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1. INTRODUCTION

In this paper, we address the problem of fixed-order
controller design for persistent disturbance rejection.
More precisely, we provide a fixed-order controller
design method for multi-input/multi-output (MIMO)
discrete-time systems that minimizes the effect of
perturbations, which are bounded in thenorm, on
the outputs. By fixing the controller order, we mean
imposing constraints on the order of the polynomial
matrices used in the polynomial matrix description
of the controller. For an exposition on polynomial
matrix descriptions see, for example, (Antsaklis and
Michel, 1997).

The line of research in which this paper is integrated
has its origin in the/; control theory, which focuses
directly on the time-domain specifications, e.g., see
(Dahleh and Diaz-Bobillo, 1995). Howevet; con-
trol theory assumes zero initial conditions. Moreover,
the resulting optimal controllers can have arbitrar-
ily high order. These limitations lead to the devel-
opment of the so-calledqualized performancand
superstabilityconcepts, which were first introduced
in (Blanchini and Sznaier, 1997) and (Polyak and
Halpern, 1999). This preliminary work was followed
by (Halpern and Polyak, 2000), (Sznaétral,, 2002),

(Polyak and Shcherbakov, 2062 (Blanchini and Sz-
naier, 2000) and (Polyak and Shcherbakov, 200

this work, procedures were developed for the design
of controllers for persistent disturbance rejection for
two cases: i) single-input/single-output (SISO) plants
and ii) MIMO plants using static state feedback con-
trollers. This new approach not only takes into account
the effect of initial conditions but also, in the case
of SISO systems, allows for restrictions on the order
of the controller. Moreover, the problem of optimal
controller design can be formulated as a generalized
eigenvalue problem and, hence, easily solvable by cur-
rently available software.

However, these early results have limited applicabil-
ity to MIMO systems. More precisely, early work
on MIMO systems concentrated on the problem of
minimizing the effect of disturbances on the states of
the system. This leads to a performance measure that
is realization dependent, i.e., a system might exhibit
good disturbance rejection for a given state-space re-
alization but not be able to mitigate the influence of
the perturbation on the states if a different realization
is chosen (Polyak and Halpern, 1999).

In this paper, we take a different approach to this prob-
lem. We extend previous definitions sfiperstability
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andequalized performander SISO systems in trans- 2.3 Parametrization of All Stabilizing Controllers

fer function form to MIMO systems and, by relying on

coprime factorizations over the field of polynomials, Consider the setup depicted in Figure 1. It can be
develop a procedure for fixed-order controller design proven that all closed-loop transfer functions can
for persistent disturbance rejection. be parameterized by the so-called Youla parameter,
which we denote byQ, e.g., (Antsaklis and Michel,
1997). More precisely, any achievable stable closed-
loop transfer function is of the form

The paper is organized as follows: In Section 2, we
provide the notation that is used throughout the pa-
per. The definition of Input/Output superstability and
equalized performance for Linear time invariant (LTI) H=(-PC)P=N Dél(DQx —NoN)  (2)
MIMO systems is introduced in Section 3 where, also, o

some important properties of superstable systems arevhere Q = NQDél = DalNQ is any stable transfer
established. In Section 4, we address the problem offunction matrix. The corresponding stabilizing con-
fixed-order controller design for LTI systems. Finally, trollerC = Dg'Nc = NeD¢* is given by

in Section 5, we provide some concluding remarks and

: oot ST\ 3 q1y- |Ne ~1 (=N
delineate some directions for further research. [Dc —Nc] = [Dg No|U; {DJ =U [ DQQ] .

whereNc, D¢, No, Dg Re, Dc, No, Do are polyno-

2. NOTATION AND PRELIMINARY RESULTS ~ Mial matrices of appropriate dimensions aids the
unimodular polynomial matrix

2.1 Notation X Y. .1 [D-¥
U—{_m 5]’ v _[N x]

In the sequel) denotes the delay by one period, i.e. - -~ .

Me(k) = e(k—1). Also, |||, denotes the 1-norm of a whereX, Y, X andY satisfy the equations (1).

matrix or of the coefficients of a polynomial. In other i
words, given a matri® = ((a;}))nxm € R™M, [|Al|, = Remark 1.In order to us&) to parameterize all stable

m . ) controllers of the plant, we need the open-loop system
max 3 |a;[; Givenapolynomiab(A) =biA +---+ g e hoth observable and controllable. This will be

1<i<n &

S m assumed in the remainder of this paper.

bmA™, |Ib|l; = I [bi|. The notation[x| denotes the
iZ1

=
smallest integer larger than or equal to x. Finally, for a The results above assume that the controller has access
real numbec, let (c);. = max{0,c}. to all inputs and all outputs of the plant. However, in
common cases, only part of the inputs and the outputs
are available to the controller. The more general setup,
which is depicted in Figure 2, can be addressed by
requiring that the controller transfer function is of the

form
Central to the results of this paper is the coprime

factorization of a plant over the field of polynomi- C(A) = {8";:: Cl(();\]jgxq} : (4)
als. More precisely, given a transfer function matrix
P, consider its polynomial matrix description (PMD)
P=ND!=D"1N, where the pair of polynomial
matrices N, D) is said to be a right coprime fac-
torization of P and the pair of polynomial matrices
(N, D) is a left coprime factorization d?. These fac-
torizations satisfy the so-called Bezout's identity and
doubly coprime factorization equality; i.e., there exist 3. SUPERSTABILITY AND EQUALIZED
polynomial matricesX, Y, X andY of appropriate PEREORMANCE
dimensions, satisfying

2.2 Polynomial Matrix Description (PMD)

As it can be seen in Section 4, this will not signifi-

cantly increase the complexity of the controller design
method since it requires only the introduction of an
additional set of linear equality constraints.

e - ~ As mentioned in Section 1, currently available defini-
XD+YN=1I; DX+NY =1; =YX+XY =0. (1) tions of superstabilityandequalized performancier
. ) ) MIMO systems are realization dependent and, there-
See (Antsaklis and Michel, 1997) for a in depth expo- fore, cannot be used as an intrinsic property of a
sition on PMDs. system. To overcome this limitation, we now provide



an alternative definition o$uperstabilityfor MIMO 1,2,...,1, and any bounded inpdiw(j)|l, <1, j =

systems. Consider a system described by —max{pis},— max{pis} +1,...,i=1,2,...,] ands=
ﬁilblmj %mblmj/\j 1,...,mthenforallk>0andalli=1,2,...,l
(k) LS i @ (k)
Dol =+ Zﬁjfl : (5) lyi(K)| < .
0 g (k)

plzlbu_J/\j élzmbm,)\i _ _ _
= 1= There is an immediate way to check whether the
or, equivalently, equalized performance of a system is less than or
bir(A) ... bim(A) equal to a given leval > 0.

S D ek ®)

bi(A) ... bm(A) Theorem 2.Consider a planH of the form (5) and,

fori=1,2,...,1, defineb; = [[[bi1[l; ... [|bim[/;] . and
recall thatg = ||a||;. Let 4 > O be given. Then, the
plantH hasequalized performandess tharnu if and
onlyifforalli=1,2,...,1,

y(k) = (1+aA))* {

wherem andl are the number of inputs and outputs
respectively and, pjj are integer numbers. Moreover,
fori=1,2,...,1 and allk, we define the vector con-

taining the lash samples of;
pa+|lbifly < p. @)

Yi(k) = [yi(k) yi(k=1) --- yi(k—=n+1)].
Therefore, the smallest equalized performance level
Definition 1.(Input/Output (1/O) Superstability). The p* achievable by the plam is
system (5) is said to bH#O superstabléor superstable

b.
for short) ifq= ||a|; < 1. y= miaxl_'”é. (8)
Whenm =1 = 1, the definition above reduces 10 prOOF. We first prove necessity. Proceeding by con-

the definition given in (Blanchini and Sznaier, 1997) tradiction, assume that the equalized performance
and (Polyak and Halpern, 1999) for the SISO case. ¢ongition (7) does not hold, then there exists anch

A superstable system has many distinguished fea‘thatuq+||bi|\l > u. Equation (5) implies that

tures. Some of them are given in the remainder of

this section. The results provided below are natural m

extensions to the MIMO case of the ones presented yi(0)] = |a(d)yi(0) + Zlb” (A) @i (0))-

in (Blanchini and Sznaier, 1997) and (Polyak and =

Shcherbakov, 20G3. Then, there existy (k)| < p and |o;(K)| < 1, with

j=1,...,mandk= —n,... 0, such that
Yi(O)f =allYi(=1)lle, + lIbill1 [|e2(0)]|,
= pa+|lbify > p
which contradicts the initial assumption.

Lemma 1.Consider a superstable systéinof form
(5) and assume that no input is applied, i.e.,

w(k) = [wi(K) - wm(k)] =0,

then, for all time instant& >0, alli =1,---,| and . . )
initial conditionsY;(—1), We now prove sufficiency by induction. If the equal-
i1 ized performance condition (7) holds, then equa-
yi(k)| < ol /v (1), - tion (5) implies that forall = 1.,
m
PROOF. Sincew(k) = 0, then, forali =1,--- 1, ¥i(0)] = |a(A)yi(0) + H bij(A) wj (0)
=1
(K| = [a(A)yi(k)| < Yik—1
lyi (k)| =[a(A) yi(k)| < ||a||12\| i Moo <q|IYi(=1)]l + IIbill1 | @(0)].,
=q[Yi(k— 1) <P [Yi(k—1-n)].. < pa+[bifly < .

< o< gl DMy (—1)

llo -

Now, to complete the proof, assume thatk — 1)| <

. k>0, then
A superstable system also has an important charac-”’ -

teristic: the so-callecequalized performancevhose m

SISO version was first introduced in (Blanchini and Yi(K) = |a(A) yi(K) + 3 bij(A) wj (k)
Sznaier, 1997). A generalization of this property for 1=

MIMO systems, which we refer to d$0 equalized < llallp [1Yi (k=)o + [Ibil] 1 [|a(K) I
performanceis given below. < HO+|billy < p.

Definition 2.(I/O Equalized Performance). A super—

stable systentd with transfer function matrix of the 3.1 Equalized Performance and Plant Order

form (5) is said to havd/O equalized performance

(or equalized performancéor short) less thanu Since the concept of equalized performance accounts
if given any initial condition|Y;(-1)||, < H, | = for the effect of initial conditions, one should use



the “true” transfer function of the plant to compute wheredg(A) is a polynomial. Now, if one uses (2) to

it; i.e., one should use the transfer function which compute the closed-loop transfer function matrix and
corresponds to the difference equation that describesputs it in the form (5), it can be seen that the denomina-
the plant, without performing any pole/zero cancel- tor of the closed-loop plant (A ) and the numerator
lations. As an example, consider a plafiin(A) = of the closed loop plant is a linear function d$(A)
(1-0.11)/(1—-0.84). This plant has equalized per- andNg(A). Moreover, (3) indicates that the factoriza-
formance u* = 5.5. However, if one considers its tion of the controller is a linear function df andNg.
non-minimal realizatiorH(A) = (1 —0.01A2) /(1 — Hence, constraints in the order of the controller can be
0.7A —0.0812) then the smallest equalized level is represented as linear constraints on the coefficients of
p* = 4.5909. One can also obtain worse performance dg andNg. Therefore, given au > 0, the problem of
with another non-minimal plarti(A) = (1+0.8A — determining a fixed order controller that achieves an
0.092)/(1+ 0.11 — 0.72A2%) which has equalized equalized performance levglcan be formulated as a
performanceu” = 10.5. Hence, the results presented linear program involving the coefficients d§(A ) and

in this paper should be applied to the original transfer Ng(A ). We now elaborate on this.

function of the plant without performing any pole/zero

cancellation. Consider an open-loop plaRtwith m+ p inputs and

| + qoutputs as depicted in Figure 2, with left and right
coprime factorization®® = ND~1 = D~IN. Let X
andY be polynomial matrices satisfying Diophantine
equations (1). Now, as above, the Youla param&er
is represented in the following form

3.2 Performance Under Arbitrary Initial Conditions

The analysis above assumes that the initial conditions
are bounded by, i.e. fori=1...1, ||Yi(=1)||, < U.
However, if the condition above is not satisfied, one
can still provide bounds on the output of the system.
This result is provided below.

Q= 1 No (10)
Q

wheredq is an-th order polynomial anilg is a poly-
nomial matrix of appropriate dimensions. Using (2),

. one can see that the closed-loop system is given by
Theorem 3.Consider a superstable system of the form

(5), with initial conditions||Y; (—1)|, € R"i=1...I, HLQ) =N (doX ~Nol) )
and bounded disturban¢& (k)| < 1,k > 0. Then, Jgofu.j(Q))U jgofmp.,-(Q)Aj
1 ) ) (11)
iR < i+ DY (D)l — ) (9) = L : :
foralli=1,...,I, wherey; = 12 - Zati QAT o 2 framiai QA

1-q -

n .
where ¥ g(Q)A' = do(A) and fi {(Q) are affine
PROOF. We now proceed by induction. First, con- izo Q o(4) i (Q)

sider the cask = 0, functions of the coefficients afp andNg. Moreover,
. no pole zero cancellation is performed in system (11).
¥i(0)] = [a(A)yi(0) + 3 bij(A) wj(0) In other words, the closed-loop plant considered has
=1 an order equal to the summation of the order of the
< llally [1Yi (=Dl + [[bil; [l2(0) ] open-loop plant and the order of the controller. Fur-
<|Yi(=) e a+ llbilly thermore, the left factorization and the right factoriza-
=i +A(Yi(=D)lle — 1) tion of the controller are given by

S HAUYi(=D)lle — M)+

Now, to complete the proof, assume that equation (9) [Pe» No] = [Dc, —Nc]U ™, { DNQ} =U {SC]

is valid for 0,...,k— 1. Then, Q ¢

. _ , whereU is a unimodular matrix that depends only on
| i l(‘f{“‘\;in(:fklill)l""l‘;Hb'HlHw(k)”“’ the open-loop plant. In order to makgin form (10),
o kanfl)/rﬂ l' I . Dq andDg should be diagonal polynomial matrices
<q(ui+q Yi (=Dl = Hi)+) =+ il diag(dg) with all diagonal elements equal to polyno-
< i+ Y (=)o, — )+ mial dg, and, at the same timly = Ng.

Remark 2.In this setup, we only consider the "full-
order” closed-loop plant, i.e., the original plant with-
4. FIXED ORDER CONTROLLER DESIGN out any pole/zero cancellation. Therefore, the zeros of
the denominator polynomiaQ are equivalent to all
It turns out that optimizing the performance of closed- POl€s of the closed-loop system.
loop plants of the form (5) can be recasted as a gener-
alized eigenvalue problem which can be easily solved Hence, the problem of designing a fixed order con-
by available numerical tools. To see this, represent thetro|ler that achieves equalized performancéor the
Youla parameteQ in the formQ(A) = T%MNQ(A% closed-loop plant (11) over the first inputs andl



outputs can be recasted a linear program. More specifPROOF. The closed-loop system (11) is superstable
ically, we need to put three kinds of linear constrains: with the equalized performance less than or equal to
The first constraint set guarantees that the requiredif and only if

equalized performance level is achieved. This is done n
by first ensuring superstability of closed-loop system {=e— 3 |ey[>0 (15)
(11), i.e.,ep — Z |&| > 0, whereep > 0. Moreover, uE:-:||1F|| <0 (16)
equalized performance less than or equalptas where
achieved |f max z z [ iy v |) — H(€0— z la]) <0. =

»»»»» m=1n'= ' i=1

' .O . F=1:1, F|/—n; Z‘fim/_n/|, =1,

The second set of linear constraints addresses the ; “1'=o

constraint on the controller order. By controller order
we mean the highest power of the controller matrices
Nc D¢, Ne andDe. Given maximum controller order
nc, the order of the Youla paramet€ should be .
at least the order ot plus nc. Since this might ernz ay >0;
result in controllers of order larger thag, additional .
constraints should be used to ensure that poefﬂuents By >0, =1 Im=1..mw=0. n

of the controller corresponding to powers higherthen _; ' _, =~ y_1 o

Nc are zero. Again, this corresponds to a set of linear _g, <, <g. . VI'=1..ni=1..mn=0..n

constraints on the coefficients d§ andNg. n m 0 )
[JQ)—[JZCXH/—"; Zﬁ/m/_n/zo, I"=1,...,I.
Finally the controller structure depicted in Figure 2 is m=t =im=0

achieved by restricting the structure of the right and I other\_/}/ordg, thle 5.%/5;]9”.1 achiel\(es eqluzalizeg pleéfor-
left factorizations of the controlleZ. More precisely, mancey if and only if the inequalities (12) and (13)

~ ; . . are satisfied. In addition, &3¢ andD¢ are invertible,
?SDC andDc are invertible, having a controller of the the following equivalent relation exists,
orm

0 | 0m>< _ 0mxl Oqu
CA)= o a . c() {
( ) |:0p><| Cl()\)pxq:| Opxl Cl(A)qu

Now, note that the two inequalities (15) and (16)
are satisfied if and only if there existi and By j
satisfying the inequalities

w =0,

is equivalent to having numerators of the factoriza- ¢
i 0m>< ] U
tions of the form ; Ne = {Néxiiﬂ andRe = [0(m+p)xl N(mp)qu
_ 17 N~ — | Zmx(g+l) "
Ne = [Om-p) NeJi Re= [ VA ] which is given bycoe flNc(1 : (m+p),1:1)]s=0and
_ _ coef[Nc(1:m1:(1+q))]s=0, wheres=0,1,....
Hence, one obtains the following result: And coe f(Nc andDc )k = 0 for all integerk > nc puts

. . o extra constrains on the order of the controller.
Theorem 4.Consider the setup depicted in Figure 2,

there exists a controller of order less than or equal to
nc achieving closed-loop equalized performance lessGiven the results above, the problem of finding a
ﬁgfrg ?lr Oe)qslgatl:stf?/llr:f "’t‘ﬂg I?r?(l,);;fctgr?gfr;)r(nltsstﬂ ofthe  controller of order less than or equad that achieves

9 optimal closed-loop equalized performance can be

v =10 1'=1..1 m=1..m, formulated as the generalized eigenvalue problem
s=01..., k=nc+1lnc+2... .
min u

n
&>0; e-— 210” >0. (12) subject to(12), (13) and(14)

i: . . - -
ay > 0: Bt = O; which can be solved using available numerical tools.
ay _en’(Q) >0; y +en’(Q) >0;

B v — fvmr n’(Q)>0 B + iy (Q) > 0; (13) 4.1 Example

Hey — U z Ay — z z Bl’n’fn’>0
Consider the open-loop plant as presented in Figure 2

coefNe(1:m (|+Q))] =0; withl =m=2andp=q=1
coeflNc(1:(m +P) 1:1)]s=0; 0 1 =
A+11 A+11
coe NG (m-+1): (m+p),1: (1 + )]k = O s o
coeflNe(1: (m+p),(1+1): (1+)k=0; P=|x0m 17019 1250011 —00342 17)
coef[Dclk = 0; . 1 L . 4)\3;3.84)\2+(2),331)\ —0.04156
coe f[lic]k: 0. —018 2211294+0209 A%4+1281310.16552—0,04156\ —0.00639!

whereC = NcD;! = D !Rc are defined in equation By considering controller with order up until four and
(3), coef(W), denotes the coefficient dfy, order Youla parameters up until eight, which is the summa-
delay in functionW, andF (i1 : iz, j1 : j2) denotes the tion of the order ol and the order of the controller,

y ; 1-12,01- )2 , ) the procedure described in the previous sections was
elements from row; to row i from columnjj to j, used and the following results were obtained: The
in matrix F. Youla parameter is



[—0.0825 —0.427A% —0.0025+0.0200* 0.000415 —0.007A* ]
—0.0111340.033%42 —0.00843+0.21242 —0.03603 —0.219\2
—1.0824A —17.27  +4.392A +3.621 —~0.93\ —0.676

0.101°5+0535%  0.00515—0.0051  0.001A5—0.0005\*
+0.0113 0112  +0.023%3+0.281A2 —0.001613 +0.02512

—~1.3061 +5832  —1.825\ —1.802 +0.394 +0.335
0.32804+1.471A%  0.01504—0.004A3 —0.0041*+0.0004 3 ) 20 A e (seg)o 80 100
—1.3002+1.053\ +0.041A2+0.2674  —0.003A2 +0.036

-2.333 —2.46 +0.449

—1.12505-6.32914 — 0.031A3 — 0.23312 + 0.166A +49.3 | il

and the corresponding controller G = NCDE1 =
Dc*Ne where

0 0 0 1 (o) 20 A%me (seg))o 80 100
N — 0 0 0 . . .
< ' Fig. 3. Simulation Results
0.071A3+1.99A2 —0.0144—0.41443+0.16M2 —0.01613 —0.54M2
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