average number of iterations (≤
50) for successful runs (A) and for failed
runs (B). Test cases with no successful,
respectively failed, runs are indicated by0.

A 2 4 6 8 10 12 14 16
DDLCbal 8 12 16 20 16 19 18 19
Can 9 18 24 33 35 35 37 37
DDCrebal

cont 10 13 17 19 18 18 19 16
DDCdis 20 28 30 26 26 24 29 26
B
DDLCbal 0 0 27 1 0 0 0 0
Can 0 0 21 26 18 18 14 20
DDCrebal

cont 50 0 7 26 6 1 4 9
DDCdis 50 18 34 18 14 17 14 12

at the current parameter estimate. This is done for
all iterations, and then the maximum condition num-
ber of these matrices is stored. Table 4.A shows the
average of these maximum condition numbers over
all successful identification experiments. Table 4.B
yields the same information for the experiments which
failed. Concerning the magnitude of thesecondition
numberswe see that the usage ofDDCrebal

cont leads to
much lower condition numbers as compared to the
echelon canonical formCan, and approximately the
same, yet a bit worse, condition numbers as compared
to DDLCbal.

It may also be interesting to examine the values of the
likelihood function at the final parameter estimates.
We have not included another table for reasons of
space limitations, but it again turns out thatlikelihood
valuesupon convergence are considerably lower (and
therefore better) forDDCrebal

cont than forCan. DDLCbal

again turns out to be a bit better thanDDCrebal
cont .

5. CONCLUSIONS

A new state-space parametrization for linear time se-
ries models,DDC, has been introduced.DDChas sim-
ilar desirable properties as more traditional overlap-
ping parametrizations and classical canonical forms,
additionally offering the possibility of a simple data-
driven choice of charts out of an uncountable set of
charts in the course of an estimation algorithm.

Simulation studies show that particular changes of
charts may indeed be very beneficial for the estima-

tion procedure. The usage ofDDChas clear numer-
ical advantages as compared to the more commonly
used echelon canonical and overlapping forms.DDC
also has much more favourable global properties than
DDLC, the parametrization by data drivenlocal co-
ordinates which is the current standard parametriza-
tion in MATLAB. However, the price to be paid for
this advantage is that simulation results forDDCare
slightly worse than forDDLCif good initial (subspace)
estimates are available. An important open problem is
the question of choosing charts forDDC‘optimally’.
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