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Abstract: We consider a new state-space parametrization for linear time series models:
data driven coordinatesDD@, which provides an atlas for the manifold of (stable)

p x m transfer functions of fixed McMillan degree Hence,DDChas similar desirable
properties as more traditional overlapping parametrizations and better than classical
canonical forms. Moreover, the choice of charts can be done in a data-driven manner
in a very simple way. Althugh not yet as good numerically as the parametrization by
data driven local coordinate®©DLQ, this parametrization has the advantage of not
beinglocal. The application oDDCto maximum likelihood identification is exemplified.
Copyright©2005 IFAC
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1. INTRODUCTION driven local coordinatesDDLQ; while (DDLQ still
provides slightly better results, this parametrization

In thi isation f has the advantage of not beitogal. The application
e o paper 2 new dStlat.e'.SFt’aC; pa(;‘_"‘(’j“‘it”g"’.‘“o” Or of DDCto maximum likelihood identification is exem-
Inéartime series models 1S introduced. data driven Co'plified. The charts we use are by no means the only

ordlnatesDDQ._DDOprowdes anatlas (_)funcountably possible ones and we conjecture that there is a wide
many overlapping c_harts fo_r the man_lfold of (stable) margin for improvement here.

p x mtransfer functions of fixed McMillan degrae

Each coordinate neighborhood is a generic subset of_et us denote by} the set of stablep x m con-
this manifold. HenceDDChas similar desirable prop- tinuous time transfer functions of McMillan degree
erties as more traditional overlapping parametrizationsn with the topology induced by/2. Recall that sta-
and classical canonical forms. Moreover, the choice bility amounts to analyticity in the right half plane
of charts out of an uncountable set of possible chartsC* and #Z denotes the Hardy space of stable matrix
can be done in a data-driven manner in the course ofvalued functions with its usual inner product. Un-
the estimation procedure in a very simple way. In this less explicitly stated otherwise, all statements are to
respect,DDCresembles the parametrization by data be understood in continuous time in the sequel. By



Se € R+ we denote the set of stable and control- Q(S) of McMillan degreen satisfying the interpolation
lable real matrix pairs (e.g/A1,B1)) and by s, we  conditions (2) and itis given by

denote the set of all stable and minimal state-space _ 2" _BU*IB
realizations (e.g/A1, By,Cy, D) C RMHN(MP)+mpy ¢ Q(s) = < - ) B=PlUu-Vv) 3
is easily seen thal is generic (i.e. open and dense) in —U-=Vv)Tl

the set of all stable matrix pairs and ttgat is generic

—1 o . _
in the set of all stable state-space realizations. Moreover,P™" is the controllability Gramian corre

sponding to the paif—4 — BU*,B).

Consider the mappingattaching transfer functions to

system matrices:

PROOF. See (Gombani and M.Olivi, 2000).

. Sm — wpm
A;]_ Bl 1
(A2,B1,C1, D) = (Cl D1> =Cusl=A) "B1+Ds The following Sylvester equation will be of great
@) importance below:

As is easily seentis continuous and it is an open . .

mapping (where the relative topology corresponding ALY+ +BIUT =0 (4)
to the Euclidean norm is considered §p); see e.g. ) ] )
(Ribarits, 2002). Theorem 2.Let the matrix pair4,U) € Sc be given.

Define the setl] 4y, of transfer functions and the
The paper is organized as follows: In Section 2 we function 4 ) as follows:

introduce a continuous time parametrization. Section

3 then introduces two variants BIDC First, the con-

tinuous time parametrizatiqn derived in Section 2 is Vinw) = (W(S) = (A]_ Bl) c wpm.

translated to the discrete time case by means of the ' Ci|D;

bilinear transform, leading to what is call@DCo. . . . .

A second approach uses the same (state) feedback the solutior”in (4) is non singulay ©)

structure as in the continuous time case to derive a 0 : { ‘V(ﬂ,U) - RN(MP)FPM

parametrization directly in discrete timBDGis). In AU W(s) — (971B1,C1,Dy)

Section 4 simulation experiments are presented, where

DDGis compared to more common parametrizations in Then the family(%4u),9au),(4,U) € ) forms

a maximum likelihood identification setting. Finally, an atlas for the sem}’™ whose topology coincides

Section 5 contains the conclusions. with the one induced by the topology 8f? and each
coordinate neighborhoo, ;) is generic in™".
The inverse map is given by

2. PARAMETRIZATION IN CONTINUOUS TIME 2" _BU*IB
®1u)(B.C,D) = ( ) (6)

Although in most applications we deal with real coef- C D
ficient matrices, we develop our results for the com-
plex case. So, ifA is a complex matrixA* denotes
its transpose conjugate, whi#é denotes its transpose.
Also note that a rational matrix valuedx m transfer
functionQ(s) is called inner if it is stable and satisifies PROOF. Notice first that the spectra of; and
Q*(9Q(s) = Im, Wheres = iw, for (almostallwe R;  g(—4*) are disjoint, and thus the solution to (4) is
notice that we hav®*(s) = Q(-s)". well known to be unique; it is also easily seen that the
definition of @ 4,y)(W) is independent of the realiza-
tion and thus the function is well defined.

where the domain of definition is given by triples
(B,C,D) such that (6) is stable and minimal.

We will need a simple result in interpolation theory
(see (Ballet al, 1990) for the formulation of the
problem). Letq € C™" be stable, i.e. its eigenvalues We claim that@ 4 u) is @ homeomorphism between
are in the open left half plan€~, and letU € C™™ 1au) and an open subset dR N(MHP)+PM To see

be given. Moreover, lef’ denote any closed curve this we use the Douglas-Shapiro-Shields factorization
around the spectrum of 2* which stays entirely in ~ \y — WQ whereW is antistable and is inner and
C*. We want to find the solutions to the generalized i, degree ofQ is minimal. It's well known (and

mterpolanon prqblem, i.e. we want to find an inner simple to check) that, for any given realization®f
functionQ(s) of fixed McMillan degreen such that we can choose a realization fov so that the pair
1 7 . N . (A,B) is the same. Now, a realization f@ can be
ﬁ_/r QYU (s1+A7) Hds=V" Q(w) =Im (2) chosen as in (3), wherB =P~ 1(U —V) andV is
given by (2). ThusV depends continuously o@.
Lemma 1.Let (4,U,V) be given, whereqd € C™"is Thus so doP andB. Since the DSS factorization for
stable andJ,V € C"™™, Assume that the solutidAto rational functions is continuous, we get tisadlepends
the Lyapunov equatiotiP +P2* +UU* —VV* =0 continuously onw. But then, so doeg\; as forC,
is positive definite. Then there exists a unique inner definingH(Q) = span(&*(sl — A)~B, and denoting



by 4 q) the projection ontdi (Q), and using the well
known projection formula, we see that

PyW = (W, (sl—A)'B) = (CP)P *(sI-A)'B

and soC represents the projection ¥ onto H(Q)
in the basis(sl — A)~!B, and thus it is a continuous
function of W. The function is clearly injective (two

different functions cannot have the same realization).

Surjectivity is clear by construction. The inverse map
is thus well defined and it is given by (6). Continuity
is also obvious.

The setsl 4y are open. In fact, for giveq,U),

the complement of the closed unit disk onto the open
left half plane. Therefore, the mapping

Z(2) =W(p1(2))) (8)

preserves the stability and minimum-phase property.
In terms of state-space representatiofs B, Cc, D¢)

for W(s) and (A,B,C,D) for Z(z) the transformation
(8) can be chosen to be of the form given below:

Theorem 3.Let (Ac,Bc,Cc,Dc) be a (not necessar-
ily minimal) state-space representation of some (not

set of state-space systems defined by the conditions,ecessarily stable) continuous time transfer function

(4) anddety” = 0, is closed and algebraic. Hence, the

W(s) and letAj(Ac) #1,i =1,...,n hold true. Then

condition defining? 4 yields an open apd dense (A,B,C,D) = p(Ac, Bc,Ce, De) is a state-space repre-
set of state-space systems unless the set is empty. Tdenation of the discrete time transfer functid(e)

rule out the latter possibility, pu& = 4 andB; =U
(for given(4,U)), which clearly yields a non singular
solution to (4). As the mappingin (1) is an open and
continuous mapping, this shows that the $gf ) is
generic inW"™ for any given(4,U) € .

If (43,U1) and (42,U,) define two charts such that
Via,uy) N Va0, # 0, the computation of the func-
tion @4, u,) © (p(;}zﬂuz) entails the solution of the linear
system (4) and the inversion of this solution (which
exists by assumption). Thus the function is clearly
continuous and differentiable with its inverse.

Finally, we show that for anyw e W™ with

state-space realizatioff1,B1,Cq,D1) there exists a
Viau) > W. SetP to be the solution toA;P +

PA; + B1B; = 0. Then, setting4 := P~1A;P and

U := P1B;, we obviously haveA; = —PA;P~1 —

BiB;P~1=—2* —BjU* and thusW € V4 ).

3. PARAMETRIZATION IN DISCRETE TIME

We now discuss two possibilities to apply Theorem 2
to the discrete time case. L&)™ denote the set of
discrete time stablp x mtransfer functions of degree
n with the topology induced by (dD)?, the Hardy

space of discrete time stable matrix valued functions

with its usual inner product. Likewise, It denote
the set of discrete time stable and strictly minimum
phasep x p transfer functions of degree induced
with the relative topology.

31 DDQont

The following mapping is known under the tebitin-
ear transformation
1-z

1+z:S ()

Note thatp; is abijection on the compactified com-
plex plane (with inversqn;l(s) =z= }—;2) mapping

p1:C—-C z~—

given in (8) where

p(ACa BC;C(h DC) = (Aa B,C, D)
A=(1+A)(I-A)™" B=V2(1-A) "B
C=v2C(I-A)" D=Dc+Ce(l-Ac) B

9)

The mapping has the following properties:

(i) p is ahomeomorphisrhetween the set of minimal
and stable (and strictly minimum phase) continuous
time systems and the set of minimal and stable (and
strictly minimum phase) discrete time systems.

(i) p preserves observational equivalens for min-
imal systems{Ac,Bc,C¢,Dc) ~ (Ac1,Bc1,Cc1,Dc1)
< P(Ac,Be,Ce,De) ~ p(Ac1,Bc1,Cc1,Dc 1)

(iiiy The controllability and observability Gramians
stay invariant under the transformatipn

Its inverse is given by

p~*(AB,C,D) = (Ac,Bc,Cc, De)
Ac=(+A) A1) Be=v2(+A)'B
Cc=V2C(I+A)t Dc=D-C(1+A) !B

(10)

PROOF. All results are well known. For a proof of
this particular Theorem see e.g. the proof of Theorem
A.4.1 in the appendix of (Ribarits, 2002).

Theorem 4(DDGony). Let the controllable and (dis-
crete time) stable matrix pa{t4y,Uq) be given and
let(4,U) = ((1+44) *(Aa—1), vV2(1+44) "'Bq) be

the corresponding controllable continuous time stable
matrix pair. Furthermore, for any givéAy, By,Cq,Dq),

let (A1,B1,C1,D1) = p~1(Ag,Bq,Cq,Dg) denote the
corresponding continuous time state-space matrices.
Define the setl 4, ,) of transfer functions and the
function@ 4, u,) as follows:



Ad|Bqg of (A,U) = ((I + 4a) (A — 1), V2(I + Aa) 'Bq).

Naguy) = {2(2) = (Cd Dd) € Zy™ :the Starting from a state-space realizati@q, Bq,Cqy, Dg)

N . of Z(2), where(Aq,By,C1,D1) = p~*(Ag, Ba, Cd, Da),
solution?” in (4) is unique and non singulpr one can change charts e.g. by setting

N n(m+p)+pm
Naguy = R A1) > (AU) = (PLAPPIB) = o = I, (4g,Ug) =

@a4,uq) - { -1
vl z@ - OTRLGY DY (14201 = 2) L, v2(0 — 2) 1) = @a,uy(2) =
Then the fam"y(‘V(ﬂd.ud)?%ﬂd,ud),(ﬂd,Ud) stable (B1,C1,D1) with new controllability Gramiar®
and controllablgforms an atlas for the s&if " whose  , (7,U)= (P~3AP3,P3B;) = 9 = P}, (4q,Uq) =
topology coincides with the one induced by the topol- ((l +’Jq)(| — )t \/50 —a)W) = Oagu )(’Z) _
ogy of }[(aD)i and each coordinate neighborhood ’ .U

1 1 . . .
rV(/qud) is generic inzZP™. The inverse map is given (P~2By,C1P2,D1) with the identity as new controlla-

bility Gramian

P2g.00) solution to A;P + PA] 4 B;B] = 0, which coincides
with the controllability Gramian of the discrete time
where(Ag,Bq4,Cq,Dq) = p(—4* —BU*,B,C,D). system(Ag, Bg,Cq,Dq). Similarly, a ch_ange of ch.arts
can be performed by a proper choice (©1,U) in
such a way that the new realization becomes Lypunov
balanced; see Section 4.

B Here P denotes the controllability Gramian, i.e. the
L, (B.C,D) = (A" ") (12) y
d

PROOF. From (i) and (ii) in Theorem 3 it follows

that any overlapping form e.g. for stable continuous

time state-space representations directly induces an

overlapping form for stable discrete time state-space

representations. We use this fact and apply (9) to the3-2 DDGis

continuous time state-space matrices parametrized in o ) . ]

(6) to get the parametrization BDGoni given in (12).  Another possibility is to consider equation (4) directly
in discrete time. Hence(A1,B1,Cy,D1) and (4,U)

Remark 5.Note that an atlas for the s&® can be  are to be understood in discrete time in the sequel.

defined completely analogously psn (9) also pre- )
serves the strict minimum phase property. Similarly, 1heorem 7(DDGis). Let a controllable and (discrete

stability need not be imposed, i.e. an atlas for the settime) stable matrix paif2,U) be given. Define the set
of p x mtransfer functions of fixed McMillan degree  Y(a) Of transfer functions and the functign, y) as
can be defined. Clearly, the parameter spaces, i.e. théollows:

image of the corresponding sets of transfer functions

under the mapping, 4, u,) change, but remain open ) A1 B1 D. :
subsets of a Euclidean space. Nav) = 1{2(@) = Ci|D; € Zpn - the solution

Remark 6.The derivative}s1 of the contjnuous time 9 in (4) is unique and non singuljr
state-space matrices with respect to the parameters (M p) 4 pm
. { Viauy —  RU™PEP
(A) - ’

are easily computed as the state-space matrices are ®
Z(z) ~ (9 'B1,C1,D1)

14
an affine function of the parameters; see (6). In order (14)
hen the family (7 4u),@au),(A4,U) stable and

to determine the derivatives of the fé cge[e time state-
space matrices, we use equation ( 3 elow. Note thaty

a ‘dot’ stands for the derivative with respect to some

entry in the parameter vector: controllablg forms an atlas for the sezf whose
topology coincides with the one induced by the topol-
vedk ogy of #(dD)2 and each coordinate neighborhood
(ng) = @) Vau) is generic inz¥. The inverse map is given by
ved
Ly —-4*—-BU*|B
— e R _1
' B%‘)(Iffs)ljl-\) ﬁumx(?fAc)*l o 0 Vet (p<ﬂ-U)(B’C’D) B ( C D) (18)
(-A) Y ec 0 (-A)Yevay o ve,
B’@%C %Imoec B’@a%lp Im®lp vedc
The derivation of formula (13) is straightforward; see PROOF.
Section 5.4 in (Ribarits, 2002). The proof proceeds along the same lines as the proof

of Theorem 2 and is omitted.

A common problem in system identification is the Remark 8.Theorem 7 applies to the s&f. However
optimization of a criterion function over the manifold it can be straightforwardly be used to derive an over-

Z&™. In many cases this optimization has to be per- lapping parametrization for the saf-(P*™ of transfer
formed by means of an iterative search procedure. Infynctions of the form(K(z),L(z)) whereK(z) is a
the course of such a search procedDB(ont Offersa  stable and strictly minimum phase transfer function
simple way to change charts by an appropriate choice(corresponding to the noise model) dr@) is a stable



transfer function. In terms of a state-space realization,
this corresponds to

X+1 =A% +Bu +Keg

S o ) K@@ —c - A EK) + (0.8

(16)
In fact, neither the stability nor the strict minimum
phase property need to be imposed (see Remark 5).

Note thatDDGjs also offers the possibility to change
charts easily e.g. in the course of a search algorithm.
Starting from a state-space realizati@q, B1,Cq,D1)

of Z(z), one can change charts e.g. by setting

> (4,U)=(—(AL—BiD;'C1)*, —(D;'C1)*) = 7 =
| = @ 40)(Z) = (B1,Cyq,D1) with new controllability
GramianP

> (4,U)=—(P~2(A,—B;D;1Cy)*PZ,P~2(D;1Cy)")

= 9 = P2, = @uu)(Z) = (P~2B1,C1P?,Dy) with
the identity as new controllability Gramian

Here P denotes the controllability Gramian, i.e. the
solution toP — A;PA; — B1B] = 0. Similarly, a change

of charts can be performed by a proper choice of
(4,U) in such a way that the new realization becomes
Lypunov balanced; see Section 4.

Note that by the above mentioned choiceg gfU)

the parametersB; and C; determine the zeros and
poles of the transfer function independent of each
other! I, for instance, one wants to change the poles
of (A1,B1,C1,1) without changing its zeros, then a
change ofB; with an unchanged; will do. The
converse direction is obvious for any choicg af U ):
Changing the zeros ¢#, B1,C1, 1) without changing

its poles has to be accomplished by a chang€of
without changingB;.

4. SIMULATION STUDIES

For the sake of a numerical comparis@&®0 differ-
ent minimal, stable and strictly minimum phase time
series models (without exogenous inputs) of the form

X+1=Ax+Be, y=Cx-+g (17)

are randomly generated. Herg;) is a white noise
process, and the outpyt is two dimensional. The
models are of orde®, 4, ..., 16. The model orders
are given in the first row of the tables below. For each
order,100models are generated.

Simulation data comprising = 500 output observa-
tions are created, where the white noise sequéaige

is chosen to be Gaussian distributed with covariance

matrix
12

== (z5)
All computations are carried out using the sys-
tem identification toolbox of the software package
MATLAB version6.5.1.199709 (R13) . Initial

minimal, stable and minimum phase. The identifica-
tion procedure itself is performed by using the built-in
functionpem The optionSearchDirection is set

to Gn (a plain Gauss-Newton type algorithm is used
for minimizing the criterion function).

In the sequel, we compare two variants DDC
(DDCE@ andDDG;is) with the echelon canonical form
(Can) and the parametrization by data driven local
coordinatesPDLGyg, starting from a Lyapunov bal-
anced realization of the initial subspace estimate).
Note that forDDCE3 a change of charts is performed
such that the realizations remain Lyapunov balanced
in the course of the optimization algorithm; see the
paragraph below Remark 6. F&DGjs charts are
chosen according to the first choice described in the
paragraph below Remark 8 (without rebalancing in the
course of the optimization procedure).

It should be noted that the echelon canonical form is
also kown under the termbservable canoncial form
see e.g. Chapter 2 in (Hannan and Deistler, 1988)
and Appendix 4A in (Ljung, 1999DDLG which has
been introduced in (McKelvegt al, 2004), doesot
provide an identifiable parametrization, and it does
not describe a generic subset 8. In fact, it need

not even describe an open subsetZff see (Ribarits

et al, 2004) for an analysis oDDLC However, it
serves as an important benchmark because it is the
current standard parametrization used in the system
identification toolbox oMATLAB

Table 1. Percentage of failed runs.

2 4 6 8 10 12 14 16
pbLck® o0 o 1 1 0 O O O
Can 0 0 4 12 15 17 23 28
DDCrébal 1 0 4 2 2 1 4 8
DDCyis 1 13 11 22 24 18 28 36

For each order (each column corresponds to a fixed or-
der) and each parametrization (each row corresponds
to a fixed parametrization), Table 1 shows the percent-
age of failed runs out of th&00 estimation experi-
ments. An identification experiment is considered to
have failed if the algorithm yields a final parameter
estimate where the value of the likelihood function is
more tharR0%worse than the value of the likelihood
function at the true system. Concerning th#ccess
rates DDCEP clearly outperforms the classical ech-
elon canonical form, but is a bit worse thBDLG.
DDGijs does not perform well.

Table 4.A shows the average number of iterations for
successful experiments, and Table 4.B yields the same
information for the experiments which failed. Con-
cerning thespeed of ‘convergencé’e. the number of
iterations until a termination criterion is mefPCELA

on average needs the same number of iterations as
DDLGyg, but considerably fewer iterations than the

classical echelon canonical form. During the estima-

estimates are computed by means of a subspace procdion process one can also record the Gauss-Newton

dure f4sid ). It is ensured that the initial models are

approximation to the Hessian of the criterion function



Table 3. Average maximum condition number of the Gauss-Newton approximations to the
Hessians for successful runs (A) and for failed runs (B). Test cases with no successful,
respectively failed, runs are indicated @y

A 2 4 6 8 10 12 14 16
DDLCPa  29e+7 24e+9 21e+9 25e+9 25e+9 52e+9 7.1e+8 8.5e+9
Can 13e+18 12e+17 18e+17 1.0e+19 2.8e+18 1.6e+16 15e+20 9.9e+19

DDCrebal  90e+7  26e+8  16e+10 38e+10 13e+ll 26e+10 45e+10 9.6e+9
DDCyis  3.0e+1l 15e+13 24e+12 19e+16 54e+l6 22e+ld 7.6e+13 25e+15

B

DDLCP 0. 0. 26e+7  26e+5 0. 0. 0. 0.

Can 0. 0. 49e+18 15e+18 16e+l7 7.le+21 51e+20 20e+19

DDCEbal  16e+16 0. 1.2e+10 6.6e+10 16e+9 4de+6  15e+10 4.6e+12

DDCyis  1le+ll 39e+ll 26e+l5 26e+ll 12e+ll 3le+l2 27e+12 3.8e+l7
Table 2. Average number of iterations ( tion procedure. The usage BDChas clear numer-
50) for successful runs (A) and for failed ical advantages as compared to the more commonly
runs (B). Test cases with no successful, used echelon canonical and overlapping fordBC
respectively failed, runs are indicated @y also has much more favourable global properties than

DDLG the parametrization by data drivdocal co-

A 2 4 6 8 10 12 14 16 . Co .
B 8 12 16 20 16 19 18 19 o_rdmates which is the current stgndard parar_‘netrlza-
Can 9 18 24 33 35 35 37 37 tion in MATLAB However, the price to be pald for
pDDCebal 10 13 17 19 18 18 19 16 this advantage is that simulation results DCare
DDCyis 20 28 30 26 26 24 29 26 slightly worse than fobDLCif good initial (subspace)

B estimates are available. An important open problem is

pDbLc® o 0 27 1 0 O O O ; ; ; )
Can o 0 21 26 18 18 14 20 the question of choosing charts oD Coptimally’.
DDCfePa s 0 7 26 6 1 4 9

1

DDCqis 50 18 34 18 14 17 14 12
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