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Abstract: The problem under consideration is to determine an activation policy of
discrete scanning sensors in such a way as to maximize the power of a simple
parametric hypothesis test, which verifies the nominal state of the considered
distributed system specified over a given multi-dimensional spatial domain. The
optimal locations of sensors are determined based on the Ds-optimality criterion
defined on the respective Fisher Information Matrix. The proposed approach
exploits the notion of directly constrained design measures recently introduced
in modern optimum experimental design theory, which leads to an extremely fast
iterative procedure of exchange type. In this work, a general scheme of such an
approach leading to maximization of the fault detection efficiency in distributed-
parameter systems is delineated and tested via computer simulations regarding an
advection-diffusion problem. Copyright c©2005 IFAC
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1. INTRODUCTION

The systems with spatio-temporal dynamics, com-
monly known as Distributed-Parameter Systems
(DPS’s) constitute one of the most general and
important classes of systems which are widely
used in modelling a wide variety of real-world
engineering problems. This is a direct consequence
of the fact that recent developments in technical
systems, especially regarding control and fault
detection, force engineers to search for more pre-
cise mathematical models of the considered phe-
nomena. Consequently, lumped descriptions often
become unsatisfactory as they may not provide a
sufficient approximation of the investigated sys-
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tem. This, in turn, leads directly to the descrip-
tion of the system at hand using partial differ-
ential equations (PDE’s) subject to appropriate
boundary and initial conditions. Despite the so-
phisticated formulation, such models provide a
high quality and efficiency of simulations and con-
trol techniques (Curtain and Zwart, 1995; Luc-
quin and Pironneau, 1998; Lasiecka and Trig-
giani, 2000; Demetriou and Moghani, 2004).

Although we witness an extremely fast devel-
opment of methods of Fault Detection and Iso-
lation (FDI) for dynamical systems in the last
decade (Basseville and Nikiforov, 1993; Isermann,
1997; Frank and Köppen-Seliger, 1997; Chen and
Patton, 1999; Patton et al., 2000; Chiang et

al., 2001; Korbicz et al., 2004), there is a grave lack
of such effective techniques dedicated for DPS’s.



Furthermore, within the framework of FDI sys-
tems, the optimization of data acquisition process
which increases the reliability of the diagnosis is
most often neglected and the contributions are
very scarce. The main aim of this work is to
develop a novel approach originated in the para-
meter identification and related to a wide class of
processes. One of the most important problems in
the context of fault detection in DPS’s is a proper
determination of observation schedules. It consists
in allocation of a limited number of measurement
transducers in a given spatial domain in such a
way as to maximally reduce the uncertainty of
the detection. The strong necessity of developing
some systematic approaches stems directly from
the fact, that in an overwhelming majority of
practical problems the allocation of the sensors
does not follow directly from the physical con-
siderations or experimenter intuition. Moreover,
additional requirements appear regarding reduc-
tion of the instrumentation cost and increasing
the effectiveness of diagnostic methods.

The sensor location problem for DPS’s has al-
ready attained a lot of attention, but mainly
in the context of state and/or estimation ac-
curacy (for surveys, see Kubrusly and Male-
branche, 1985; Uciński, 2000; van de Wal and
de Jager, 2001; Demetriou and Borggaard, 2004;
Patan, 2004; Uciński, 2004). Within the frame-
work of diagnostics, the crucial difficulty is the
definition of a suitable criterion describing the
relations between the quality of the system diag-
nosis and the observation strategy. In this paper,
as the appropriate performance measure, we pro-
pose the Ds-optimality criterion, operating on the
Fisher Information Matrix (FIM) related to the
parameters. Furthermore, we shall indicate how
an extremely efficient approach based on directly-
constrained design measures proposed in (Uciński
and Patan, 2002) can be applied in order to de-
rive the most informative observations for fault
detection.

2. PARAMETER ESTIMATION APPROACH
TO FAULT DETECTION IN DPS’S

Parameter estimation is one of the fundamental
methods from among all analytical techniques of
fault detection (Korbicz et al., 2004). Its role is of
great significance in situations, when the abnor-
mal system state appears not only in the form of
output changes but also as fluctuations in model
parameters. This is a very common situation in
practice if only the parameters have a physical
interpretation built upon a proper analysis of var-
ious quantities which are crucial for the considered
process. Unfortunately, they are usually directly
non-measurable and application of effective para-
meter estimation algorithms is required in order

to obtain their estimates. The basic idea is a
comparison of such estimates with some known
nominal values of parameters treating possible
differences as residuals which contain informa-
tion about potential faults. Then, based on some
thresholding techniques, the appropriate decision
making system can be constructed.

Let y = y(x, t) denote the scalar system state
at point x of the spatial domain Ω ⊂ R

d and
let time t belong to the observational interval
T = [0, tf ]. Mathematically, we handle a dynamic
system described by the following PDE:

∂y

∂t
= F

(

x, t, y,∇y,∇2y; θ⋆
)

,

(x, t) ∈ Ω × T ⊂ R
d+1,

(1)

subject to the boundary and initial conditions

E
(

x, t, y,∇y; θ⋆
)

= 0, (x, t) ∈ ∂Ω × T, (2)

y
(

x, 0) = y0(x), x ∈ Ω, (3)

where E ,F and y0 are some known functions, ∇
and ∇2 denote the gradient and Hessian, respec-
tively, and θ⋆ stands for the vector of constant
system parameters.

The state y is observed (possibly indirectly) by N
moving sensors, which can switch their locations
at time instants 0 < t0 < t1 < · · · < tK = tf
and will be remaining stationary for the duration
of each subinterval Tk = [tk−1, tk], k = 1, . . . ,K.
Forming such an arbitrary partition on the time
interval T , the considered ‘scanning’ observation
strategy can be formally represented as

zj(t) = h(y(xj
k, t; θ

⋆), t) + εj(t), t ∈ Tk (4)

for j = 1, . . . , N and k = 1, . . . ,K, where h( · , · )
is a given function, zj(t) is a scalar output, xj

k ∈ X
stands for the location of the j-th sensor on the
subinterval Tk, X signifies the part of Ω where the
measurements can be made, and εj( · ) denotes the
zero-mean, Gaussian and uncorrelated measure-
ment noise, i.e. E[εj(t)] = 0 and var(εj(t)) = σ2.

A further assumption is that the estimation of
the unknown parameter vector θ⋆ is performed via
minimization of the least-squares criterion

J(θ)=
N

∑

j=1

K
∑

k=1

∫

Tk

∣

∣zj(t)−h
(

ŷ(xj , t; θ), t
)∣

∣

2
dt, (5)

with θ ∈ Θad, where Θad is the set of admissible
parameters and ŷ( · , · ; θ) denotes the solution of

(1)–(3) corresponding to a given θ. A vector θ̂
minimizing J(θ) stands for the estimate of the
true value of θ⋆. Generally, in practical situations,
only a subset of all parameters can be useful
for detection. If such a situation takes place,
then without loss of generality the parameters of
interest can be distinguished by partitioning the
parameter vector into

θT =
[

θ1 . . . θs θs+1 . . . θm

]

=
[

αT βT
]

(6)



where α is a vector of s parameters which are
essential for a proper fault detection and β is
the vector of some parameters which are a part
of the model but are not significant for detection
(although they can be used for fault isolation or
are some representation of the model uncertainty).
Based on the observations, it is possible to test the
simple hypothesis H0 : α = α⋆, where α⋆ is the
nominal value of the vector α corresponding to
the normal system performance.

The ‘continuous’ generalization of the likelihood
function for the considered experiment takes the
following form (Goodwin and Payne, 1977):

L(z; θ) =

(

1

2πσ2

)N/2

exp

{

−
1

2σ2

N
∑

j=1

K
∑

k=1
∫

Tk

∣

∣zj(t) − h
(

ŷ(xj , t; θ), t
)∣

∣

2
dt

}

.

(7)

Setting Θ0 = {θ ∈ Θ : α = α⋆}, we can define the
following generalized likelihood ratio:

λ(z)=

sup
θ∈Θad

L(z; θ)

sup
θ∈Θ0

L(z; θ)
=exp

{

−
1

2σ2

(

J(θ̂)−J(θ̃)
)

}

(8)
where

θ̂ = arg min
θ∈Θad

J(θ), θ̃ = arg min
θ∈Θ0

J(θ). (9)

The generalized log-likelihood ratio test is widely
used in statistics, because it can be shown that
assuming the validity of the null hypothesis H0

the sequence {2 lnλ(y)} for N,K → ∞ is weakly
convergent to a χ2 random variable on s degrees of
freedom (Goodwin and Payne, 1977, Thm. 3.6.1,
p. 55). The meaning of this fact is that we can
compare the observed value of 2 lnλ(z) with some
threshold kγ obtained from the cumulative χ2

distribution on s degrees of freedom where kγ is
such that 100(1−γ)% of the distribution lies to the
left of kγ . The decision rule for a given significance
level γ, which represents a fixed range of model
uncertainty, takes the following form:

S =

{

S1 if 2 lnλ(y) > kγ (reject H0)

S0 if 2 lnλ(y) < kγ (accept H0)
(10)

The potential rejection of H0 indicates an essen-
tial deviation of the vector α from the nominal
value of this parameter and is a base for detection
of abnormal states in the system.

3. Ds-OPTIMUM SENSOR LOCATION
PROBLEM

At this point, it is at least clear that in order
to achieve low probabilities of false alarms, and
missed detection, we have to keep the low values
for the probabilities of rejecting H0 when H0

is true and accepting H0 when the alternative
hypothesis H1 : α = α1 6= α⋆ is true, respectively.

If only a subset of s parameters is of interest, with
the parameter vector partitioning given by (6) and
for a fixed significance level γ (the probability of
a false alarm), the power of the proposed test
for alternative hypothesis H1 (the probability of
proper detection) can be increased by minimiza-
tion of the Ds-optimality criterion (Goodwin and
Payne, 1977):

Ψs(M) = − ln det[Mαα −MαβM
−1
ββ M

T
αβ ], (11)

where M ∈ R
m×m is the FIM corresponding to

the vector θ, which can be partitioned into blocks

M =

[

Mαα Mαβ

MT
αβ Mββ

]

(12)

and

Mαα ∈ R
s×s, Mαβ ∈ R

s×(m−s),

M−1
ββ ∈ R

(m−s)×(m−s).

In the considered case, the average information
matrix is defined as (Uciński and Patan, 2002)

M =
1

N

N
∑

j=1

K
∑

k=1

Υk(xj
k), (13)

where

Υk(x) =
1

tf

∫

Tk

GT(x, t)G(x, t) dt, (14)

G(x, t) =
∂h(y(x, t; θ), t)

∂y

∂y(x, t; θ)

∂θ

∣

∣

∣

θ=θ⋆

. (15)

Minimization of the criterion (11) can be achieved
by a suitable sensor allocation. For the Ds-
optimality case, the process is equivalent to min-
imizing the determinant of the estimate of the
covariance matrix for vector α. Furthermore, we
have the relation

Ψs[M ] = ln detMββ − ln detM. (16)

An introduction of the optimality criterion (11)
operating on the FIM elements make it possible
to formulate our sensor location problem for fault
detection as an optimization one:

Ψs[M ] −→ min (17)

with respect to sensor positions xj
k, j = 1, . . . , N,

k = 1, . . . ,K chosen from the set of admissible
locations X .

4. PROPOSED STRATEGY OF SCANNING
OBSERVATIONS

In order to avoid the so-called sensor clusteri-

zation phenomenon (i.e. the tendency to taking
measurements at the same spatial locations by
different sensors), being a direct consequence of



the assumption of independent observations com-
monly employed in classical methods of exper-
imental design, an extremely efficient approach
developed by Uciński and Patan (2002) can be
applied. The main idea is to operate on the density
of sensors (i.e. the number of sensors per unit
area)

ξ(dx) = lim
∆X→0

N(∆X)

N
, (18)

where N(∆X) denotes the number of sensors in
the areaX , than on the sensors’ locations directly,
which is justified for a sufficiently large total
number of sensors N .

In contrast to the classical designs encountered in
experimental design theory, we impose the cru-
cial restriction that the density of sensor alloca-
tion must not exceed some prescribed level, i.e.
(Uciński and Patan, 2002; Patan, 2004)

ξk(dx) ≤ ω(dx), k = 1, . . . ,K, (19)

where ω(dx) signifies the maximal possible ‘num-
ber’ of sensors per dx such that

∫

X
ω(dx) ≥ 1.

Furthermore, we assume that the considered do-
main X where the measurements can be taken
is a finite P -element set. Then, any K-element
sequence of N -element subsets of X is called a
design of experiment and will be denoted by ξ. In
the sequel, the set containing all designs of such
form will be denoted by Ξ. In such a manner, we
are faced with the following optimization problem:

ξ⋆ = argmin
ξ∈Ξ

Ψ[M(ξ)] (20)

subject to

ξk(dx) ≤ ω(dx), k = 1, . . . ,K. (21)

The problem of determining the optimal design ξ⋆

can be readily solved with the use of the approach
based on the so-called directly constrained de-
sign measures (Fedorov, 1989; Fedorov and Hackl,
1997). Its extensions related to the optimal plan-
ning of the activation schedules for discrete scan-
ning sensors were addressed in the works (Uciński
and Patan, 2002; Patan, 2004; Uciński, 2004). In
order to apply it to the considered case, let us
notice that introducing the decomposition

M−1 =

[

Dαα Dαβ

DT
αβ Dββ

]

(22)

where Dαα ∈ R
s×s, Dαβ ∈ R

s×(m−s), D−1
ββ ∈

R
(m−s)×(m−s), from the Equivalence Theorem for

Ds-optimum designs (Fedorov, 1972) an analogue
of the variance of the prediction for each time
interval Tk can be established from the system
response. In particular, we have the following form
of this function and its components, which are
crucial for the potential numerical algorithms,
which can be used for determining the optimal
solution:

ψk(x, ξ) = φk(x, ξ) − ςk(ξ)/K, (23)

ςk(ξ) = − trace
[
◦

Ψ[M(ξ)]M(ξ)
]

= s, (24)

φk(x, ξ) = − trace
[
◦

Ψ[M(ξ)]Υk(x)
]

, (25)

where

◦

Ψ[M(ξ)]=
∂Ψ(M)

∂M
=





Dαα Dαβ

DT
αβ Dββ −M−1

ββ



. (26)

Analytical determination of the optimal designs is
possible only in simple situations and for general
systems it is usually the case that some iterative
design procedures will be required. The extremely
efficient computational procedure for that pur-
pose was developed in (Uciński and Patan, 2002),
where the interested reader can find the detailed
scheme of simple exchange-type routine. The main
idea of the algorithm mentioned above consist in
replacing in the actual design the worst measure-
ment points (in the sense of the function ψk(x, ξ))
with the best candidates from among the rest
of all admissible measurement locations which
are not the elements of design. This operation is
repeated iteratively until the design will consist
of the best spatial locations for measurements.
The maximal numbers of sensors allocated to the
spatial element dx can be usually expressed as
ω(dx) = ̺(x)dx, k = 1, . . . ,K, where the ̺
plays the role of a density function. But then
it is always possible to propose an appropriate
change of coordinates which allows us to restrict
attention to a constant ̺. Additionally, a com-
puter implementation forces the replacement of all
integration operators (w.r.t. the spatial elements
dx) by summing over some suitable regular grid
elements. As a result, the rather abstract form
of the iterative procedure presented in (Uciński
and Patan, 2002; Patan, 2004) is reduced to an
efficient exchange-type algorithm with the addi-
tional constraint that every grid element must not
contain more than one support point in each time
subinterval.

5. ILLUSTRATIVE EXAMPLE

As an illustrative example consider an atmospheric
pollutant transport-chemistry process over an ur-
ban area being normalized to a unit square. For
the sake of clarity, assume that the velocity of the
transport medium is constant over the considered
domain and defined by a vector v = (−1,−1), (i.e.
the air moves with constant speed rate along the
axis x1 = x2. In addition, we take into account
an active source of pollution and reaction, which
leads to changes in the pollutant concentration
y(x, t). The entire process over the observation
interval T = [0, 1] is described by the following
advection-diffusion-reaction equation:
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Fig. 1. Ds-optimal sensor switchings

∂y(x, t)

∂t
+∇ ·

(

v(x)y(x, t)
)

=∇ ·
(

d(x)∇u(x, t)
)

+ f(x), x ∈ Ω
(27)

subject to the boundary and initial conditions:
{

∂y(x, t)

∂n
= 0, Γ × T,

y(x, 0) = 0, Ω,
(28)

where term f(x) = e−50[(x1−0.7)2+(x2−0.7)2] rep-
resents an active source of pollutant located at
point (0.7, 0.7), and ∂y/∂n stands for the partial
derivative of y with respect to the outward normal
to the boundary Γ. In simulations, the following
form of the distributed diffusion coefficient was
applied

d(x) = θ1 + θ2x
2
1 + θ3x

2
2, (29)

where θ1 = 0.1, θ2 = θ3 = −0.02.

The fault scenario was that at time instant t = 0.5
the intensity of the pollutant emission from the
source dramatically increases and a symptom of
this abrupt fault is an excessive deviation of the
parameter θ1 from its nominal value. Our task was
to determine the Ds-optimal activation schedule
for N = 40 sensors to maximize the reliability of
the detection. Measurements can be taken on the
grid of size 21 × 21 (cf. Fig. 1). The algorithm
of Section 4 generated the solution after 57 it-
erations (η = 10−3), practically below 1 second
on a low-cost PC (Pentium IV, 1.7 GHz, using
the Lahey/Fujitsu Fortran 95 compiler v.5.7), and
the final sensor allocation is presented in Fig. 1,
where open circles indicate the activated sensors.
Observe that the symmetry of the problem along

the x1 = x2 axis is retained in the optimal solu-
tion. The sensors tend to take measurements in
the areas where the changes in pollutant concen-
tration are the greatest, clearly following the wind
direction. Surprisingly, the measurements in the
close vicinity of the pollution source are not very
attractive for the fault detection, which is contra-
dictory with our intuition and is very difficult to
predict when armed only with the experimenter
experience. The fault scenario was performed with
additional measurement noise whose standard de-
viation was assumed on the level of 5% of the
simulated system output. The detection with the
use of fixed thresholds is illustrated in Fig. 2. It is
clear that the appropriate level of the threshold
should be suitably chosen in such a way as to
obtain the reasonably high sensitivity of detection
system and the small false alarms rate.

6. CONCLUSIONS

The proposed approach can be considered as a
promising attempt to establish an interconnection
between parameter-estimation-based fault detec-
tion for DPS’s and the sensor location problem.
As a result, an extremely simple and efficient algo-
rithm is adopted for the purpose of determining an
optimal measurement schedule for fault detection.
However, there still remain some open problems
which need close attention. One of the essential
issues is a necessity of developing some adaptive
thresholding techniques which allow to effectively
establish a compromise between a low number
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of false alarms and a decrease of the detection
system sensitivity. Another not trivial problem is
the dependence of the optimal solution on the
system parameters and therefore some robust ap-
proaches to parameter uncertainty of the model
are required. This leads directly to the notion of
so-called robust designs of experiment (Walter and
Pronzato, 1997) which try to make the optimal
solutions independent on the parameters to be
identified.
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