H., OUTPUT-FEEDBACK OF DISCRETE-TIME
SYSTEMS WITH STATE-MULTIPLICATIVE NOISE

Eli Gershon* Uri Shaked **

* Dept. of Electrical Eng. Holon Academic Institute of
Technology, Holon, Israel, e-mail:gershon@eng.tau.ac.il
** Dept. of Electrical Eng. - Systems, Tel Aviv University,

Tel Aviv 69978, Israel, e-mail:gershon@eng.tau.ac.il

Abstract: Linear discrete-time systems with stochastic uncertainties in their state-space
model are considered. The problem of dynamic output-feedback control is solved via a

new approach, for both the finite horizon and the stationary cases. In both cases, a cost
function is defined which is the expected value of the stand@&gdperformance index

with respect to the uncertain parameters. An example is given which demonstrates the
applicability of the theoryCopyrigh@ 2005 IFAC
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1. INTRODUCTION solution in (Dragaret al., 1998) includes the finite and
the infinite time horizon problems without transients.

In the present paper we address the problem ofOne drawback of (Dragaet al., 1998) is the fact that

H.. output-feedback control of discrete-time state- in the infinite-time horizon case, an infinite number of
o0

multiplicative linear systems via a new approach, in Linear Matrix Inequality (LMI) sets should be solved.
both finite and infinite time settings. Systems whose Moreover, the fact that in (Dragaet al, 1998) the

parameter uncertainties are modelled as white noiseTeasurement coupling matrix has no uncertainty is
processes in a linear setting have been treated in (Dra-a practical handicap, for example in cases where the

ganet al, 1997a ; Dragaet al., 1997b : Hinriechsen measurements include state derivatives (e.g. accelera-
et al, 1998) and (Gershoet al, 2001c ) for the tion control of an aircraft or missile). The treatment of

continuous-time case and in (Drageh al., 1998 : (Bouhtouriet al., 1999) includes the derivation of the

Bouhtouriet al., 1999) and (Gershoet al., 2001) for stochastic Bounded Real Lemma (BRL) and concerns
mnly the stationary case where two coupled nonlinear
inequalities were obtained. An attempt to solve the
output-feedback problem using the adjoint system has

the discrete-time case. Recently, the general proble
of discrete-time output-feedback with stochastic un-
certainties has been treated by (Dragarml., 1998 ;

Bouhtouriet al., 1999) and (Gershcet al,, 2001). The ~ Peen made in (Gershoet al, 2001). A modified-



Riccati recursion is obtained there which guarantees A
a given H,, estimation level, while minim?zin an S “E” Elzells =7 (el > + 1o 1}
g > o L g + UE {CC%QN!L”N} — vz Qozo < 0,
upper-bound on the covariance of the estimation error. K
The theoretical justification for using an adjoint sys- . _ ~
. .J . d ) J y with Qn > 0, Qo > 0 for all nonzero({wy}, xo)
tem in stochastic systems, particularly in tHg, con- ~ .
o where{w} € 5[0, N — 1] andxzy € R™. Similarly
trol field, is somewhat debatable. In the new approach ) ,
, . to the standard case (Green and Limebeer, 1995), this
that is adopted here, the latter obstacle is removed by . . .
. . problem involves an estimation of an appropriate com-
avoiding the use of the adjoint system. - —
bination of the states, and the application of the results
In the present paper we address the problem via twoof the state-feedback with a proper modification.
approaches: In the finite-horizon case we apply the
Difference LMI (DLMI) method for the solution of the
Riccati inequality obtained and in the stationary case
we apply a special Lyapunov function which leads to  z;; = (A + Dvg)ay + Biwg + Baug, 20 =0,
an LMI derived tractable solution. yr = (Ca2 + Fp)xp, + 1y, (4)
Notation: 2k = Crxy + Diguy

(©)

i) Stationary stochasticH ., output-feedback: Given
the following system:

We denote by.2(2, R™) the space of square-integrable
R"— valued functions on the probability spage, 7, P), Where the system matrices, By, By, D, Cs, F',
where( is the sample spac#; is ac algebraof asub-  andDi2 are all constanty, 7, are given above. We
set of(2 called events an® is the probability measure seek an output-feedback controller that achieves, for a
onF. By (Fi)ren We denote an increasing family of ~ 9iveny >0,

o-algebras which is generated by, 7;, 0 < j < k.
Fi. C F, whereN is the set of natural numbers. We
also denote by?(\; R™) the space of n-dimensional
nonanticipative stochastic proces§¢s} .c - with re-
spect to Fy ) ken Wherefy, € L?(Q, R™). By ||.||3 we
denote the standard-norm: ||d||3 = (S3;d} dk)
and by ||fx]|% the productf! Rf;. We denote by

|| - || is the standard Euclidean norm and &y the
Kronecker delta function.

A
Jo 2 B el =2 0hesl?, + 1l ]} < 0(5)

for all nonzero{w,} € 1%([0,00);RP),{nx} €
12([0, 00); RY).

3. RESULTS

We bring first the known solution the stochastic state-
feedback problem which constitutes the first stage in

2. PROBLEM FORMULATION the solution of the dynamic output-feedback problem
(Gershonet al. 2001). We consider the system of
i) Finite-horizon stochasticH ., output-feedback: (1), with the measurement equation excluded and we
We consider the following system: assume, for simplicity, that fot € [0 N]:
Tpy1 = (Ak + Dio)xr + By pwy + Ba puy, ct, Dﬂ,k]D12,k =[0 Ry, Rk>0.(6)
Yk = (Coi + Frmi) i + 1, 1)

zr = C1 pxp + Digu . .
F LA 12Tk Considering, for a given scalar> 0, the performance

index of J, in (3) , we have the following Lemma:
Lemma 1: (Gershon et al, 2001) Consider the
system of (1) with the feedback layw = K. Given

E{min;} = onj, E{vrv;} = dij, E{nrv;} =0 (2) v > 0, a necessary and sufficient condition féy of

(3) where||n||2 = 0, to be negative for all nonzero

and wherer), ¢ R" is the state vectory, € RPisan  ({wi}, o) wherewy, € [0 N —1] andz, € R"
exogenous disturbancg, € R? is the measurement IS that there exists a solutiof;, > 0 to the following
vector,z, € R™ is the objective vector and;, € R’ equation:

is the control input signal. We look for an output- —
feedback cont |I|O th?[ hi f iven 0 ’ Qi = A My Ay Dy Qe Dt GOk ()
eedback controller that achieves, for a giver 0, _A{kq)glAl)k’ On=0n,

where {v;}, {n:} are independent white noise se-
guences that satisfy:



optimal strategies of botfuwy, } and{u} are needed.

that satisfiesR, = v2I — BT, Qr41B1x > 0 and
' These are derived below:

Qo < 7¥*Qo, Where:

7 A -2 T -1 -
MkA— Q;—i_l,[l -7 del,kBl,kaZ-l] T7 - (8) Defining Je = $£+1Qk+lxk+1 _ szk(Ek and sub-
Py, = By My Bak + Ry, A1y = By My Ay stituting (1) in.J, we obtain:

. L. Jo=[zF At+Drv T—HLTBT Ar+Drvg)zi+(Ba k) uk
If there exists such);, then the state-feedback gainis " (o (AxtDicvr) o BanQuna[(Ar+Drvr)ont(Ba pJur]

given by:

+2[$£(Ak + Do) + uf(B2,k)T]Qk+lBl,kwk
"F‘szkakJrlBl,k'wk—wkrQkxk—"}?w:wk"")’zwzkanguk
Kip=—®,'Ay . 9) +al CT O i — 2F 2
= —w} [v*I = BT ,Qus1B1k]wi + 2[z), (Ag + Divr)”
In the case where the system matrices are all constant #+ (B2.x)1Qk+1 Buswi + uy [Ri + (B2,x)" Queyr (B2 x)]us
22T (Ay + Drop)T B Tl Ag + Do) T Qr
N — oo and the systen{ A, By, C1, D12} has no * z&( i—; ::kj CQTkE( 2’}9);?:% L(T: ivg:fT)wQHl
. . . . . k kVk 1,k 1,k — k k — %~k k k-
|n_\{ar|ant Z€ros on Fhe unit C|_rcle ar(_eH,B 2) Is sta- Taking the expectation with respectip we get:
bilizable, the following result is obtained (Gershen

al., 2001): ]
L 2 (G h t al. 2001) C id th +UZB§ka+lBl,k]wk + up [Ry + B;,kaJrle,k]uk
emma 2: (Gershon et al., ) Consider the 227 (AT Qi1 BoJur + (AT Quir A + DL Qrs1 Dy,

system of (4) with the measurement equation excluded. o7 ¢, , — Qular — 2720 + v2wlwil + B {¥,}
Given~ > 0, a necessary and sufficient condition

E {jk} =K [—wi (¥ I-BT Q11 B klwit2ley AL Qui1B1k

where
for J, of (5),with|[nk||? = 0, to be negative for all S
2 —
nonzero{wy,} where{w;} € [?([0,00); RP) is that Wi = 22} Dy viQr1 B
there exists a matri® = PT e R"*" that satisfies +22} D} 0k Q1B pur, + 23 D v Qpegr A,
the following LMis: and where B {¥;} = 0, k = 0,1,..,N — 1L
P PA" 0o PD" PC] o0 ] Completing to squares, first fap, and then foruy,
AP T(2,2) B.R™* 0 0 B we obtain:
o 87 P o o o B {Ji} = ~ll(wr = wi)ll, +ll(ux = up)ll3,
’ > 0(10) —zi [Ay @) AT, — A{QkﬁBl.kR,;lBlT,kailAk]zk
DP 0 0 P 0 0 +x7, [Af Qua14k + Dy Qre1Di + Cf ,Cr ok — Qilz
CiP 0 0 o L, 0 —zp 2+ wg we + B {0}
| o Bf 0 0o 0 ~I | where Ry, is defined proceeding (&, andA,  are
defined in (8),
and N LA
~21, BT up = Kpxg, wp = Kepwp + Kyrug,
r D1 AN A
[ B P ] >0, (11) Ko =Ry B Qi1 Ag, Kup =Ry B 1 Qry1Bag
and the controller gaif’y, is defined in (9).
where I'(2,2) = P + BQR—lBQT. In this case  Rearranging the last equation we obtain:
the state-feedback gain i&, = —[BfMB, + B {0} = ~llwe —wp)llx, +ll(ur —up)lls,
R|~'BI M A.whereM = P~Y[I-~y—2B, BT P~1]~ 1. +ai RQi)zr — 2 2k + 77wl w, + B {04}

WhereR(Qk) = AngAk‘FD]{Qk-&-le‘FCEkCl,k_
AT, ®; ' Ay . Taking the sum of both sides o,
from zero toN — 1, the following is obtained using

4. FINITE-HORIZON STOCHASTIC N1
OUTPUT-FEEDBACK CONTROL BN {i} = {ehQnen} - ol Qoo
k=0

Proof: See (Gershoet al,, 2001) and (Gershost al.,
2004) for the LMI derivation.

The solution of the output-feedback control problem  ¥=:
- : - = B {llwe = widll, + 1 =il }+ B {0
is obtained below by transforming the problem to one v k k v

k=0
of filtering, to which the result of the discrete-time No1
stochastic state-multiplicative BRL is applied. In or- +Z B Ll RQuzi ) + B {~llzl3 + 77 llwel3}
der to obtain the equivalent estimation problem, the k=0



Jo=Y B {—ll(wy w3, }+ B {04}

=0

k
N—-1
+ 3B {llew w3, } + o8 (@ Q0w (12)
k=0

N-—1
+> B {ol RQu)a }-
k=0

Clearly, the optimal strategy far; is given byu; =
uy, whereQ)y, that is obtained by

Qk = Ang-l-lAk — ALk(I)];lA{k + Dng-‘rle
+kac},k + AszHBLkRElB{,kaﬂAka
QN = QN7

satisfiesR;, > 0 andQ < v2Qo.

we obtain the following augmented system:

1= A&y, +~Dk§kvk + Fy&ni, + By,

15
2= C1 k€, (15)
where
i Ay —[BipKur + B i | Ki,
=
0 Ap+ BipKpr — KorCog
B 0 5 D 0
By, = Dy, = ;
Bl,k *Ko.’k Dk 0
N - 0 0
Cie=[0K], F.= ;
—Ko i Fy, 0

and whereA;; , = Ar + (B1.xKur + Boi) K +

B K. Using the above notation we arrive at the
following theorem:

Theorem 1: Consider the system of (1) whatg =

The above results are used now to derive a solution toXxZx and wherezy, is defined above. Given > 0,

the output-feedback problem. Denot'rngé wg, — W},
and usingu,, = K iy, wherei; is yet to be found,
we obtain from (1) that

ZTr41 = (Ax + Drvk + By x Kgk)xr + B gk
+(B1,xKuk + Bo i) K dk,
yr = (Co i + Frmp ) + 1.

Substituting in (12) we seek fdr;, for which
A _
J= B 50 aklld, sl e, = Inal 5+ 9 }
—x(j;Sxo
is negative for all nonzer®{wy}, {nt}, zo) , where

2 = Ki(wp — &) and S =~2Qo — Qo. (13)

We consider the following state estimator:

Zpp = (At B1 5 Kok )T H( B o Kuk+Ba k) ug

14
+Ko k(Y —Coxir), &o=0. (14)

Defininge, = xy — &5 we obtain
Tpy1 = [Ar + B Kok + B1 o Kur Ki, + Ba o Kip 2

+Dpxpvr + B1gre — (B1 s Kuk + Bo k) Kreg
and

Trp1 = [Ar + BipKok + (Bok + BrpKuk) Ki g
+ Ko,k [(Co + Frni)xr + i, — Co k@)

Defining

& =[al F]" and @y =[+F nf]"

)

there exists a controller that achieves (3) iff there
exists a solution( Py, K ) to the following differ-
ence linear matrix inequality (DLMI)(Gershon et al.,
2001b):

[ Py P AT 0 PDY PRl PCT ]
ApPy Py 77lél,k 0 0 0
—1 5T
) oA y BT, I A 0 0 0 ~0.(16)
Dy Py 0 0 P10 0
Fp Py 0 0 0 Py 0
|C1 1 Dy, 0 0 0 0 1|

with a forward iteration, starting from the following
initial condition:

P =

I, _
k 1@2@0—@0) (1, I,]. (@17)

n

Remark 1: We note that the solution of the lat-
ter DLMI proceeds the solution of the finite-horizon
state-feedback of Lemma 1 starting fragn in (7),
for a given attenuation level of. Once a solution to
the latter problem is achieved, the DLMI of (16) is
solved for the same starting from the above initial
condition.

Remark 2: We note thatP, = E{zoxl} where
Py = (v*Qo — Qo). The latter suggests that the initial
condition 7, of (17) is

] [T ) =

€0

Py Py

Po = P, P
0 0

)




sinceey = xg, hence the structure of (17).

Proof:  Applying the result of the discrete-time
stochastic BRL (Gershoat al., 2001) to the system
(15) the following Riccati-type inequality is obtained:
— Qi+ AL Quin A+ AL Quia BrO; ' B Quin Ay,
+E£Qk+1bk+FEQk+1Fk+kaé1,k >0,
O = ’}/21 — Bg@k+1ék, O > 0.

(18)

By simple manipulations, including the inversion
Lemma, on the latter the following inequality is ob-
tained:
~QuH ALQLL — BB T A+ OO gy
+D{ Qrs1 Dy, + L Qpir Fyy > 0
Denoting P, = Q! and using Schur's complement
the result of (16) is obtained.

5. STATIONARY STOCHASTIC
OUTPUT-FEEDBACK CONTROL

We consider the system of (4). Introducing the follow-
ing Lyapunov function:

Q aQ

vkszézgk,with@{ Q], (20)

o0
whereg;, is the state vector of (159 andQ aren x n

matrices andx ia a scalar. We obtain the following
result

Theorem 2: Consider the system of (15) where
the matricesA, By, By, D, Cs, F,C; and D45 are all
constantu, = K,z and wherety, is defined in (14).
Giveny > 0, there exists a controller that achieves (5)
if there existQ = QT € R™*", Q = QT € R,

Y € R"™Y and a tuning scalar parameter that
satisfy the following LMIs:

rQ aQ Y(1,3) Y(1,4) 0 0
* Q Y(2,3) T(2,4 o0 0
* ok Q a@ Y(3,5) —y taYy
kok * Q T(4,5) —771Y
x ok * * I, 0
* ok * * * 1,
* % * * * *
* %k * * * *
*x % * * * *
*x ok * * * *
L x % * * * *

—aDTY -DTY FT(Q+aQ) F'Q(1+a) 0
0 0 0 0 cr
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 | >0,
Q aQ 0 0 0
* Q 0 0 0
* * Q a@ 0
* * * Q 0
* * * 0 I
and -
2 T
e B 1)
B Q
where

1(1,3) 2 (KT, BT + KT(BY + KT, BT) + AT|Q,
Y(1,4) 2 6QY(1,3)Q7L, 1(2,3) £ —acTyT

-K!'BY + KI,Bl1Q+alK!, Bl + AT]Q,

1(2,4) 2 a[KT, BT + KT(Bf + KT, BT) + AT)Q
+ES BT +ATIQ - c3 YT,

1(3,5) 27 QB1 +aQBi), T(4,5) S~ (@+ 1)QB,
Keow=R 'BI{P'A, K;, =R 'BIP'B,

and whereP is the solution of (10).

Proof:  The proof outline for the above stationary
case resembles the one of the finite-horizon case. Con-
sidering the system of (4) we first solve the stationary
state-feedback problem to obtain the optimal station-
ary strategies of both; ; andu} , and the stationary
controller gaink ;. Thus we obtain:

i 2 Koy, wiy 2 RTBIP Az + R BT P~
BZUS,kn Ks é _[BEMBQ + R]_IBEMA,
M2 P VI —42B, BT P!

where P is the solution of (10). Using the optimal
strategies we transform the problem to an estimation
one, thus arriving to the stationary counterpart of the
augmented system of (15). Applying the discrete BRL
for the stationary case (see Bouhtoetial, 1999;
Gershonet al, 2002 ) to the latter system the alge-
braic counterpart of (18) is obtained (see Gersabn
al., 2002) which, similarly to the finite horizon case,
becomes the stationary version of (16). Multiplying
the srtationary version of (16) from the left and the



right by diag{P~', P~ I,,q, P71, P, I;}, denot- @ specific selection of a Lyapunov function which
ing) = P!, Y = QK, whereK, is the observer leads to a sufficient solution of the output-feedback

gain and carrying out the various multiplications the Problem. In the example the latter solution is easily
LMI of Theorem 2 obtained. achieved by solving for a set of two LMls.
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