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Abstract: An algorithm is given for the computation of the maximal invariant
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1. INTRODUCTION

Set invariance plays a fundamental role in the de-
sign of controllers for constrained systems (Blan-
chini [1999a]). Indeed, constraints on state and
control are satisfied at all times if and only if the
initial state is contained inside an invariant set.
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Fig. 1 Geometry of Invariant Set.
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A control invariant 2 set in discrete–time systems
is a subset of state space such that for any state
in it there exists a feasible control that keeps the
successor state in it, for any admissible distur-
bance (feasible, admissible meaning control and
disturbance satisfy constraints). A picture helps
to illustrate the geometry of the invariance prob-
lem and serves as introduction to our approach.
For x+ = Ax + Bu + Cv ∈ IR2 where x+ is the
successor state assume u ∈ U and v ∈ V with U, V
given boxes. Box X = αβγδ (Fig. 1) is mapped
by A into α′β′γ′δ′ = AX. In order for X to be
invariant, for each z ∈ AX a vector Bu (with
feasible u) must be found that maps z inside abcd,
a subset of X such that from any of its points the
addition of a vector belonging to CV does not
lead outside X (diamonds represent disturbance
sets CV added to the corners of abcd). In Fig. 1
X is not control invariant, as the range of B is such
that there is no u mapping (for instance) point α′

inside abcd. Notice, this is true regardless of the
constraint on u. It is of interest in this case to
determine whether X contains a control invariant
set, for state control and disturbance constraints

2 As we only deal with systems subject to control and dis-
turbance constraints, we depart for brevity from the often
used terminology robust or robustly controlled invariant.



could be satisfied at all times starting from just
such a set. The largest control invariant set would,
loosely speaking, maximize chances of satisfying
constraints. It is well known that a control invari-
ant set contained in a closed bounded convex set
P exists if and only if a maximal control invariant
set Ŝ contained in P exists. The search for Ŝ
can be done recursively by the repeated evalua-
tion of the reach set R(X), the set of all states
that reach X in one step with a feasible control,
for all admissible disturbances. The computation
of R(X) entails set difference, projection, and
intersection of convex sets. As the order of the
system grows, these can be computationally ex-
pensive operations (see Veres [2002] for numerical
aspects in polyhedral sets) whose simplification
has attracted in the past considerable research
effort:Lasserre [1993], Shamma [1996], Blanchini
[1999b], De Santis [1997], Kerrigan [2000], Mayne
[2001].

Two algorithms are available for the computa-
tion of Ŝ. The first algorithm, known as external,
builds up a family of sets Xk+1 = R(Xk)∩P with
X0 = P . The second algorithm, known as inter-
nal, builds up a family of sets Xk+1 = R(Xk) ∩
P with X0 = S, where S is a control invariant
set contained in P . Under broad conditions, both
algorithms are known to converge to Ŝ, the largest
invariant subset of P . The external algorithm gen-
erates sets with the property Xk+1 ⊂ Xk, hence
it approximates Ŝ from the outside. The inter-
nal algorithm generates sets with the property
Xk+1 ⊃ Xk, hence it approximates Ŝ from the
inside (whence their name). The first algorithm
has the drawback that the family of approximants
is not invariant, so the successive approximations
bear essentially worthless 3 information; the sec-
ond algorithm is preferable as each approximant
is itself control invariant, thereby providing an
approximate solution. The drawback however is
that an initial control invariant set S – with re-
spect to a given P and given V – must be found.
This is easy to do in absence of disturbances, for
in that case the equilibrium state xe is evidently
invariant under ue such that xe = Axe + Bue,
and it can be assumed Gutman, Cwikel [1987], De
Santis et al. [2004] S = {xe} as a starting point
for the internal algorithm. However, we know of
no general procedure to determine S in presence
of disturbances. This will indeed be one of the
contributions of this paper.

Both algorithms suffer from the fact that conver-
gence is not guaranteed to occur finitely, even if
Ŝ is finitely generated. Moreover, even if P is a
polyhedron Ŝ need not be a polyhedron, e.g. a
finitely generated set. The approach we take in
this paper is based on the observation that if the

3 precisely, Xk guarantees permanence in it for k steps

range of the B matrix is the entire space, then
invariance of any set P depends purely on con-
straints and no longer on system structure: either
the control constraints can make P invariant or,
P cannot be made invariant. For polytopic P the
test requires solving a system of linear inequalities
– no iterations are necessary.

The price we pay for such a simplification is the
need to consider n-step dynamics for a system
of order n, so that the extended B matrix (un-
der reachability) has range Rn. Enforcing n-step
invariance is a weaker condition than 1-step in-
variance (ordinary invariance) as temporary vio-
lations are allowed. Such a weakness ought to be
compared with the approximations generated by
the external algorithm which, when arrested at
iteration n, only guarantee permanence in X of
trajectories of length n at most. Here, we take the
complementary view of allowing departure from
X of trajectories of length n at most. Notice
that our condition implies stable trajectories while
the former does not. Moreover, weakness can be
tempered by imposing that the maximal devia-
tion from X in steps 1 . . . n − 1 be minimized.
Should the deviation be zero, X is invariant, hence
we have a check of invariance not requiring set
difference, projection, and intersection. Should X
be not invariant, the maximal deviation from X
defines a second set X̂ such that trajectories start-
ing in X stay in X̂. It turns out that this allows
initialization of the internal algorithm, should the
maximal invariant subset of X be of interest. No-
tation: set inclusion A ⊂ B is non–proper unless
A 6= B is specified. The interior of A is int(A),
its convex hull conv(A). The set of vectors x + y
with y ∈ B is denoted x +B, if in addition x ∈ A,
A + B (Minkowski sum).

2. PRELIMINARIES

Consider systems described by

x(t + 1) = Ax(t) + Bu(t) + Cv(t) (1)

where t is an integer time-index, x ∈ IRn is
the state, u ∈ IRm the control, v ∈ IRp the
disturbance and matrices A, B, C are assumed
known. As we consider time invariant systems we
often omit t and use notation x+ = Ax+Bu+Cv
where x+ is the successor state.

We define three sets, X ⊂ IRn,U ⊂ IRm, V ⊂ IRp.
A control is feasible if it takes values in U . A
disturbance is admissible if it takes values in V .
We assume

A0. X, U are closed bounded convex sets, with
nonempty interior

A1. the disturbance v(t) is unknown but admissi-
ble for all t.



A2. 0 ∈ V and ∃xe ∈ int(X), ue ∈ int(U) : xe =
Axe + Bue.

A3. the state x(t) is observed at all t.

We recall

Definition 1. X is control invariant for (1) if for
any x ∈ X there exists a feasible control such that
x+ ∈ X for all admissible disturbances.

We use repeatedly the notion of a reach set R(X).
With reference to system (1), R(X) is the set of
states that can reach X in one step with a feasible
control for all admissible disturbances.

As is well known - and easy to check - control
invariance of X holds if and only if

X ⊂ R(X). (2)

To emphasize the role of disturbances, (2) can be
written alternatively

X ⊂ R0(X − CV ) (3)

where R0(X − CV ) is the reach set of X − CV
under zero disturbance. A property of R (shared
by R0) is monotonicity

A ⊂ B ⇒ R(A) ⊂ R(B)

meaning that a feasible control able to reach A
also reaches B.

Remark 1. If the origin is contained in U and in
the interior of X and CV inclusion (2) in absence
of noise implies contractivity as well as control
invariance of X , e.g. there exists λ ∈ (0 1) such
that under a feasible control X maps into λX at
each step. This ensures asymptotic stabilizability
to the origin for (1).

Definition 2. X0 ⊂ X is safe wrt X for (1) if
for any initial state x ∈ X0 there exist feasible
controls such that all subsequent states are in X
for all admissible disturbances.

We state without proof the properties

Proposition 1. Union of control invariant (safe
wrt X) sets is control invariant (safe wrt X).
Intersection of control invariant sets need not be
control invariant. Subsets of safe sets are safe, so
their intersection is either empty or safe.

Hence a set containing a control invariant subset
contains a maximal control invariant subset.

Proposition 2. The largest safe set Ŝ wrt X is con-
trol invariant and it coincides with the maximal
control invariant set contained in X.

Proposition 3. If X (X0 ⊂ X) is invariant (safe)
for (1) with controls in U so is with controls in
Û for Û ⊃ U ; if X (X0 ⊂ X) is invariant (safe)
with disturbance in V so is with disturbance in
V̂ for V̂ ⊂ V . In the linear case, if (X, U, V ) is
an invariant triple (meaning X is invariant for
(1) with controls in U and disturbance in V )
so is any triple (λ(X − xe), µ(U − ue), νV ) for
0 ≤ ν ≤ λ ≤ µ, xe ∈ X, ue ∈ U with xe = Axe +
Bue.

3. K-STEP INVARIANCE

As discussed in the introduction invariance can be
weakened by the notion of k-step invariance

Definition 3. Set X is k−step control invariant
for (1) if for any x(0) ∈ X there exists a sequence
of feasible controls uk = u(0) . . . u(k − 1) such
that x(k) ∈ X for all admissible disturbances
vk = v(0) . . . v(k − 1).

Setting S1(·) = R(·) and Si+1(·) = R(Si(·)) we
define

Rk(·) = ∪k
i=1Si(·)

and interpret Rk(X) as the set of states that
under feasible controls reach X in at most k
steps, for all admissible disturbances. Then k-step
control invariance of X holds if and only if

X ⊂ Rk(X). (4)

The definition of k−step invariance does not rule
out τ−step invariance for τ < k. In particular,
1-step invariance is the same as invariance.

To emphasize the role of disturbances, (4) can be
written alternatively

X ⊂ Rk
0(X −Dk) (5)

where Dk is the set of states reachable from 0
in k steps by admissible disturbances under zero
control and Rk

0(·) is the set of states that reach
(·) in at most k steps with feasible controls under
zero disturbances. Notice that Rk,Rk

0 inherit the
monotonicity of R,R0 meaning that a sequence
of feasible controls able to reach A in at most k
steps also reaches B ⊃ A in at most k steps.

A control invariant set need not be k−step control
invariant, since uk in Def. 3 is open loop. To
illustrate, for

x+ =
3
4
x + u + v, |u| ≤ 1

2
, |v| ≤ 1

set X = {x : |x| ≤ 2} is control invariant under
u = −min{ 3

4 |x|,
1
2}sign(x), but not 2-step control



invariant as there are points of X that cannot be
brought to 0 with two feasible controls while two
admissible disturbances can take the state outside
X from all points except 0. However, in absence
of disturbance (v ≡ 0) a control invariant set is
k−step control invariant for any k > 1.

The example enlights a simple general property.

Proposition 4. If Dk ⊂ Rk
0(0) then Rk

0(0) is k-
step control invariant.

Proof Since {0} ⊂ Rk
0(0) − Dk, from the mono-

tonicity of Rk
0 we have

Rk
0(0) = Rk

0({0}) ⊂ Rk
0(Rk

0(0) −Dk)

and the conclusion follows from (5) with X =
Rk

0(0) .

In absence of disturbance a known result Aubin
[1991], Caravani, De Santis [2002] is that a set X
contains a control invariant subset for (1) if and
only if it contains a feasible equilibrium point of
(1), a point xe satisfying xe = Axe +Bue for some
ue ∈ U. In presence of disturbance sufficiency fails
and we have the following

Proposition 5. Set X contains a control invariant
subset for (1) if and only if it contains a set of the
form x + CV which is safe wrt X .

Proof (if) Assume x + CV ⊂ X is safe wrt X .
As points of the reach set of a safe set are safe,
and union of safe sets is safe, a maximal safe set
contained in X exists. But the maximal safe set
is control invariant.

(only if) Assume there exists no x such that x +
CV ⊂ X . This implies

∀x ∃v ∈ V : x + Cv 6∈ X.

Then for any x ∈ X and all f : X 7→ U there
exists v ∈ V such that Ax +Bf(x) + Cv 6∈ X, i.e.
X cannot contain a control invariant subset. Thus
we proved that a set of the form x + CV must be
contained in any X containing a control invariant
subset; in particular, it must be contained in a
control invariant subset of X . This shows x + CV
must be safe wrt X.

Proposition 6. Set X contains a k-step control
invariant subset for (1) if and only if it contains a
set of the form x +

∑k
t=1 Ak−tCV (with the sum

meant in a set-theoretic sense) which is safe wrt
X .

Proof (same as Prop. 5, with appropriate replace-
ment of the variables)

Notice that this also establishes

Proposition 7. A set X containing a k-step con-
trol invariant subset for (1) also contains a control
invariant subset.

Proof By Prop. 6, X contains a set of the form
x+

∑k
t=1 Ak−tCV which is safe wrt X for (1). As

x +
∑k

t=1 Ak−tCV ⊃ x + CV, the latter is safe
wrt X for (1) and by Prop. 5 it contains a control
invariant subset for (1).

In general, the condition of Prop. 5 cannot be
checked in a finite number of steps. However,

Proposition 8. Let X0 be k-step control invariant
for system (1) and safe wrt X . Then a control
invariant set contained in X can be found in k
steps.

Proof Consider the algorithm

Sk = X0

Sτ = conv(R(Sτ+1) ∪ Sτ+1) ∩ X, τ = k − 1 . . . 1.

Sk is k-step control invariant and safe wrt X .
Assume Sτ+1 is τ + 1 step control invariant and
safe wrt X. Under suitable controls, trajectories
starting in Sτ+1 at step 1 return to it at step
r ≤ τ + 1, therefore at step r − 1 they are either
in Sτ+1 or in R(Sτ+1)∩X. Therefore (R(Sτ+1)∪
Sτ+1) ∩ X is τ -step control invariant. It is also
safe wrt X , because Sτ+1 is safe wrt X and from
R(Sτ+1) ∩ X it is possible to go to Sτ+1 in one
step. Due to linearity, if a set is invariant and
safe so is its convex extension, hence Sτ is τ -step
control invariant and safe wrt X. By induction,
S1 is control invariant and safe wrt X, hence
contained in X.

Proposition 9. Assume (A, B) reachable in (1)
and let 0 ∈ int(U) and 0 ∈ int(X). Then there
exist a set X0 and scalars λ0, λs such that λ0X0

is n-step invariant for (1) with controls in λ0U and
disturbance in V and safe wrt λsX.

Proof Let Pn be the reachability matrix of (A, B).
The set of states of (1) that reach the origin in n
steps with feasible controls and no disturbance is

Rn
0 (0) = {x : ∃un ∈ Un : Anx + Pnun = 0}.

We show that X0 = Rn
0 (0) has the desired prop-

erty. Since Pn has rank n there exists a matrix
Q such that un = −QAnx, PnQ = I. Therefore
XQ = {x : −QAnx ∈ Un} ⊂ X0 and since
0 ∈ int(Un), 0 ∈ int(XQ) ⊂ int(X0). Hence
∃ν∗ > 0 such that



ν(CV + ACV + · · · + An−1CV ) ⊂ X0 ∀ν ∈ [0 ν∗]

that is, ν∗Dn ⊂ Rn
0 (0). By Prop. 4, X0 is n-step

invariant for (1) with controls in U and distur-
bance in ν∗V. By Prop. 3, λ0X0 is n-step invariant
with controls in λ0U and disturbance in V for
λ0 = 1/ν∗. Thus under arbitrary disturbances in
V there exist controls in λ0U yielding x(0), x(τ) ∈
λ0X0 for some τ ≤ n in (1). Let T be the set of all
such trajectories. Clearly 0 ∈ λ0X0 ⊂ T and since
trajectories of (1) have finite amplitude in finite
time, T is bounded. As X has a nonempty interior
containing the origin, there exists a λs < ∞ such
that T ⊂ λsX, e.g. λ0X0 is safe wrt λsX .

Remark 2. The set X0 used in the proof is ac-
tually the largest set of states that reaches the
origin in n steps with feasible controls. In practice,
any set sharing this property – for example XQ –
serves the same purpose.

Proposition 10. Let Ŝ be the maximal invariant
subset of X with controls in U and disturbance
in V and let xe ∈ Ŝ where xe = Axe + Bue

be a feasible equilibrium point of (1). Let λ∗ be
the infimum λ such that λ(X − xe) contains an
invariant subset with controls in λ(U − ue) and
disturbance in V. Then X∗ = λ∗(X−xe) contains
a control invariant subset if and only if it contains
S∗ = λ∗(Ŝ − xe), the maximal control invariant
subset of X∗.

Proof By assumption, xe = Axe + Bue for
some ue ∈ U . By Prop. 3, if (S, U, V ) is an
invariant triple for (1), there are values of λ such
that (S − xe, U − ue, V/λ) keeps the property.
Let λ∗ be the infimum of such values. Clearly
λ∗ ≤ 1. Consider X∗ = λ∗(X − xe). This set
contains an invariant subset with controls in U∗ =
λ∗(U − ue) and disturbance in V if and only if
it contains a maximal invariant subset under the
same constraints. Assume the latter is S′ 6= S∗ =
λ∗(Ŝ−xe). If S′ is an invariant subset of X∗ with
controls in U∗ and disturbance in V, by Prop.
3 S′/λ∗ + xe is an invariant subset of X with
controls in U and disturbance in V. But S′/λ∗ +
xe 6= S∗/λ∗ + xe = Ŝ and conv(Ŝ ∪ S′/λ∗ + xe) is
a control invariant subset of X properly including
Ŝ against the assumption.

4. DOES X CONTAIN A CONTROL
INVARIANT SUBSET?

The question whether a set X contains or not
a control invariant subset can be answered by
the internal invariant approximation algorithm
as follows. Assume 0 ∈ int(X) is the feasible
equilibrium point of interest.

Algorithm 1

1. Find a set X0 and a scalar λ0 such that λ0X0

is n-step invariant with controls in λ0U and
disturbance in V.

2. Find a scalar λs ≥ λ0 such that λ0X0 is safe
wrt λsX

3. Using Prop. 8 find S, an invariant subset of
λsX with controls in λsU and disturbance in
V.

4. Using the internal approximation algorithm,
find Ŝ, the maximal invariant subset of λsX
with controls in λsU and disturbance in V.

5. Using Prop. 11 find λ∗. If λ∗λs ≤ 1 conclude
that λ∗Ŝ is the largest control invariant sub-
set of X ; otherwise no invariant set with con-
trols in U and disturbance in V is contained
in X .

A few remarks are in order. Steps 1 and 2 are
based on Prop. 9, whose proof also suggests a way
to compute λ0, λs, X0. Step 4 may require infinite
iterations of the internal invariant approximation
algorithm. However, truncation at iteration k <
∞ yields useful information since λkλsX contains
a control invariant subset. More specifically, re-
place 4 and 5 by

4k. Find λ∗ = inf λ : λS is invariant with
controls in λλsU and disturbance in V.

5k. While λ∗λs > 1 repeat:

S ⇐ R(λ∗S) ∩ λ∗λsX
λ∗ ⇐ inf λ : λS is invariant with controls

in λλsU and disturbance
in V.

The S-assignment in 5k corresponds to one step
of the internal invariant approximation algorithm
and it yields a larger invariant set than λ∗S
contained in λ∗λsX . Notice that since S at step 3
is an invariant subset of λsX , λ∗ is always ≤ 1 in
4k. Thus the sequence of sets {λ∗λsX} generated
in 5k is decreasing and it converges to the smallest
set in this family containing an invariant subset
with controls in U and disturbances in V. The
algorithm stops if λ∗λs ≤ 1 in which case X
contains an invariant subset λ∗S with controls in
U and disturbances in V.

We remark that the procedure outlined, contrary
to De Santis et al. [2004], does not require CV to
be a C-set (a convex compact set with a nonempty
interior containing the origin) and it appears sim-
pler to implement. When X, U, V, are specified
as convex polyhedra, Algorithm 1 reduces to a
sequence of linear programs and elementary oper-
ations on convex sets. These have been performed
using the Geometric Bounding Toolbox developed
by Veres [2002]. The detailed procedure will be
included in an extended version of the paper.



5. AN EXAMPLE

Consider the double integrator used in Raković et
al. [2005].

x+ =
[

1 1
0 1

]
x +

[
1
1

]
u + v

with

X = {x : −3 ≤ x1 ≤ 1.85;−3 ≤ x2 ≤ 3;

x1 + x2 ≥ −2.2}
U = {u : |u| ≤ 2.4} V = {v : |v|∞ ≤ 1}.

We have X = abcde in Fig.1. Step 1 of the
algorithm finds λ0X0 = ABCD (λ0 = 2.0833)
to be 2-step invariant with controls in λ0U and
disturbance in V . At Step 2 ABCD is found safe
wrt λsX = LEFGH (λs = 3.333). At Step 3 we
find an invariant S = AMNPCRHL contained
in λsX . At Step 4k we find a contraction of this
set with λ∗ = 0.3 which (since λ∗λs < 1) is
contained in X with controls in U and disturbance
in V , see convex polygon inside abcde in Fig.
(a): we conclude X contains a control invariant
subset. An improved estimate to the maximal
control invariant subset of X could obtained by
performing Step 5k of the algorithm. However, the
maximal invariant set inside abcde in Fig (b) (easy
to compute in this particular case) shows that the
first iteration of the algorithm already provides a
good appromation (inner polygon in Fig. (b)).
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6. CONCLUSION

In this paper we have presented a technique to
evaluate the maximal control invariant subset of
a given set for LDT systems. The approach im-
proves the state of current research in the follow-
ing aspects: 1. it quickly provides a first approxi-
mate solution consisting of an ”inflated” version of
the given set containing a control invariant subset;
in subsequent iterations, the size of the inflated set
is reduced and the procedure is shown to converge
to the smallest set in the family containing a

control invariant subset. This way, the question
whether a set contains a control invariant subset is
also answered algorithmically. 2. The assumptions
necessary to obtain the desired result are minimal
- in particular, it is not requested that the distur-
bance vector acts on every state component.
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Raković S. V., Mayne D. Q. , Kerrigan E. C. and
Kouramas K. I. (2005) Optimized robust con-
trol invariant sets for constrained linear discrete
– time systems, Proceedings of the 16th IFAC
World Congress IFAC 2005,pp. na

Shamma J.S. (1996) Optimization of the l∞-
Induced Norm Under Full State Feedback,
IEEE-AC 41-4 pp. 533-44.

Veres S. M. (2002) Error Control in Polytope
Computations, JOTA 113–2, pp. 325-55.


