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Abstract: This paper focuses on the possibilities of a Petri net based rapid control
prototyping (RCP) tool chain. P/T nets extended by interfaces and connected
to an extended state model allow the description of typical programmable logic
controller tasks. After a general introduction to RCP, the method is applied to the
area of sequential control, and code generation for the chosen model is depicted.
The paper closes with an example for a tool chain, demonstrated by system
simulation and Software-in-the-Loop for a subsystem of a flexible manufacturing
system in an industrial fieldbus environment. Copyright (©)2005 IFAC

Keywords: discrete-event systems, Petri nets, hybrid, modelling, simulation,
prototyping, programmable logic controller, sequential control

1. INTRODUCTION

Industrial processes are often controlled by pro-
grammable logic controllers (PLCs) with a se-
quential control algorithm, for which the engineer-
ing tools are stunningly lacking several analogous
methods compared with continuous control de-
sign. On the one hand, advances made in the area
of formal discrete event systems analysis are not
reflected in the engineering tools which holds for
modern synthesis methods as well. On the other
hand, only rudiments of the rapid prototyping
idea can be found in practice, as most design of
discrete control is done without a formal process
model. This contribution aims at the development
of a rapid prototyping environment for discrete
controllers in industrial applications, merging ad-
vances in theory with engineering tools.

Conventionally the process description is an in-
formal specification, verbally and graphically ex-
pressed and consisting of a mix of control al-
gorithm requirements with depictions of uncon-
trolled and desired process behaviour (Lunze,
2002). Rapid Control Prototyping (RCP) is based

on a formal description of the uncontrolled process
for every possible behaviour and a separate model
of the control solution. To enable the proposed
RCP tool chain, a Petri net based formal model
was chosen, which allows for integration of analy-
sis and synthesis methods into the chain.

The paper is organised as follows. In section 2
the model used is described. Section 3 depicts
RCP in general, while the next section deals with
its application to sequential control. Section 5
demonstrates practical aspects for an example of
a flexible manufacturing system.

2. MODEL

This article deals with processes of continu-
ous, discrete or hybrid nature which are con-
trolled by discrete event systems. One of sev-
eral modelling possibilites for the controller is
to use Place/Transition nets (P/T nets) as dis-
crete event subsystems (Abel, 1990; David and
Alla, 1994; Antsaklis and Koutsoukos, 1998; Orth
et al., 2002). The process is connected to the con-
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troller by binary or nonnegative integer signals.
Any continuous, hybrid or discrete partial model
can be coupled with the controller, therefore mod-
ular and efficient modelling of large systems is
possible. The internal dynamics of the discrete
systems are modelled by P/T nets PN with the
marking of the internal places M, extended by
output places and additional input places (fig. 1)
(Orth et al., 2002).

To treat input signals provided by an input vector
1, the net is extended by the input place set I with
a marking always representing the corresponding
input signal. Input places are connected to tran-
sitions in the Petri net by read-only arcs since
they represent signals as external firing conditions
which cannot be changed. These arcs can be test
arcs or inhibitor arcs, which allow or prevent the
firing of the adjacent transition if the external
signal’s value is greater than or equal to the arc
weight w. Internal places are connected with nor-
mal flow arcs only.

The output vector o consists of the marking of the
output place set O, which is a subset of all internal
places. Often input and output place capacities
are set to one to reflect binarity of input and
output signals. The model is comparable with
signal interpreted Petri nets (SIPN) (Frey, 2002),
but in particular the problem of contradictory,
unspecified or redundant output is avoided by the
concept of output places, while the occurrence
of unstable markings (leading to cycles) and also
indetermination is possible (Jorns, 1997).

The internal dynamics of the controller are rep-
resented by a P/T net which may be defined as
6-tuple PN = (P, T, R,C, W, My). PN consists of
the set of places P = {pl, ey Dy ,p|p‘}, the set
of transitions T = {tl, sty }7 the set of
arcs (flow relation) R C (P xT) U (T x P), the
mapping C : P — N defining the capacities of all

places, the mapping W : R — N giving the weight
of every arc in R and the mapping My : P — Ny
determining the initial marking of every place
(0 < My(p) < C(p)VpeP) with non-empty, finite
and disjoint sets P and T' (Abel, 1990).

Formally the event discrete subsystems are de-
fined as P/T nets extended by inputs and outputs,
resulting in the 12-tuple PNIO = (P,T,R,C, W,
Mo, I, O, RItest’ RIjnhibit7 CI, WI) with:

(1) the sets P,T, R,C, W, My defined as above

(2) the set of input places I = {il, RO P villl}
with IN(PUT) =0,

(3) the set of output places
0= {01,...,0i,...,o|0|} with O C P,

4) the input test relation Ry, , C (I x T)

5) the input inhibitor relation Ry, ., C (I x T')

6) the mapping C; : I — N giving the capacities
of the input places,

(7) the mapping W' : (RItest U RIinhibit) — N
giving the weight of the input read-only arcs.

In common Petri nets the moment of firing of an
enabled transition is not determined. An enabled
transition may fire but does not have to. To
guarantee deterministic behaviour with respect to
time for the discrete parts of the system, every
transition of the net has to fire instantly as soon
as it is enabled. The dynamic behaviour of the
model is described by algorithm 1.

Algorithm 1 Behaviour algorithm

initialisation of net with initial marking M,
initialisation of continuous part with xq
calculation of continuous output vector a
loop
repeat
firing of maximal steps in discrete systems
calculation of the marking M
determination of discrete output vector o
until there are no activated transitions
reinitialisation of the variable x if needed
repeat
integration of the differential equation
determination of f, g and h
until an element of a changes
end loop

Also, the implementation of the Petri net model
on a controller will solve conflicts between mul-
tiple transitions by firing the transition with the
lowest index. This solution allows the design of
supervisory controllers which prevent unwanted
or force favourable behaviour. Both aspects are in-
dispensable for a logic controller which is expected
to be deterministic. The duration of firing a single
transition is assumed to be zero. After the firing
of all enabled transitions in a maximal step, the
changes in the discrete parts of the system result
in an output vector o of the discrete subsystem.



To model the internal continuous dynamics of
the continuous subsystems, switched differential
equations are represented by an extended state
model with continuous and discrete inputs. This
state model allows the re-initialisation of contin-
uous states and can be extended with depend-
ing functions depending on the continuous state
(Miiller, 2002). Both binary and continuous out-
put signals can also be attached to other discrete
or continuous systems. Emphasis of this article is
on modelling discrete subsystems for the design of
discrete controllers, so the modelling of continuous
aspects of the process is not deepened here.

3. RAPID CONTROL PROTOTYPING

Typically, the design of an automation solution
starts with a summation of the number of input
and output interfaces. At this point, the need in
computing power for the solution is also estimated
and usually the hardware for the control realisa-
tion is chosen early. On the contrary the RCP
method allows late determination of the target
hardware, as the implementation of control algo-
rithms with RCP tools usually gives great inde-
pendence of manufacturer specific design tools.

3.1 Simulation

The RCP method consists mainly in the idea of
starting with a simulation model of both process
and automation. This model is improved during
development so that implementation of the au-
tomation solution is done by generation of ex-
ecutable code from the automation algorithms
for the target platform. The shift to graphically
oriented environments allows for high efficiency
and leads to less faults.

Apart from the final realisation as a 4" aspect
of RCP, there are 3 different types of simulation
configurations during the development:

System Simulation: all components are simu-
lated on development hardware, which is not
necessarily the application target,

Software-in-the-Loop (SiL): the designed con-
trol algorithm is executed on development hard-
ware, connected to components or the plant,

Hardware-in-the-Loop (HiL): the designed con-

trol algorithm is executed on the target hard-
ware and attached to a simulation model of the
process on development hardware.

3.2 Procedure Model

An important property of RCP is the requisite of a
model, as it is a model based design method. The
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exactness of the model is augmented in every step
of the development process. Every improvement in
the automation algorithm model is transferred to
the controller by code generation. This procedure
usually demands for a single software tool for
development or an integrated tool chain.

A possible procedure model for development
processes allowing for iteration cycles is the V-
Model (fig. 2). Starting at the upper left of the
diagram with high abstraction like the problem
specification, the detailing is augmented step by
step going down the V’s left side, ending on a
level of binary executable code. The right side
leads again to an increase in abstraction by testing
components, prototypes and finally the complete
automation solution, which is in fact the last pro-
totype produced by this process.

4. RAPID SEQUENTIAL CONTROL
PROTOTYPING

In the following an example for a tool chain
is presented for rapid prototyping of sequential
control applications. The chosen model (sec. 2)
was realised in the Petri net tool Netlab developed
at IRT since the late 1980’s (IRT, 2005), and
though the approach to RCP is of general nature,
notes specific to the chosen model, application and
tool chain are made.

4.1 Tool chain

As Matlab/Simulink is a typical component of
RCP tool chains in control design, this software
package was chosen as basis which permits e.g.
analysis, simulation and code generation for con-
tinuous systems. Stateflow is a well known toolbox
for Simulink which allows the design of DES as
statecharts, but these are not as common as Petri
nets in industrial automation since SFCs (IEC EN
DIN 61131-3, 1993) are closely related to them.
Apart from that, Stateflow draws its power from
complex textual annotations. A visual represen-
tation of concurrency and synchronisation is not
allowed, so Petri nets are an important extension



of Simulinks modelling possibilites. One way to
enable simulation is a generation of Petri net code
(subsection 4.3) that can be used during system
simulation, SiL., HilL and also in the prototype.

Starting with a system simulation, the process
model has to be replaced by an I/O interface
to permit Sili, while the simulation has to run
in soft or hard real-time. For this purpose a
Profibus DP Remote-1/O can be accessed from a
Simulink extension using TwinCat I/O (Beckhoff
Automation, 2005). For HiL, the same interface
can be used with reversed inputs and outputs.
The realisation of the control protoype can be
generated using the Real-Time Workshop (RTW),
resulting in a function which has to be executed
every control cycle of the Soft-PLC TwinCat.

A second example for an implemented RCP tool
chain heads to the free process control platform
ACPLT (PLT, 2005). The tool chain also consists
of generating code with Netlab, Simulink and
RTW. The RTW’s code is then wrapped and
compiled as a function block for ACPLT/FB for
SiL and HiL (Orth et al., 2004).

4.2 Analysis support

One aim of the proposed development environ-
ment for sequential control is to integrate analysis
and synthesis methods into a RCP tool chain.
An example for these features are online calcu-
lation and display of P- and T-invariants (Orth et
al., 2004). This enables e.g. easy checking of a syn-
thesized supervisor (Moody and Antsaklis, 1998).
Generation and display of reachability graphs is
also supported by Netlab, and the use of a PNML
document type definition (DTD) based on the
DTD for P/T nets as data format allows for easy
integration of other tools and interaction with
them (Weber and Kindler, 2003).

4.8 Codegeneration

The generation of executable code is an important
step to close the gap between simulation and con-
troller implementation. To address Soft-PLC en-
vironments and a large variety of microprocessors,
the C-language was chosen, even if unfortunately
most development environments for contemporary
hardware PLCs do not support the integration of
other languages than specified by IEC 61131-3.
Focussing on these PLC designs, the generation
of instruction list code would be another possible
target language (Frey et al., 2001).

Automation hardware typically works cycle based
and most controllers divide a cycle into three
steps: after reading input signals, internal states
are updated before output signals are written. If

the controller consists of discrete event and con-
tinuous control algorithms, standard integration
algorithms for the continuous part are provided
by Simulink/RTW. Apart from the update of I/O,
which is usually a question of configuration, the
main task of the discrete control is executing the
firing rule for the Petri net based algorithm. This
means to ensure that all activated transitions are
fired during the step and that a stable marking is
reached. This marking will typically change only
for changes in the Petri net inputs.

The execution of a single transition consists of the
check for all activation conditions and of the firing
of the transition if the transition condition is true,
leading to changes in the marking of some or all
places in the transition’s preset and postset.

The transition condition is a boolean expression
indicating if a transition is activated. Every acti-
vated transition is fired instantly (cf. section 2).
The check of the transition condition can be dev-
ided in four parts:

Check of all test arcs,

Check of all inhibitor arcs,

Check of all flow arcs for the preset,

Check of all flow arcs for the postset, even-
tually with respect to the preset if self-loops
are connected to the transition.

The transition action can be composed by execu-
tion of the flow arcs for preset and postset with
special treatment of self-loops.

The resulting code may be executed in a loop
until no transition is enabled. Optimisation of
execution and sequence of the resulting code can
be achieved using structural properties of the
net, simulation results or reachability analysis
(Frey, 2002; Girault and Valk, 2002). This is an
important aspect of code generation for Petri nets
but beyond the scope of this paper.

5. EXAMPLE OF A FLEXIBLE
MANUFACTURING SYSTEM

Figure 3 shows a section of two machines in the
upper and lower right, served by a transportation
system which provides the machines with work-
pieces, which enter and leave the section at the
left. Transportation possibilities for workpieces
are given by the linear movement of the trans-
portation system running on rails in the middle of
the system, turning of turntables at the entry and
the exit of each machine section and by using the
conveyor belts. Conveyor belts are installed on the
transportation system, the turntables and con-
veyor units. There are 30 binary signals control-
ling the different directions of movement, and 27
binary sensors indicating positions of turntables,
transportation system, machines and workpieces.
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In the following a single turntable with a conveyor
belt is discussed, encircled in fig. 3. Two contin-
uous states can be assigned to the turntable: the
position angle of the turntable « (eq. 1) and the
position of a workpiece x relative to the (rotated)
axis in direction of the conveyor belt, if a work-
piece is present on the conveyor belt (Marking M
in fig. 5). The variable = is reset to FL/2 if a
workpiece enters in the direction of the x-axis or
against it respectively. If the rotational position «
is outside of an allowed sector, errors will occur.

. T

o = Kd' [+1 —1] [ML MR}

#=K; [+1 —1] [Br Bs]"

(1)
(2)

The turntable can be turned to the right by
setting the motor signal Mg = 1, to the left by
My, = 1. The sensors Sg and Sy, indicate if the
turntable is in the right (o =~ 0°, eq. 3) or left
position respectively (a & 90°, eq. 4). The sensor
signal Swp equals one if a workpiece is in the
center of a conveyor unit (eq. 5). The conveyor
belts are moved forward or backwards for Br =
1 or Bg = 1. Situations where the contrary
movement signals (Mg,1,, Br/g) are both equal
to one at a time should be avoided.

B B,
SRzliff—Tagagf, else 0. (3)
B, B,
St, = 1iff90° — - <a<90°+ —, elseO.
(4)
B, B,
Swp = Liff — <z < else 0. (5)
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Fig. 6. Autonomous turntable rotation automa-
tion

The desired behaviour of the turntable in question
is shown in fig. 5. Here workpieces may be trans-
ported from the transport system (in the ‘south’
of the turntable) to machine 1 (in the ‘east’) by
firing transitions 5 and 2 and in opposite direction
by firing transitions 3 and 4. Firing transition
1 allows transport off the turntable (in ‘north’
direction) in case of rejections. The net is clipped
at the places encircled with dotted lines.

As a model of the uncontrolled turntable is needed
for RCP, also the undesired behaviour has to be
modelled. Several transitions activated for differ-
ent error conditions with an error place in the
postset were modelled separately. A central ana-
lysis aim is the proof that an error place is never
marked for the controlled process. Verification
model and results are too detailed for the general
character of this article and have to be omitted.

The turntable rotation is controlled by the au-
tonomous automation in fig. 6 which was tested
with the process model before using it for SiL
and further RCP simulations after generation of
C-code. The following snippet of the code which
checks the activation and eventually fires transi-



tion 2 gives an idea of the high readability of the
generated code. Even if changes to the generated
code are contradictory to the idea of a RCP tool
chain, the possibility of changes and checking of
the generated code is a necessity for acceptance of
the method in practice.

// Code for TRANSITION_2

if

( // Check inhibitor edges

( ! (max (min (INPUT_1_MARKING,INPUT_1_CAPACITY),0)
>= EDGE_23_WEIGHT) &&

! (max (min (INPUT_4_MARKING, INPUT_4_CAPACITY),0)
>= EDGE_28_WEIGHT) &&

! (max (min (INPUT_5_MARKING, INPUT_5_CAPACITY),0)
>= EDGE_30_WEIGHT)) &&

( // Check preset edges

PLACE_6_MARKING >= EDGE_3_WEIGHT) &&

( // Check postset edges

PLACE_4_MARKING + EDGE_4_WEIGHT

<= PLACE_4_CAPACITY)

)

{ // Changes by preset edges

PLACE_6_MARKING -= EDGE_3_WEIGHT;

// Changes by postset edges

PLACE_4_MARKING += EDGE_4_WEIGHT;

}

6. CONCLUSION

In this article a Petri net based model to describe
technical processes as uncontrolled system com-
bined with a discrete control is presented. The
model involves modules of P/T nets, extended by
inputs and outputs and read-only arcs for mod-
elling programmable logic controller programs.

The general idea of rapid prototyping for control
systems is introduced and applied to sequential
process control, allowing for integration of usually
unused analysis and synthesis methods into a de-
velopment environment. An example realisation of
a tool chain which allows Software- and Hardware-
in-the-Loop simulations is presented as extension
to a widespread simulation application.

Finally, the idea is demonstrated by an exam-
ple for the prototyping of a flexible manufac-
turing system. The implementation of a control
algorithm, using the chosen Petri net model and
leading to the generation of executable code, is
presented and discussed in detail.
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