
 

 
 
 
 
 
 
 

WEB-BASED VIRTUAL LAB AND REMOTE EXPERIMENTATION USING 
EASY JAVA SIMULATIONS 

 
 

R. Pastor, J. Sánchez, S. Dormido* 
 
 

* Dpto de Informática y Automática, UNED, c\ Juan del Rosal 16, 28040 Madrid, 
Spain. Phone:+34913987151, Fax:+34913986697, 

E-mail:rpastor@dia.uned.es; jsanchez@dia.uned.es; sdormido@dia.uned.es 
 
 
 
 
Abstract: This paper presents an ongoing schema to develop virtual models of physical 
setup equipment and their integration into the corresponding remote laboratory. For this 
task, we use Easy Java Simulations (Ejs), a tool that allows us to make a complete 
simulation model based on the physical laws of the setup. Ejs is also able to produce 
virtual views that are necessary for model user interaction. These virtual views can be 
used with the simulation or real plant data. Accordingly, a communication model 
between Ejs and real equipment has to be defined in order to work with the same view 
in virtual mode (simulation) or remote mode (real setup). An example of a servomotor 
setup will be presented showing the virtual views and the way of working in both 
modes. Copyright © 2005 IFAC 
 
Keywords: Remote and virtual laboratories, control education, web-based simulations, 
teleoperation, Java simulations.  

 

 
1. INTRODUCTION 

Progress in Internet technology has prompted many 
educational institutions to develop web-based 
laboratories using either models or physical 
resources, i.e., didactic setups. With the help of an 
online Internet laboratory for control experiments, 
educators can be encouraged to design control 
engineering courses that combine theoretical issues 
with practical activities. Via the Internet, web-based 
laboratories can offer more flexibility in preparing 
assignments for students who require 
experimentation with virtual or real phenomena. In 
addition, an Internet laboratory allows better use of 
equipment since students can access labs from 
anywhere and any time with just an Internet 
connection. This sharing of resources not only brings 
down the experiment cost per student, but equipment 
is also available to more students. 
 
However, the development of useful web-based 
control labs does not just consist of programming a 
set of HTML pages and Java applets so that users can 
introduce many parameters to change the state of a 
model or physical system, observe the results, and so 

on. Students also need to immediately know the 
consequences of the decisions taken during the 
design process and the relationships among the 
different experiment state variables. Thus, students 
need to appreciate the gradient of change in the 
performance criteria given for the elements that they 
are manipulating. Obviously, to reach this goal it is 
necessary to take into account the approach known as 
“interactive design” (Dormido, 2004). 
 
Interactive design provides a flexible and user-
friendly method to define the experiments performed 
on the model or plant. During the interactive run, the 
user can change the value of the model inputs, 
parameters and state variables, perceiving instantly 
how these changes affect the system dynamics. In 
such a high interactive system, several graphics 
windows, reflecting the value of every active element 
and the constraints among them, are constantly 
updated. As a consequence, interactive design 
develops and enhances the understanding of the 
system behavior. This capability is especially useful 
when the model is being used for educational 
purposes. Examples of this new educational 
philosophy for teaching automatic control are 



 

described in (Piguet and Gillet, 1999; Schmid, 1999; 
Sánchez et al., 2002; Dormido and Esquembre, 2003; 
Pastor et al., 2003; Dormido et al., 2004). 
 
Unfortunately, the construction of these interactive 
applications has two main drawbacks: programming 
skills and developing time. Indeed, a control 
engineering teacher knows how to use different 
modeling and simulation environments and how to 
create environments and interfaces to conduct 
experiments over a physical resource in the 
traditional fashion. Yet most of these tools are 
typically not oriented to the development of web-
based labs using an interactive approach.  
 
Whether a virtual or real system is selected, extensive 
use of interactivity with these tools would require 
non-trivial effort. Therefore, it seems clear that the 
academic control community demands a tool to 
develop web-based interactive labs with low 
programming effort, interactivity as the main feature, 
and minimum economic cost. 
 
The paper is organized as follows. First, a software 
program called Ejs is introduced as an appropriate 
tool for the creation of interactive control 
applications. Next, we describe the use of Ejs to 
develop an example of interactive application in the 
field of control engineering: a virtual and remote lab 
to conduct experiments with a DC servomotor. 
 

2. EJS FUNDAMENTALS 

Easy Java Simulations, Ejs for short, is an open-
source tool developed in Java, originally designed to 
help non-programmers to create scientific 
simulations (Esquembre, 2004). The user needs to 
provide (at a reasonably high level) the analytical 
model, design the graphical view, and decide about 
the interactivity offered. Ejs will then automatically 
generate the Java source, compile it into Java classes, 
pack the classes in a Jar file, and produce several 
HTML pages with the author-provided narrative and 
the ready-to-run applet for the simulation. 

The tool architecture derives from the model-view-
controller (MVC) paradigm. The philosophy of this 
paradigm is that interactive simulations must consist 
of three different parts: 

- the representation of the phenomena in terms of 
variables and relationships among these variables 
(the model),  
- the graphical representation of the states of the 
phenomena (the view), and  
- the specifications of the user’s actions to perform 
on the simulation (the controller).  

 
These three parts are deeply interconnected. The 
model obviously affects the view, since a change in 
the state of the model must be made graphically 
evident to the user. The control affects the model 
because control actions can (and usually do) modify 

the value of the model variables. Finally, the view 
affects the model and the control, because the 
graphical interface can contain components that 
allow the user to modify variables or perform the 
predefined actions. In fact, going a step further in the 
process of simplifying the construction of a 
simulation, Ejs suppresses the control part, merging it 
half into the view, half into the model. 
 
The model conveys the scientific part of the 
simulation and is thus the responsibility and the main 
interest of the target user. Control teachers usually 
describe their algorithms in terms of mathematical 
equations and translate these into algorithms of a 
computer language, or use high-level tools such as 
Matlab/Simulink. The main target when creating a 
simulation model is to concentrate on the analytical 
description of the phenomena, the content, and the 
accuracy of the simulation. However, the creation of 
the necessary graphical user interface (i.e., the view) 
is the part of the simulation that demands more 
knowledge of advanced programming techniques. To 
make the situation even worse, the addition of 
interactivity to this interface involves mastering 
sophisticated software techniques (such as event-
handling or multitasking). All this requires a huge 
investment in time and effort. 
 
Ejs helps its users with both tasks. While retaining 
the flexibility of a general programming language so 
that it is possible to specify almost any type of 
algorithm, the tool provides extensive scaffolding to 
define the model. This is pedagogically important, 
since the process of learning good control 
fundamentals consists, to a great extent, of knowing 
the basic principles for building models. 
 
Nevertheless, the use of the MVC paradigm allows 
us to transform a virtual lab, i.e., a simulation, into a 
remote lab in just a few steps. This strict separation 
between view+control and model lets us replace the 
simulation of the phenomena with the real version 
without modifying most of the interactive 
application. In a virtual lab, model and view+control 
exchange information by local state variables, so the 
transformation in a remote lab just consists of 
reading the state variables remotely in order to access 
the real system. Since Ejs lets developers insert pure 
Java code into the view+control, the communication 
with the didactic setup can be done by TCP/UDP 
sockets or RMI. 
 

3. DEVELOPING VIRTUAL LABS WITH EJS  

Accordingly, Ejs simulations are created by 
specifying a model for the simulated system and by 
building a view that continuously visualizes the state 
of this model and readily responds to user 
interactions. In order to describe a simulation, an 
author needs to be able: 
 



 

1. To define the model in three steps: (a) identify 
the set of variables that describe the system, (b) 
initialize these variables, and (c) describe the 
mathematical equations.  
2. To construct a view that offers a schematic or 
realistic visualization of the phenomena. 
3. To establish the appropriate model user 
interaction by establishing links between the 
graphical interface of the simulation and the 
response of the model to user-driven changes to it.  
4. Optionally, to include textual information about 
the simulation (narrative).  

 
Ejs offers two ways of specifying the dynamics of the 
model. The first one is a built-in editor and solver for 
systems of ordinary differential equations (ODEs). 
Users write the equations very much like they would 
on a blackboard, and the system automatically 
generates the code that numerically solves the system 
using one of several of the provided standard 
algorithms (Figure 1). The second facility is a 
connection to Matlab/Simulink that lets users design 
and solve their models with the help of these tools 
(Figure 2). In this last situation, the model is fully 
defined by a Simulink block diagram and a text file is 
necessary for Ejs to know the names of the 
Matlab/Simulink variables. Ejs can thus carry out the 
bidirectional linkage between view (Java-coded 
interactive interface) and the model (Simulink 
diagram) once the final application has been released 
(Sánchez et al., 2004). 
 

 
Fig. 1. Edition panel to write the ODEs and select the 

solver. 
 
This feature is obviously useful for Matlab users who 
can then access and run their Matlab code from an 
Ejs application. It is however also useful for those 
who have already developed a model using Simulink 
block diagrams. Ejs can then be used as a tool to 
create the dynamic interactive user interface that is 
needed to turn this simulation into an effective virtual 
educational laboratory.  
 
To create the view, Ejs provides a set of advanced 
graphical elements (Figure 3) that build on top of 
both standard Java Swing components (containers, 
buttons, text fields, sliders, combo boxes,…) and on 
specific scientific two- and three-dimensional 
visualization classes from the Open Source Physics 
project (Christian, 2003) (particles, vectors, images, 

vector and scalar fields,…). These elements are used 
in a simple drag-and-drop way to build the interface. 
The user needs to design the view so that it will offer 
a visualization of the phenomenon appropriate to the 
desired pedagogical goals. In particular, the view 
should encourage students to explore the 
phenomenon under different engineering 
perspectives in order to gain better insights of the 
system. 
 
 Model View 

Simulation 

++

JMatLink . class 

Matlabfiles
Simulinkmodels

Simulation 

++

JMatLink . class 

Matlabfiles
Simulinkmodels
Matlabfiles

Simulinkmodels 
Fig. 2. Building a simulation with Ejs and Simulink. 
 

 
Fig. 3. Library of graphical elements of Ejs. 
 
To complete the view, the different view elements 
have to be instructed to display on the screen 
according to the model variable values. Every 
graphical element of Ejs has internal values, called 
properties, which can be customized to make the 
element look and behave in a certain way (change its 
displayed value, position, size, etc.) The user can 
then connect the properties of the graphical elements 
of the view to the value of the different model 
variables. Some of these properties can also be 
instructed to trigger user-defined actions (typically 
routines defined in the model) when the user 
interactively changes them. This procedure, which 
we call linking the model and the view, is what turns 
the simulation into a real dynamic, interactive 
application. This mechanism constitutes a simple, 
though very effective way of building advanced 
interactive user interfaces. 
 
The reason for this is that linking is a two-way 
connection. When one or more variables of the model 
change, this change is passed on to the view so that it 
immediately displays the new state of the model. 
Also, because the elements provided have built-in 



 

interactive capabilities, any student interaction with 
the interface immediately affects the model variables 
that are connected to it. For example, let us imagine 
an Ejs simulation of the control of a magnetic 
levitator. The magnets are represented in the view by 
means of rectangles with two colors to represent the 
two polarities. If the dimension of a magnet is 
modified by dragging and stretching the corners of 
the rectangle with the mouse, the variable 
representing the magnet mass in the analytical model 
will reflect this change (thus affecting the system 
dynamics).  
 
With all this high-level information, which only the 
user can provide, Ejs takes care of all the low-level 
procedures needed to create the final simulation. It 
will generate the Java code that handles all the 
internal tasks, compile it into Java classes, pack the 
classes in a compressed file, and end up with a ready-
to-use simulation. Simulations created with just Ejs 
can be used as stand-alone applications under 
different operating systems (for instance, a .BAT file 
is provided when running under Windows), or be 
distributed via the Internet and run as applets within 
HTML pages (which are also generated by Ejs) by 
using any Java-enabled web browser. The tool also 
includes a simple HTML editor to help the teacher 
enhance the generated web pages with pedagogical 
information and/or instructions for the simulation. 
 

4. REMOTE EXPERIMENTATION 
INTEGRATION 

Once the Ejs virtual laboratory is available, our aim 
is to use it to control the equipment located in the real 
laboratory, i.e., a didactic setup. Thus a client/server 
framework (Figure 4) is necessary in order to get/set 
the data to/from the didactic setup. On the client side, 
the same view of the Ejs virtual lab is used to provide 
the user with the interaction needed to teleoperate the 
system and recover the stream of real data. On the 
server side a Java class, named 
Ejs_Live_Data_Server, has been designed to 
implement the communication model between Ejs 
and the remote laboratory. It is the developer’s 
responsibility to integrate this class into his server 
side development in order to exchange the necessary 
data with the Ejs client side, i.e., the interface. 

 
Fig. 4. Communication model between the remote 

laboratory and the Ejs virtual lab. 

 

If this architecture is chosen, we need to make one 
change in the Ejs virtual laboratory by adding a 
global variable named remote_mode of type 
boolean. Moreover, a button with the name Remote 
must be included in the main window of the view 
generated by Ejs. The button will be used for 
switching to remote or simulation mode by changing 
the value of the remote_mode variable and hence 
pause/resume the Ejs simulation. 
Once this change is introduced, we need to indicate 
which Ejs parameters are required to use the Ejs 
Control Client on the client side. This is done by 
creating a simple text file that informs the Ejs 
Control Client about the configuration of the 
communication model and the variables that will be 
accessible in the remote laboratory and Ejs. Figure 4 
shows an excerpt of a configuration file designed for 
this example.  
 
[Ejs] 
model=motor12 
location=D:\Ejs\simulations\motor12.jar 
[live data server] 
ip=plantas1.dia.uned.es 
protocol=TCP 
port=10000 
sampleTime=100 
[variables to remote] 
var=automaticControl,boolean,1 
var=posControl,boolean,1 
var=Kp,double,1 
[variables from remote] 
var=u,double,20 
var=th,double,20 
var=Reference,double,20 
[gui] 
windows=mainFrame,dialog 
component=Automatic,mainFrame,radiobutton,automatic
Control 
component=Manual,mainFrame,radiobutton,automaticCon
trol 
component=Reference,mainFrame,textfield,Refdeg 
component=Position,mainFrame,radiobutton,poscontrol 
component=uvalor,mainFrame,textfield,u 

Fig. 5. Text file to configure the connection between 
the remote setup and the Ejs. 

As Figure 5 illustrates, the configuration file has 
several sections: 

- The [Ejs] section defines the Ejs model 
parameters that the Ejs Control Client needs to 
use the Ejs virtual lab. 

- The [live data server] shows the 
connection parameters for the communication 
model that uses TCP or UDP streams to 
exchange data between Ejs and the remote lab. 

- The [variables to remote] and 
[variables from remote] are the 
specifications of the data packets to be sent and 
received to/from the remote setup. Each line of 
these two sections indicates the name of the 
variable, which must be previously defined in 
the Ejs model, the type, and the data length.  

- The [gui] section is useful to give information 
about the Ejs visual components that interact 
with the user, respond to the events, and send the 
corresponding variables to the remote laboratory. 

Remote 
Lab. 

Ejs 
Live 
Data 

Server 
Class 

Ejs 
Control 
Client 

Ejs 
Virtual 
Lab. 

TCP or UDP 
streams 
(internet) 

Real data 



 

The windows of the Ejs view, all the windows’ 
components, the type of visual component and 
the Ejs model variables must be specified. 

The last step is the connection of the previously 
developed virtual lab to a remote servomotor. To 
achieve this, the Ejs_Live_Data_Server class has 
to be integrated into the server side of our laboratory 
development. The next section presents an example 
of this task. 

 
5. A CASE STUDY: THE SERVO MOTOR  

The remote laboratory developed in this case study 
corresponds to the well-known model of an electrical 
drive. In this electromechanical process the main 
objectives consist of controlling either the angular 
position or velocity of a load. 
 
5.1 Ejs virtual laboratory. 
 
Up to now, the virtual view developed by Ejs has 
given the user basic interactivity with a simulated 
motor. The main window (Figure 6) provides a 
virtual representation of the motor setup, i.e., 
displaying the plant state while the experiment is 
being conducted. Furthermore, the view lets user tune 
PID parameters, switch to manual/automatic control 
mode and select the control of position or speed. The 
views in Figures 8 and 9 show the time evolution of 
speed, position, and control variables in many signal 
scopes.  
 

 
Fig. 6. Virtual representation of the motor. 
 
5.2 Remote laboratory setup. 
 
For the real laboratory (Figure 7), the real-time 
services were developed using the RT Series System 
of Labview (National Instruments, 2003). This 
software allows us to design robust real-time 
applications embedded in several real-time targets. In 
this instance, we have used a NI PCI-7030/6040E 

Real-Time Multifunction I/O Board, which has a 
486/133 MHz processor dedicated to real-time 
operations. The development cycle is quite simple: A 
vi file with the real-time operations (DAQ operations 
and math operations to compute the control actions 
based on PID algorithm) is implemented. This code 
(vi file) is downloaded into the Real-Time target and 
is executed. After, a Labview application (another vi 
file) is developed to communicate with the Real-
Time target and to provide TCP/IP communication 
streams. 

 

 
Fig. 7. Electrical drive equipment. 
 
5.3 Integrating the Ejs_Live_Data_Server class. 
 
By means of the TCP/IP communication streams 
defined in the Labview application it is possible to 
specify a communication protocol between Labview 
and a Java application. This software makes use of 
the Ejs_Live_Data_Server class to push the 
motor’s real data towards the Ejs Control Client 
across the Internet. This application also receives 
data from the Ejs Control Client, like the PID 
parameters or set points, and resends them to the 
Labview application, i.e., to the motor. Of course, 
this application runs on the same computer as the 
Labview software in order to avoid further delay in 
the data transmission. Thus, the delay value is in the 
order of milliseconds, which is negligible compared 
with the Ejs communication delay. 
 
5.4 Remote and virtual experiments. 
 
Several didactic experiments can be performed using 
this remote/virtual setup. For example, in Figures 8 
and 9 two very common experiments are shown: 
control of speed and control of position. While 
experiments are running, the real state of the motor is 
shown in the Ejs view if the remote mode is on. In 
the other case, the virtual view developed by Ejs 
means that it is possible to practice with the virtual 
motor, preparing the user to work with the real 
equipment. Whether working in real or simulation 
mode, by using the Simulation button (Figure 6) it 
is possible to change the PID values interactively or 
to switch to simulation mode. 
 
Generally, a user cannot distinguish whether the real 
plant or the simulation model is being used. For this 



 

reason, the combination of virtual and remote 
laboratories in just one virtual view must be 
completed with new visual elements, like video and 
audio channels, in order not to confuse users. 
 

 
Fig. 8. Signals from the speed control experiment. 
 

 
Fig. 9. Signals from the position control experiment. 

 

6. CONCLUSIONS 

The way in which the hands-on teaching and learning 
of control engineering has been traditionally done in 
higher education is experiencing a rapid transition. 
This is due to the combination of two key elements in 
the development of new control laboratories, the 
Internet and interactivity, producing the so-called 
web-based laboratories. The purpose of these new 
labs is three-fold: 1) to access labs anywhere and any 
time, 2) to share the resources and experiments 
among different groups, and 3) to open new 
visualization possibilities that improve learning and 
facilitate a more active role of students in the 
learning process. 

To facilitate the development of these innovative 
labs, it is clear that convenient tools must be 
provided to the control education community. Tools 
in which the use of interactivity and Internet 
technologies are managed for the developer, i.e., the 
instructor, in a natural way. In this paper, we have 

briefly described a tool, Easy Java Simulations (Ejs), 
which can be considered as a starting reference to 
create staggering interactive computer learning 
experiences. Ejs is a software tool that helps create 
dynamic and interactive scientific simulations in Java 
language very easily. Thus, according to the model-
view-control paradigm, Ejs facilitates the creation of 
the view and control, and the model can be either a 
simulation (virtual lab) or a didactic setup accessible 
across the Internet (remote lab). 

To highlight some of the many features of Ejs, an 
example of how to build an interactive virtual and 
remote lab of a DC servomotor has been included in 
the paper. This remote and virtual lab and other case 
studies are available at http://virtual-lab.dia.uned.es. 
Ejs can be freely downloaded from the website: 
http://fem.um.es/Ejs/. 

ACKNOWLEDGEMENTS 

This work has been supported by the Spanish CICYT 
under grant DPI2004-01804. 

REFERENCES 

Christian, W. (2003). The Open Source Physics 
Project. http://www.opensourcephysics.org. 

Dormido, S. (2004). Control Learning: Present and 
Future. Annual Reviews in Control, 28, 1, 115-136. 

Dormido, S. and F. Esquembre (2003). The 
Quadruple-Tank Process: An Interactive Tool for 
Control Education. Proceedings of the European 
Control Conference, Cambridge, UK. 

Dormido, S., C. Martín, R. Pastor, J. Sánchez and F. 
Esquembre (2004). Magnetic Levitation System: A 
Virtual Lab in Easy Java Simulation. American 
Control Conference ACC’04, Boston (USA), July. 

Esquembre, E. (2004). Easy Java Simulations: A 
software tool to create scientific simulations in 
Java. Comp. Phys. Comm. 156, 2, 199-204. 

National Instruments (2003). Labview Real-Time 
Module information on http://www.ni.com. 

Pastor, R., J. Sánchez, and S. Dormido (2003). A 
XML-based framework for the development of 
web-based laboratories focused on control systems 
education. International Journal of Engineering 
Education, 19, 3, 445-454. 

Piguet, Y. and D. Gillet (1999). Java-based remote 
experimentation for control algorithms 
prototyping. Proceedings of the American Control 
Conference, San Diego, CA (EE.UU.), 1465-1469. 

Sanchez, J., S. Dormido, F. Esquembre and R. Pastor 
(2004). Interactive learning of control concepts 
using Easy Java Simulations. 2nd IFAC Workshop 
on Internet Based Control Education (IBCE’04), 
Grenoble (France). 

Sánchez, J., F. Morilla, S. Dormido, J. Aranda and P. 
Ruipérez (2002). Virtual control lab using Java and 
Matlab: A qualitative approach. IEEE Control 
Systems Magazine, 22, 2, 8-20. 

Schmid, C. (1999). A Remote laboratory using 
virtual reality on the Web. Simulation, 71, 1, 13-
21. 


