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Abstract: The paper addresses the issue of optimal investments in innovations.
As an example, investments in the construction of gas pipelines are considered.
Rational decisions in choosing the commercialization times (stopping times) can
be associated with Nash equilibria in a game between the projects. In this game,
the total benefits gained during the pipelines’ life periods act as payoffs and
commercialization times as strategies. The goal of this paper is to characterize
multi-equilibria in the game of timing. The case of two players is studied in detail.
A key point in the analysis is the observation that all player’s best response
commercialization times concentrate at two instants that are fixed in advance.
This reduces decisionmaking to choosing between two fixed investment policies,
fast and slow, with the prescribed commercialization times. A description of a
computational algorithm that finds all the Nash equilibria composed of fast and
slow scenarios concludes the paper. Copyright c© 2005 IFAC
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1. INTRODUCTION

If several large-scale gas pipeline projects com-
pete for a new gas market, the choices of the
commercialization times (stopping times), i.e.,
the times of finalizing the construction of the
pipelines, determine the future structure of the
market and thus become especially important. In
the paper (Klaassen et al., 2001), which motivated
the present study, a detailed pipeline model based
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on classical patterns of mathematical economics
(see (Arrow and Kurz, 1970), (Intriligator, 1971))
was designed and a best reply dynamic adaptation
algorithm originating from the theory of evolu-
tionary games (see (Friedman, 1991) - (Hofbauer
and Sigmund, 1988), (Kaniovski et al., 2000),
(Kryazhimskii and Osipov, 1995)-(Kryazhimskii
et al., 2001), (Tarasyev, 1999)) was used to esti-
mate numerically the commercialization times for
the pipeline projects competing nowadays for the
Turkey gas market.

Rational choices of the commercialization times
can be viewed as Nash equilibria in a game be-
tween the projects. The structure of this game is
studied in terms of game theory (see (Basar and



Olsder, 1982), (Vorob’ev, 1977)). A background
of the gas infrastructure model (see (Klaassen
et al., 2001)) and constructions of the optimal
timing problem (see (Barzel, 1968), (Tarasyev and
Watanabe, 2001)) are employed.

The model takes into account the stages of con-
struction and exploitation of the gas pipelines. In
each level, the model is optimized and estimated
using appropriate techniques of theory of opti-
mal control and theory of differential games (see
(Chernousko, 1994), (Krasovskii and Subbotin,
1988), (Pontryagin et al., 1962)). In the game, the
total benefits gained during the pipelines’ life pe-
riods act as payoffs and commercialization times
act as strategies. Our goal is to characterize the
equilibria in the game of timing. A key point in the
analysis is the observation that all player’s best
response commercialization times concentrate at
two instants that are fixed in advance. This re-
duces decisionmaking to choosing between two
fixed investment policies, fast and slow, with the
prescribed commercialization times. An algorithm
that finds all the Nash equilibria in the game
of timing is described. The results of the model-
based analysis are given for two case studies: com-
peting gas pipeline projects in the Caspian region,
and the planned pipeline routes to the gas market
in China.

2. GAME OF TIMING

A game-theoretic model of competition of two gas
pipeline projects is constructed. Players 1 and 2
are associated with the investors of projects 1 and
2, respectively. Assuming that the starting time
for making investments is 0, let us consider virtual
positive commercialization times of projects 1 and
2 (i.e., the final times of the construction of the
pipelines), t1 and t2. Given a commercialization
time, ti, player i (i = 1, 2) can estimate the
cost, Ci(ti), for finalizing project i at time ti. The
positive-valued cost functions Ci(ti) (i = 1, 2) are
defined on the positive half-axis.

Assumption 2.1. For each player, i, the cost
function, Ci(ti), is smooth, monotonically de-
creasing and convex.

In what follows, the rate of cost reduction for
player i is understood as the positive-valued
monotonically decreasing function

ai(ti) = −C ′i(ti). (1)

At any time t > 0, the price of gas and costs
for extraction and transportation of gas determine
the benefit rate of player 1, b1(t). The costs
for extraction and transportation of gas do not
depend on the state of project 2, whereas the
price of gas depends on the presence of player 2

on the marketplace. Hence, the benefit rate b1(t)
may take two values, upper – b11(t), and lower –
b12(t),

b11(t) > b12(t). (2)

Similarly, let us introduce the upper and lower
benefit rates of player 2 at time t, b21(t) and b22(t),

b21(t) > b22(t). (3)

Let us assume that the positive-valued upper and
lower benefit rates bi1(t) and bi2(t) (i = 1, 2) are
continuous functions defined on the positive half-
axis.

Assumption 2.2. For every player i (i = 1, 2),
the graph of the rate of cost reduction, ai(t),
intersects the graph of the upper benefit rate,
bi1(t), from above at the unique point t−i > 0,
and stays below it afterwards; similarly, the graph
of ai(t) intersects the graph of bi2(t) from above
at the unique point t+i > 0, and stays below it
afterwards.

It is clear that
t−i < t+i . (4)

Denote by t2 the commercialization time of player
2. The benefit rate of player 1, b1(t), equals b11(t)
for t < t2 and equals b12(t) for t ≥ t2. Let us stress
the dependence of b1(t) on t2 and write b1(t|t2)
instead of b1(t)

b1(t|t2) =
{
b11(t) if t < t2,
b12(t) if t ≥ t2. (5)

Similarly, a commercialization time t1 of project
1 determines the benefit rate of player 2 as

b2(t|t1) =
{
b21(t) if t < t1,
b22(t) if t ≥ t1.

Given a commercialization time of player 1, t1,
and a commercialization time of player 2, t2, the
total benefits of the players are represented by the
integrals

B1(t1, t2) =
∫ ∞
t1

b1(t|t2)dt, (6)

B2(t1, t2) =
∫ ∞
t2

b2(t|t1)dt. (7)

Assumption 2.3. For every positive t1 and every
positive t2 the integrals Bi(t1, t2) (i = 1, 2) are
finite.

Given commercialization times of the players, t1
and t2, the total profit of player i is defined as

Pi(t1, t2) = −Ci(ti) +Bi(t1, t2). (8)

Let us define the game of timing for players 1
and 2 in line with the standards of game theory
(see (Vorob’ev, 1977)). In the game of timing, the
strategies of player i (i = 1, 2) are the positive



commercialization times, ti, for project i, and the
payoff to player i, thanks to strategies t1 and t2
of players 1 and 2, respectively, is the total profit
Pi(t1, t2).

3. NASH EQUILIBRIA

According to the standard terminology of game
theory, a strategy t∗1 of player 1 is said to be a
best response of player 1 to a strategy t2 of player
2 if t∗1 maximizes the payoff to player 1, P1(t1, t2),
over the set of all strategies of player 1, t1:

P1(t∗1, t2) = max
t1>0

P1(t1, t2).

Similarly, a strategy t∗2 of player 2 is said to be a
best response of player 2 to a strategy t1 of player
1 if t∗2 maximizes the payoff to player 2, P2(t1, t2),
over the set of all strategies of player 2, t2:

P2(t1, t∗2) = max
t2>0

P2(t1, t2).

Any pair (t∗1, t
∗
2), where t∗1 is a best response of

player 1 to t∗2 and t∗2 is a best response of player 2
to t∗1, is said to be a Nash equilibrium in the game
of timing.

Our goal is to characterize the Nash equilibria in
the game of timing. Let us start with analysis of
the payoffs. The differentiation of P1(t1, t2) with
respect to t1 yields

∂P1(t1, t2)
∂t1

= a1(t1)− b1(t1|t2)

=
{
a1(t1)− b11(t1) if t1 < t2,
a1(t1)− b12(t1) if t1 > t2.

(9)

Let us take two arbitrary strategies of player 2,
t21 and t22 > t21. As (9) shows,

∂P1(t1, t22)
∂t1

=
∂P1(t1, t21)

∂t1
,

for t1 < t21 and for t1 > t22, and

∂P1(t1, t22)
∂t1

=
∂P1(t1, t21)

∂t1
− (b11(t1)− b12(t1)),

for t21 < t1 < t22. One can state that beyond
the time interval located between t21 and t22,
P1(t1, t22) and P1(t1, t21) have the same rate in
t1, and within this interval P1(t1, t22) declines in
t1 faster than P1(t1, t21). Thanks to (6) and (5)
P1(t1, t22) = P1(t1, t21) for t1 ≥ t22. Therefore,
P1(t1, t22) > P1(t1, t21) for t1 < t22.

Proposition 3.1. For every t1 > 0, the payoff
to player 1, P1(t1, t2), increases in t2; moreover,
given a t21 > 0 and a t22 > t21, one has P1(t1, t22)
= P1(t1, t21) for t1 ≥ t22, and P1(t1, t22) >
P1(t1, t21) for t1 < t22.

Symmetric arguments are valid for player 2.

Proposition 3.2. For every t2 > 0, the payoff
to player 2, P2(t1, t2), increases in t1; moreover,
given a t11 > 0 and a t12 > t11, one has P2(t12, t2)
= P2(t11, t2) for t2 ≥ t12, and P2(t12, t2) >
P2(t11, t2) for t2 < t12.

Let us find the best responses of player 1 to a
given strategy, t2, of player 2. It is easy enough to
identify the intervals of growth and decline of the
payoff P1(t1, t2) as a function of t1. One can use
(9) and refer to the points t−1 and t+1 , at which the
graph of a1(t), intersects the graphs of b11(t) and
b12(t).

Assume, first, that t2 ≤ t−1 ; recall that t−1 < t+1
(see (4)). Then the graph of a1(t1) lies above the
graph of b1(t1|t2) for t1 < t+1 and lies below it for
t1 > t+1 ; at t1 = t+1 the graphs intersect.

Due to (9), ∂P1(t1, t2)/∂t1 is positive for t1 < t+1
(t1 6= t2) and negative for t1 > t+1 . Therefore,
t1 = t+1 is the unique maximizer of P1(t1, t2) in
the set of all positive t1.

Let us assume that t2 ≥ t+1 . Then the graph of
a1(t1) lies above the graph of b1(t1|t2) for t1 < t−1 ,
and lies below it for t1 > t−1 ; at t1 = t+1 the graphs
intersect. Due to (9), ∂P1(t1, t2)/∂t1 is positive for
t1 < t−1 and negative for t1 > t−1 (t1 6= t2). Hence,
t1 = t−1 is the unique maximizer of P1(t1, t2) in
the set of all positive t1.

Now let t2 lie in the interval [t−1 , t
+
1 ]. Then the

graph of a1(t1) lies above the graph of b1(t1|t2)
for t1 < t−1 , lies below it for t−1 < t1 < t2, lies
again above the graph of b1(t1|t2) for t2 < t1 < t+1
and again below it for t1 > t+1 . Thanks to (9)
one can conclude that, P1(t1, t2), as a function of
t1, strictly increases on the interval (0, t−1 ), strictly
decreases on the interval (t−1 , t2), strictly increases
on the interval (t2, t+1 ), and strictly decreases on
the interval (t+1 ,∞). Therefore, the maximizers of
P1(t1, t2) in the set of all positive t1 are restricted
to the two-element set {t−1 , t+1 }.
Let us identify the actual maximizers in this set.
Suppose t2 < t+1 . Set t1 = t+1 , t21 = t2 and
t22 = t+1 . One can see that t1 = t22 > t21. By
Proposition 3.1 it follows

P1(t+1 , t
+
1 ) = P1(t+1 , t2). (10)

Since P1(t+1 , t2) is continuous in t2, (10) holds
for t2 = t+1 . Now let us take arbitrary t21 and
t22 > t21 in the interval [t−1 , t

+
1 ]. By Proposition

3.1 P1(t−1 , t22) > P1(t−1 , t21). Therefore, P1(t−1 , t2)
strictly increases in t2 on [t+1 , t

+
2 ]. Consider the

function

p(t2) = P1(t−1 , t2)− P1(t+1 , t2), (11)

defined on [t−1 , t
+
1 ]. By (10) it follows

p(t2) = P1(t−1 , t2)− P1(t+1 , t
+
1 ),



for all t2 in the interval [t+1 , t
+
2 ]. As long as

P1(t−1 , t2) strictly increases in t2 on [t−1 , t
+
1 ], p(t2)

strictly increases on [t+1 , t
+
2 ]. Earlier, it was stated

that t+1 is the single best response of player 1 to
any t2 ≤ t−1 ; this holds, in particular, for t2 = t−1 ,
i.e.,

P1(t+1 , t
−
1 ) > P1(t−1 , t

−
1 ).

Hence,

p(t−1 ) = P1(t−1 , t
−
1 )− P1(t+1 , t

−
1 ) < 0.

Earlier, it was stated that t−1 is the single best
response of player 1 to any t2 ≥ t+1 ; this holds, in
particular, for t2 = t+1 , i.e.,

P1(t−1 , t
+
1 ) > P1(t+1 , t

+
1 ).

Hence,

p(t+1 ) = P1(t−1 , t
+
1 )− P1(t+1 , t

+
1 ) > 0.

It is shown that p(t2) takes a negative value at the
left end point of the interval [t−1 , t

+
1 ] and a positive

value at the right end point of this interval. Since
p(t2) is continuous, there exists a t̂2 in the interior
of [t−1 , t

+
2 ], for which p(t̂2) = 0. The fact that p(t2)

strictly increases on [t−1 , t
+
1 ] implies that the point

t̂2 is unique, i.e., p(t2) < 0 for t−1 ≤ t2 < t̂2 and
p(t2) > 0 for t+1 ≥ t2 > t̂2. By the definition of
p(t12), (11), one can obtain

P1(t−1 , t̂2) = P1(t+1 , t̂2),

P1(t−1 , t2) < P1(t+1 , t2) for t−1 ≤ t2 < t̂2,

P1(t−1 , t2) < P1(t+1 , t2) for t+1 ≥ t2 > t̂2.

All best responses of player 1 to t2 lie in the two-
element set {t−1 , t+1 }. Therefore, one can conclude
that if t2 = t̂2, player 1 has two best responses,
t−1 and t+1 , to t2; if t−1 ≤ t2 < t̂2, the unique best
response of player 1 to t2 is t+1 ; and if t+1 ≥ t2 > t̂2,
the unique best response of player 1 to t2 is t−1 .
The best response of player 1 to t2 is t+1 if t2 < t−1 ,
and t−1 if t2 > t+1 . Let us summarize as follows.

Proposition 3.3. In the interval (t−1 , t
+
1 ), there

exists the unique point t̂2 such that

P1(t−1 , t̂2) = P1(t+1 , t̂2). (12)

The set of all best responses of player 1 to t̂2 is
{t−1 , t+1 }. If 0 < t2 < t̂2, then the unique best
response of player 1 to t2 is t+1 . If t2 > t̂2, then
the unique best response of player 1 to t2 is t−1 .

Let us call t−1 the fast choice of player 1 and t+1
the slow choice of player 1. Let us call also t̂2 the
switch point for player 1.

Let us consider the function that associates to
each strategy, t2, of player 2 the set of all best
responses of player 1 to t2; one can call it the
best response function of player 1. The graph of
the best response function of player 1 consists of
the horizontal segment located strictly above the
segment (0, t̂2] on the t2 - axis at level t+1 , and

the unbounded horizontal segment located strictly
above the segment [t̂2,∞) on the t2-axis at level
t−1 . Points (t+1 , t̂2) and (t−1 , t̂2) lie on the graph.

A symmetric argument characterizes the best re-
sponses of player 2.

Proposition 3.4. In the interval (t−2 , t
+
2 ), there

exists the unique point t̂1 such that

P2(t̂1, t−2 ) = P1(t̂1, t+2 ). (13)

The set of all best responses of player 2 to t̂1 is
{t−2 , t+2 }. If 0 < t1 < t̂1, then the unique best
response of player 2 to t1 is t+2 . If t1 > t̂1, then
the unique best response of player 2 to t1 is t−2 .

Let us call t−2 the fast choice of player 2, t+2
the slow choice of player 2, and t̂2 the switch
point for player 2. Let us introduce also the best
response function of player 2, which associates to
each strategy, t1, of player 1 the set of all best
responses of player 2 to t1.

Nash equilibria (t∗1, t
∗
2) belong to the intersection

of the graphs of the best response functions of
players 1 and 2 and are characterized by the
following relations

t̂2 ≥ t+2 , t̂1 < t−1 , (14)

t̂2 ≥ t+2 , t−1 < t̂1 < t+1 , (15)

t̂2 ≤ t−2 , t−1 < t̂1 < t+1 , (16)

t−2 ≤ t̂2 < t+2 , t−1 < t̂1 ≤ t+1 , (17)

t−2 < t̂2 ≤ t+2 , t−1 ≤ t̂1 < t+1 , (18)

t−2 < t̂2 < t+2 , t̂1 ≤ t−1 , (19)

t−2 < t̂2 < t+2 , t̂1 ≥ t+1 , (20)

t̂2 < t−2 , t̂1 ≥ t+1 . (21)

Proposition 3.5. In cases (14), (15) and (19)
the unique Nash equilibrium is fast-slow, (t−1 , t

+
2 ).

In cases (16), (20) and (21) the unique Nash
equilibrium is slow-fast, (t+1 , t

−
2 ). In cases (17)

and (18) the game of timing has precisely two
Nash equilibria, fast-slow, (t−1 , t

+
2 ), and slow-fast,

(t+1 , t
−
2 ).

Proposition 3.6. Let the game of timing have
two Nash equilibria, i.e., (17) or (18) hold. Then

(i) P1(t−1 , t
+
2 ) ≥ P1(t+1 , t

−
2 ), moreover, the inequal-

ity is strict if and only if t̂2 < t+2 ;

(ii) P2(t−1 , t
+
2 ) ≥ P2(t+1 , t

−
2 ), moreover, the in-

equality is strict if and only if t̂1 < t+1 .

Let us conclude the general part of our study with
the description of an algorithm that finds the Nash
equilibria in the game of timing.

Step 1. Use definitions for finding the players’
fast and slow choices, t−i , t+i (i = 1, 2).

Step 2. Use definitions (12) and (13) for finding
the players’ switch times, t̂i (i = 1, 2).



Step 3. Use Proposition 3.5 for identifying the
Nash equilibria.

4. GAS PIPELINE GAME

Let us apply the suggested solution method to a
model described in (Klaassen et al., 2001).

The cost Ci(ti) for finalizing the construction of
pipeline i (i = 1, 2) at time ti is defined to be the
minimum of the integral investments

Ii(ri) =
∫ ti

0

e−λtri(t)dt.

Here λ is a positive discount. An investment
strategy of player i is modeled as an integrable
control function,

ri(t) > 0, (22)

that brings the accumulated investment, xi(t),
from 0 to the prescribed commercialization level
x̄i > 0 at time ti.

The dynamics of xi(t) is modeled as

ẋi(t) = −σxi(t) + rγi (t). (23)

Here σ is a positive obsolescence coefficient and γ
(0 < γ < 1) is a delay parameter.

In the supply game arising at time t, the strategies
of player i are nonnegative rates of supply, yi, and
the payoff to player i is defined as

pi(y1, y2|t) = e−λt(π(t, y)− ci(t))yi. (24)

Here y is the total rate of supply, π(t, y) is the
price of gas and ci(t) > 0 is the cost for extraction
and transportation of gas for player i. The price
of gas is modeled as

π(y|t) =
(
g(t)
y

)β
,

where g(t) > 0 is the consumer’s GDP (gross
domestic product) at time t and β (0 < β < 1) is
the inverse to the price elasticity of gas demand.

Assumption 5.1. Let us assume that

1− (2− β)ci(t)
c1(t) + c2(t)

> 0 (i = 1, 2). (25)

Proposition 5.1. For player i (i = 1, 2) the
following formulas hold.

1. The cost, Ci(ti), is given

Ci(ti) = ρα−1 e−λti x̄αi
(1− e−ρti)α−1

, (26)

where
α =

1
γ
, ρ =

ασ + λ

α− 1
. (27)

2. The rate of cost reduction, ai(ti), is given by

ai(t) = ρα−1x̄αi
e−λt(λ+ νe−ρt)

(1− e−ρt)α , (28)

where
ν = ασ. (29)

3. The upper benefit rate, bi1(ti), is given by

bi1(t) = e−λt(1− β)1/β−1 g(t)

c
1/β−1
i (t)

. (30)

4. The lower benefit rate, bi2(ti), is given by

bi2(t) = e−λt(2− β)1/β−1

(
1− (2− β)ci(t)

c1(t) + c2(t)

)2

× g(t)
(c1(t) + c2(t))1/β−1

. (31)

5. The following inequality is valid

bi1(t) > bi2(t). (32)

Assumption 5.2. Assume that the consumer’s
GDP, g(t), and costs, ci(t), grow exponentially,

g(t) = g0eζt, ci(t) = c0i e
ωt (i = 1, 2), (33)

(ζ and ω are nonnegative), and

0 < κ < λ, (34)

where

κ = ζ −
(

1
β
− 1
)
ω. (35)

Proposition 5.2. Under assumptions 5.1 and 5.2
the fast choice, t−i , and the slow choice, t+i , of
player i (i = 1, 2) is the unique solution of the
algebraic equation

e−λtρα−1x̄αi =
(1− e−ρt)α
λ+ νe−ρt

bij(t). (36)

for j = 1, 2 respectively.

Let us assume that g(t) and ci(t) (i = 1, 2)
are given by (33) and inequality (34) is satisfied.
Formulas (30) and (31) for bi1(t) and bi2(t) are
specified as

bi1(t) = b0i1e
−ψt, bi2(t) = b0i2e

−ψt,

where

ψ = λ− κ, b0i1 = bi1(t0), b0i2 = bi2(t0).

Proposition 5.3. For i = 1, 2 the following
relation is valid

t̂i = − 1
ψ

log
(

ψGi
b0i2 − b0i1

)
, (37)

where

Gi = − ρα−1e−λt
+
i x̄α1

(1− e−ρt+1 )α−1
+
b0i2e

−ψt+1
ψ

+

ρα−1eλt
−
i x̄α1

(1− e−ρt−i )α−1
− b0i1e

−ψt−
i

ψ
. (38)



5. CASE STUDY

Let us consider the game of timing in application
to the Caspian and China gas markets. The values
of the model parameters are based on preliminary
expert estimates. Our first case study deals with
the competition of two major gas pipeline projects
in the Caspian region, the ”Blue Stream” project
of the Russian GAZPROM Company (project 1)
which is aimed at delivering Russian gas to Turkey
under the Black Sea; and the ”Trans-Caspian”
project (project 2) directed from Turkmenistan
underneath the Caspian Sea through Azerbaijan
and Georgia to Turkey. In this case study the
parameters of the model are chosen as follows
– the discount rate: λ = 0.1; the obsolescence
coefficient: σ = 0.3; the delay coefficient: γ = 0.65;
the inverse to the price elasticity of gas demand:
β = 0.55; the initial level of the consumer’s GDP:
g0 = 214.6; the growth rate of the consumer’s
GDP: ζ = 0.1; the growth rate of the extraction
costs: ω = 0.15; the initial extraction costs: c01 =
67.3, c02 = 78.4; the commercialization levels of
the accumulated investments: x̄1 = 4.0, x̄2 = 2.5.
It is assumed that the projects start in 2001.

For these parameters there exist two Nash equi-
libria in the game of timing, the fast-slow equilib-
rium (t−1 , t

+
2 ) = (2002.8, 2005.2), and the slow-fast

equilibrium (t+1 , t
−
2 ) = (2004.6, 2002.2).

Our second case study is related to the planned
projects of gas pipelines from Russia to China.
Two potential competitors on the North China
gas market are the ”Kovikta-Zabaikalsk-Kharbin”
pipeline (project 1) stretched from the Irkutsk re-
gion to North China, and the ”Sakhalin-Khabarovsk-
Kharbin” pipeline (project 2). The following val-
ues of the model parameters are chosen: λ = 0.1,
σ = 0.3, γ = 0.58, β = 0.46, g0 = 1157,
ζ = 0.0668, ω = 0.05, c01 = 57, c02 = 68, x̄1 = 6,
x̄2 = 3. The initial year for the projects is set in
2001.

In this case study there exists the unique, slow-
fast, Nash equilibrium (t+1 , t

−
2 ) = (2003.6, 2002).

6. CONCLUSIONS

The paper is devoted to the analysis of a two-
player game, in which the players’ strategies are
times of terminating innovation processes. In the
game between the projects the total profits act as
payoffs and commercialization times as strategies.
The analysis of the game leads to the restriction of
player’s rational choices to no more than two pre-
scribed combinations of commercialization times,
which constitute the Nash equilibria in the game.
An algorithm for finding all the Nash equilibria is
described.
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