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Abstract: Swarm intelligence was originally inspired in social behaviour in nature, also 
considering the evolving aspects, several variations in swarm intelligence’s techniques 
made it applicable to optimization problems. In this paper two case studies of static 
environment, composed with obstacles are presented and evaluated, a comparative study 
is evaluated between two techniques of swarm intelligence and a genetic algorithm for the 
presented problems. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Swarm intelligence is an emerging research area with 
similar population and evolution characteristics to 
those of genetic algorithms. However, it 
differentiates in empathizing the cooperative 
behaviour among group members. Swarm 
intelligence is used to solve optimization and 
cooperative problems among intelligent agents, 
mainly in computer’s networks, mobile robotics (Liu 
and Passino, 2004) and cooperative and/or 
decentralized control (Baras et al., 2003). Swarm 
intelligence is inspired in nature, in the fact that 
contribution among living animals of a group 
contribute with their own experiences to the group, 
making it stronger in face of others. The most 
familiar representatives of swarm intelligence in 
optimization problems are: food-searching behaviour 
of ants (Dorigo and Di Caro, 1999), particle swarm 
optimization (Kennedy and Eberhart, 2001), and 
artificial immune system (Castro and Timmis, 2002). 
 
Swarm intelligence, in nature, may be composed of 
three main principles: evaluation, comparing and 
imitation. Evaluation is the capacity to analyze what 
is positive or negative in nature, attractive or 
repulsive. Even the smaller life forms have these 

abilities, in the case of bacteria, they are able to 
notice if the environment in which they are located is 
noxious or not. Learning won’t happen unless beings 
are capable of evaluate the attractive and repulsive 
characteristics of the environment. Comparison is the 
way living beings use other beings as a standard to 
evaluate themselves, results of these comparisons 
may become a motivation to learning and/or 
modification. Imitation is an effective form of 
learning. However, very few animals, in nature, are 
capable of imitating, in fact, only human beings and 
some species of birds are capable of such action 
(Kennedy and Eberhart, 2001). These three basic 
principles may be combined, in a simplified version, 
in computer programs, opening possibilities for them 
to adapt to complex problems. Animals, or groups of 
animals, when foraging, act looking for maximizing 
the amount of energy obtained per unit of time spent 
foraging, considering the biological and 
environmental limitations. 
 
This paper contribution is to present a comparative 
study between two swarm intelligence’s techniques 
and a evolutionary technique, these are bacteria 
colony, particle swarm optimization and genetic 
algorithms. These techniques will be applied to two 
path planning problems of mobile robots.  



     

 
The next sections of the paper are presented as 
follows. In section 2, the fundamentals of bacteria 
colony algorithm are presented. The particle swarm 
optimization is discussed in section 3. Two case 
studies of path planning for mobile robots are 
proposed in section 4. The simulation results and 
conclusions are presented in sections 5 and 6, 
respectively. 
 
 

2. BACTERIA COLONY 
 
Natural selection tends to eliminate animals with 
poor foraging strategies and to favor gene 
propagation of those with good foraging strategies, 
once these have higher chances of succeeding in 
reproduction. These evolutionary principles have 
taken scientists to develop the foraging strategies, 
turning it appropriate to optimization models 
(Passino, 2002). 
 
A bacterium position, in a time instant, can be 
determined through equation (1), where the position 
in that instant is calculated in terms of the position in 
the previous instant and the step size C(i) applied in a 
random direction Φ(j), generated in the bacterium 
tumble, 
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To adapt such strategy to optimization problems, an 
equation to determinate the cost of each position is 
needed, to possibilitate the comparison between the 
position and the environment. The cost is determined 
by the equation, 
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Through equation (2) is noticed that the cost of a 
determined position J(I,j,k,l) is also affected by the 
attractive and repulsive forces existing among the 
diverse bacteria of the population 
Jcc(θ’(j,k,l),P(j,k,l)). 
 
After a determined number of chemotactic steps 
(steps comprehending the movement and the cost 
determination of each bacterium position), a 
reproductive step occurs. In this reproductive step the 
bacterium are sorted decreasingly by their 
cumulative cost. The lower half of the list die, these 
are the bacteria that couldn’t gather enough nutrients 
during the chemotactic steps, and the upper half 
divide themselves into two new bacteria, located in 
the same position. 
 
The bacteria colony algorithm is basically composed 
by an elimination and dispersal loop, inside this loop, 
there is another one, who is responsible for the 
bacteria reproduction. Inside this one, there is a third 
loop, responsible for generating the direction in 
which each bacterium will run, determining the 
period the bacterium will move and, as a 
consequence, determining it’s position after the loop 
execution, and calculating the fitness of these 
positions. The reproductive loop is responsible for 

determining which of the bacteria must reproduce 
and which must be exterminated after the movements 
executed in loop 3, through a cost analysis of their 
positions along their movement. The first loop is 
responsible for eliminating some bacteria; it’s ruled 
by an elimination probability, repositioning them into 
another random position of the search space. Details 
of this approach are presented in Passino (2002). 
 
 

3. PARTICLE SWARM OPTIMIZATION 
 
The proposal of such algorithm appeared from some 
scientists that developed computational simulations 
of the movement of organisms such as flocks of birds 
and fish schooling. Such simulations were heavily 
based in manipulating the distances between 
individuals, that is, the synchrony of the behaviour of 
the swarm was thought as an effort to keep an 
optimal distance between them. Sociobiologist E. O. 
Wilson has outlined a link of these simulations to 
optimization problems (Brandstätter and 
Baumgartner, 2002). 
 
In theory, at least, individuals of a swarm may 
benefit from the prior discoveries and experiences of 
all member of the swarm when foraging. The 
fundamentals of developing particle swarm 
optimization (PSO) is an hypothesis in which the 
exchange of information among beings of a same 
species offer some sort of evolutionary advantage. 
 
Similarly to genetic algorithms (GAs) (Goldberg, 
1989), PSO is an optimization tool based in a 
population, where each member is called a particle, 
that is, each particle is a potential solution to the 
analyzed problem. However, unlike GAs, PSO does 
not have operators, like crossover and mutation. PSO 
does not implement the survival of the fittest 
individuals, instead, it implements the simulation of 
social behaviour. 
 
The PSO algorithm works as follows, initially, a 
random position population exists, each of these 
particles has a speed, and the particles start to “fly 
around” the search space. Each particle has a 
memory, allowing it to remember the best position it 
has visited in history (pbest), and also the fitness in 
that position (Krohling et al., 2004). 
 
The best position ever achieved by the whole swarm 
is denominated the global best (gbest) (Gudise and 
Venayagamoorthy, 2003). The basic concept of PSO 
algorithm is to accelerate the particles towards pbest 
and gbest, considering a random weight at each time 
step. Mathematically, the particles move following 
the equations: 
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where ∆t=1, t represents the actual iteration and t+1 
represents the next iteration Vid and Xid represent  the 



     

particle speed and position respectively, rand1 and 
rand2 are two random numbers with uniform 
distribution in [0,1], used to maintain populations’ 
diversity. 
 
Eq. (3) is used to update each particle’s speed, and 
Eq. (4) represents the position update, according to 
its previous position and its speed, considering ∆t=1. 
 
Positive constants c1 and c2 are denominated 
cognitive and social components, respectively. These 
are the acceleration constants, responsible for 
varying the particle speed towards pbest and gbest. 
Constants c1 and c2 are not critical factors for 
determining the algorithm convergence; however, a 
correct tuning may cause the algorithm convergence 
to occur faster. 
 
The use of W, called inertia weight was proposed by 
Shi and Eberhart (1998). This parameter is 
responsible for dynamically adjust the speed of the 
particles, so, it’s responsible for balancing between 
local and global search, consequently, needing less 
iterations for the algorithm to converge. A small 
value of inertia weight implies in a local search, by 
the other side, a high value leads to a global search. 
 
Applying a high inertia weight at the start of the 
algorithm and making it decay to a low value 
through the PSO algorithm execution, makes the 
algorithm globally search in the start of the search, 
and search locally at the end of the execution. Eq. (5) 
shows how the inertia weight is updated, considering 
itermax the maximum number of iterations of the 
algorithm and iter the actual iteration (Shi and 
Eberhart, 2002). 
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The first step of the PSO algorithm is to start each 
particle with random numbers, considering that the 
random number must belong to the search space. 
Next a loop starts being executed, and it remains 
until the stopping criteria is met, the stopping criteria 
may be the convergence of the algorithm, a 
maximum number of iterations, or anything else. 
Inside the loop the value of the fitness and the pbest 
of each particle is determined. Once all particles 
have been analyzed, it’s calculated the gbest, and 
with this value, the velocity and position of all 
particles is achieved. 
 
 

4. TRAJECTORY PLANNING OF MOBILE 
ROBOTS 

 
Literature is rich in approaches to solve mobile 
robots trajectory planning in presence of static and/or 
dynamic obstacles (Tu and Yang, 2003; Bennewitz et 
al., 2002; Melchior et al., 2003). One of the most 
popular planning methods is the artificial potential 
fields (Tsuji et al., 2002). However, this method 
gives only one trajectory solution that may not be the 

smaller trajectory in a static environment. The main 
difficulties in determining the optimum trajectory are 
due to the fact that analytical methods are extremely 
complex to be used in real time, and the searching 
enumerative methods are excessively affected by the 
size of the searching space. 
 
Recently, the interest in using evolutionary 
algorithms, especially genetic algorithms, has 
increased in last years. Genetic algorithms are used 
in mobile robots trajectory planning, generally when 
the search space is large (Fujimori et al., 1997; Xiao 
et al., 1997; Gemeinder and Gerke, 2003). 
 
The trajectory planning is the main aspect in the 
movement of a mobile robot. The problem of a 
mobile robot trajectory planning is typically 
formulated as follows: given a robot and the 
environment description, a trajectory is planned 
between two specific locations which is free of 
collisions and is satisfactory in a certain performance 
criteria (Xiao et al., 1997). 
 
Seeing the trajectory planning as an optimization 
problem is the approach adopted in this article. In 
this case, a sequence of configurations that moves the 
robot from an initial position (origin) to a final 
position (target) is designed. 
 
A trajectory optimizer must locate a series of 
configurations that avoid collisions among the 
robot(s) and the obstacle(s) existing in the 
environment. The optimizer must also try to 
minimize the trajectory length found, in order to be 
efficient. The search space is the group of all possible 
configurations. 
 
In the present study, it’s considered a 2-dimensional 
mobile robot trajectory planning problem, in which 
the position of the mobile robot R is represented by 
Cartesian coordinates (x,y) in the xy plan. The initial 
and destination points of the robot are (x0, y0) and 
(xnp, ynp), where np is a design parameter. The initial 
point is always (0,0). 
 
Only the trajectory planning problem is empathized 
in this paper, the robot control problem is not the 
focus of this paper. However, details of the robots 
movement equations can be found in Fujimori et al. 
(1997). It’s assumed that the obstacles are circular in 
the robot’s moving plan. Besides, the hypothesis that 
the free 2-dimensional space is connected and the 
obstacles are finite in size and does not overlap the 
destiny point is true. 
 
The optimization problem formulated consists of a 
discrete optimization problem, where the objective 
function f(x,y), which is the connection between the 
technique used for optimization and the environment, 
aims to minimize the total trajectory percurred by the 
mobile robot and is ruled by 
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where α and λ are weighted factors, dobj represents 
the Euclidian distance between the initial and the 
destiny point, n0 denotes the number of obstacles 
prevented by the robot movement following the 
planned trajectory, and np is the number of points 
where a trajectory change occurs (project parameter 
in this article). It’s noticed by the equation (6) that a 
λ term exists, it’s an weighting (penalty) term for 
unfeasible solutions, meaning, the trajectory that 
intercepts obstacles. In this case, the fitness function 
to be evaluated by optimization approaches of this 
paper aims to maximize 
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where Kc and ε are scale constants. 
 
 

5. SIMULATION RESULTS  
 
The environment used for the trajectory planning is a 
100x100 meters field. The search interval of the 
parameters is xi ∈ [0,100] meters and yi ∈ [0,100] m, 
where i=1,..,np. About the fitness it’s adopted α=1, 
λ=200, Kc =100 and ε=1x10-6. Two simulated cases 
and the results achieved by the GA, Bacteria Colony 
and PSO are presented. 
 
The GA used to simulate the cases had population 
size 50, crossover probability 0.85, mutation 
probability 0.15, size of each chromosome 16 bits 
(binary codification), maximum number of 
generations 100, the selection operator is roulette 
wheeling with elitist structure.  
 
For the bacteria colony algorithm the following 
parameters needed to be adjusted p (optimization 
problem’s dimension), S (population size), Nc 
(number of chemotactic steps), Ns (maximum 
number of steps that a bacterium can swim in a turn), 
Nre (number of reproductions), Ned (number of 
elimination-dispersals events), ped (elimination-
dispersal probability) and C(i), i=1,2,...S (speed of 
the movement taken in one step) it is adopted, S=50, 
Nc=15, Ns =10, Nre=4, Ned =2, ped = 0.3 and C(i)=2.5, 
i=1,2,...S. 
 
The PSO parameters are population size 50, 
maximum number of iterations 100, maximum speed 
10, maximum inertia weight 0.9, minimum inertia 
weight of 0.4, and c1 = c2 = 2. 
 
6.1   Case study 1: Environment with 4 obstacles 
 
In Table 1 are presented the positions of the centers 
(xc, yc) of the circular obstacles and their respective 
radius (in meters) of case 1. The results obtained 
with the bacteria colony are restricted to p=3. In 
Table 2 the achieved solutions after executing each 
algorithm 10 times are presented. 
 

Table 1:  Definition of obstacles for the case study 1. 
 

obstacle number radius position (xc, yc)
1 10 (40, 15) 
2 10 (20, 35) 
3 20 (75, 60) 
4 15 (35, 75) 

 
Table 2: Results for an environment with 4 obstacles 

for 10 experiments. 
 

fitness genetic 
algorithm 

bacteria 
colony 

PSO 

mean 0.6778 0.6937 0.6909 
maximum 0.6892 0.6954 0.6987 
minimum 0.6448 0.6908 0.6273 
standard 
deviation 

0.0148 0.0014 0.0223 

 
As noticed by the results presented in Table 2, the 
three algorithms presented relatively similar 
performances, when dealing with simple 
environments. Because the environment is simple, 
every experiment have achieved a feasible solution, 
the best trajectory were achieved by PSO with a 
fitness of 0.6987. In Figs. 1, 2 and 3, the best results 
achieved by GA, Bacteria and PSO, respectively, are 
presented. 
 

 
Fig. 1. Best result achieved by GA, for study case 1, 

after 10 experiments. 
 

 
Fig. 2. Best result achieved by Bacteria Colony, for 

study case 1, after 10 experiments. 
 



     

 
Fig. 3. Best result achieved by PSO, for study case 1, 

after 10 experiments. 
 
The best result achieved for study case 1 were 
achieved by the coordinates: 
 
P1 = (27.6117, 28.4504); 
P2 = (60.0076, 73.4066); 
P3 = (62.8143, 75.9458). 
 
6.2   Case study 2: Environment with 12 obstacles 
 
Once the algorithms presented similar performances 
in simple environments, a complex environment is 
presented to test their performance. In Table 3 are 
presented the center positions (xc, yc) of the circular 
obstacles and their respective radius (in meters) for 
case 2. The results obtained are restricted to p=5. In 
Table 4 the results for the case study 2 are 
summarized. 
 

Table 3: Obstacles for case study 2. 
 

obstacle number radius position (xc, yc)
1 10 (13, 25) 
2 08 (10, 76) 
3 05 (76, 09) 
4 14 (45, 45) 
5 09 (12, 55) 
6 15 (80, 30) 
7 13 (66, 77) 
8 08 (32, 15) 
9 07 (75, 55) 

10 06 (87, 70) 
11 08 (35, 66) 
12 05 (45, 90) 

 
Table 4: Results for an environment with 12 

obstacles for 10 experiments. 
 

fitness genetic 
algorithm 

bacteria 
colony 

PSO 

mean 0.3039 0.5725 0.4182 
maximum 0.4867 0.6564 0.6691 
minimum 0.1721 0.2804 0.2584 
standard 
deviation 

0.1021 0.1168 0.1772 

 
As seen in Table 4, the genetic algorithm does not 
work very well when dealing with complex 
environments. The bacteria colony algorithm 
achieved more regular solutions; this fact is noticed 

by the higher mean and the best minimum for the 
fitness after ten experiments. This fact happens 
because the bacteria colony algorithm is a good 
global optimizer algorithm. However, PSO achieved 
the better solution for the environment, however the 
mean fitness is lower because PSO a good local 
optimizer. 
 
In other case to simple environments, where the 
performances of the algorithms were relatively 
similar, the performances vary from one algorithm to 
another in complex environments. In Fig. 4, 5 and 6, 
the best solutions achieved by each algorithm is 
presented. One point must be emphasized, in study 
case 2, a good number of experiments couldn’t 
achieve a feasible solution due to the complexity of 
the environment. 
 

 
Fig. 4. Best result achieved by GA, for study case 2, 

after 10 experiments. 
 

 
Fig. 5. Best result achieved by Bacteria, for study 

case 2, after 10 experiments. 
 

 
Fig. 6. Best result achieved by PSO, for study case 2, 

after 10 experiments. 
 



     

The best result achieved for study case 2 were 
achieved by the coordinates: 
 
P1 = (35.8869, 7.5879); 
P2 = (41.5000, 13.1526); 
P3 = (57.2419, 37.5937); 
P4 = (69.5467, 59.5898); 
P5 = (76.4572, 69.2533). 
 
 

6. CONCLUSION AND FUTURE WORKS 
 
A research area with special relevance to mobile 
robot systems is devising suitable methods to plan 
optimum moving trajectories. There exist many 
approaches within the area of evolutionary 
computation and swarm intelligence to solve the 
problem of optimization of path planning in mobile 
robotics. In this paper the application of the genetic 
algorithms, bacteria colony and particle swarm 
optimization is explored for this purpose.  
 
Considering the results presented through this paper 
it’s possible to conclude that there is an advantage in 
using PSO instead of the other two algorithms, 
because it achieved the better solution in both case 
studies and it requires less time to execute. The 
results of these simulations are very encouraging and 
they indicate important contributions to the areas of 
swarm intelligence and path planning in robotics. 
 
However, in future works, more detailed studies 
related to the parameters related to the three 
techniques, specially related to the bacteria colony. 
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