
CONCEPTS FOR REAL-TIME EXECUTION IN
SAFETY-CRITICAL APPLICATIONS

Martin Skambraks ∗

∗ Faculty of Electrical and Computer Engineering,
FernUniversität, 58084 Hagen, Germany,

E-mail: martin.skambraks@fernuni-hagen.de

Abstract: Programmable electronic systems (PESs) that are currently employed
in safety-critical applications follow either a strictly periodical or a task-based
operating policy. This paper discusses these policies with regard to safety aspects
and introduces a novel real-time execution concept that combines their advantages.
The main characteristics of this new concept are quantisation of time into discrete
execution intervals, and partitioning of tasks into execution blocks matching these
intervals. This operating principle features task-based software execution without
utilising interrupts, eases integration into a holistic safety concept, and conforms
particularly well with the safety standard IEC 61508. Copyright c© 2005 IFAC.

Keywords: Programmable electronic system, programmable controller, real-time
operation, forward-recovery, safety criticality, safety licensing.

1. INTRODUCTION

Nowadays, programmable electronic systems
(PESs) are employed in many application areas
of vital importance. Although their use in safety-
critical applications has become common practice
within the last 20 years, safety-licensing of these
combined software and hardware systems is still
problematic. The problems arise less due to in-
evitable spontaneous physical failures which must
be taken into account by design, as rather from
the complexity of such systems, which causes an
enormous effort for verification.

The safety standard IEC 61508 limits the com-
plexity indirectly by restricting the use of some
conventional processing methods. As an example,
its design guidelines only permit ‘limited use’ of
interrupts and pointers in software for the safety
integrity levels SIL3 and SIL4 (Part 3, Table B.1).
For these safety classes, the standard also states
that the use of formal methods for software ver-
ification and the avoidance of dynamic objects

and variables is ‘Highly Recommended’ (Part 3,
Tables A.1 and B.1). The latter term denotes that
‘if this technique . . . is not used then the ratio-
nale behind not using it should be detailed dur-
ing safety planning and agreed with the assessor’.
These guidelines, which at first instance sound
incongruously fuzzy, denote indirectly that design
simplicity is the key to safety.

Depending on the operating policy they follow,
the systems that are currently employed in safety-
critical applications can be categorised into two
classes: Periodically Operating PESs and Task-
based PESs. The first class complies perfectly with
IEC 61508, but its field of application is limited
to simple control tasks; the second class has a less
restricted application field and a more problem-
oriented programming style, but it requires more
effort for safety-licensing. What is even more
important, conventional task-based PESs actually
do not comply with IEC 61508 for the two higher
safety integrity levels, since they use interrupts to
control the program flow.



In the past, safety-related PES concepts have
rather evolved by adapting technologies originally
developed for industrial use than by considering
safety as a design criterion that requires a com-
pletely different design approach. The ProfiSafe
fieldbus which bases on the ProfiBus technology is
only an example. Considering the characteristics
of the operating policies mentioned in the pre-
vious paragraph, the fundamental requirements
for safety-related PESs can easily be summarised.
Developing a new PES concept solely based on
these requirements is certainly a better approach
than originating from an industrial predecessor.
This paper exemplifies this design strategy by
introducing a novel PES concept which was devel-
oped by following the design policy “Progress is
the road from the primitive via the complicated to
the simple”, which was stated by Kurt Biedenkopf
in (Biedenkopf 1994).

The remainder of this paper is structured as
follows. Section 2 categorises conventional PESs
into two classes and discusses their benefits and
drawbacks with regard to safety aspects. Based
on this, the requirements for a real-time execution
concept which perfectly suits safety-licensing in
accordance with IEC 61508 are derived in section
3. The subsequent section introduces a novel PES
concept that meets these requirements. First, fea-
sibility aspects of the application software and
the applied task state model are discussed. Then,
task processing without the need for interrupts
and its advantages regarding safety licensing are
described. At the end of this section, structure and
operating principle of the operating system, which
conforms to the requirements of the real-time pro-
gramming language PEARL, are explained. Sec-
tion 6 covers the integration into a holistic safety
concept. Finally, our current state of work and
further plans are summarised.

2. CHARACTERISTICS OF AVAILABLE PES

The programmable electronic systems that are
currently employed in safety-critical applications
can be categorised into periodically operating and
task-based ones, depending on the operating pol-
icy they follow.

2.1 Periodically Operating PESs

Periodically operating PESs execute their applica-
tion-specific programs in processing cycles of con-
stant, fixed duration. The program code is always
processed completely within a cycle. The strictly
cyclic operating principle facilitates condition-
controlled branching merely on a restricted scale;
a completely process-controlled program flow is
not possible (Bolton 2003, Rabiee 2002). This

operating policy does not only limit the field of
application to simple control tasks, it also results
in a not problem-oriented programming style.
Typical representatives of this category are the
programable logic controllers (PLCs), which are
mostly programmed following the function block
policy of IEC 61131. The latter is more problem-
oriented, but causes further restriction of the field
of application.

All tasks must be implemented in a way that
complies with the ‘global’ cycle time; individual
timing constraints are only considered at second
instance. Extensive algorithms either cause long
cycle periods, or they must be distributed over
consecutive cycles. The former increases the sys-
tem response time, the latter the complexity of
the application program. Employing such a PES
for several process tasks with extremely different
or varying response times is difficult and also in-
creases the complexity of the application program.
This PES category typically does not process its
program code in direct relation to legal time.
Hence, additional effort is necessary to record
all system activities relative to Universal Time
Coordinated (UTC), and for synchronisation to
external systems. Of course, this can be done by
simple means, but it increases system complexity
unnecessarily.

Nevertheless, the most essential advantage of this
PES category is its inherent simplicity. As long
as the application process does not lead to the
increase in complexity discussed above, the archi-
tecture and the temporal execution behaviour of
these systems as well as the application-specific
software are of remarkably low complexity. This
does not only minimise the effort for safety li-
censing, it also makes, in principle, this PES class
suitable for applications of the highest safety class
(SIL4). However, the systems that are currently
available off-the-shelf are only certified up to SIL3,
e. g., SIMATIC S7-414H (www.siemens.com).

2.2 Task-based PESs

Task-based PESs use interrupts to control soft-
ware execution. This allows the program flow to
be arbitrarily controlled by the process, and en-
ables asynchronous processing of several tasks. On
the one hand, the asynchronous operating prin-
ciple increases system complexity, since special
mechanisms for task synchronisation like, e. g.,
semaphores are necessary; on the other hand,
this operating style makes this PES class more
flexible and suitable for extensive control tasks
(Shaw 2001). Thus, although asynchronous, task-
based programming is more problem oriented
than cyclically processed program code – and
therefore easier to verify –, this PES category



causes more effort for safety-licensing. This is due
to the high complexity of the hardware (especially
the processor), the real-time operating system,
and their interaction with the application soft-
ware.

Typically, a very complex part of a processor is
the logic for interrupt handling. This interrupt
logic does not serve the actual program execu-
tion, but merely supports the operating system.
Moreover, interrupt handling usually involves a
(stack) pointer and a dynamic memory, although
IEC 61508 restricts the use of pointers and dy-
namic objects in highly safety-critical applica-
tions.

The complexity of the operating system usually
arises from performance reasons. In order to keep
the response time of real-time systems short, most
operating systems are subdivided into several lay-
ers (VDI 1982). The lowest layer – which is closest
to the hardware – serves time-critical functions of
low computational extent; more extensive func-
tionalities are processed on higher layers. Min-
imising the computational load caused by the OS
kernel functions is another opportunity to keep
response times short. That is why mostly priority
based scheduling policies are employed, although
time based strategies, which cause higher com-
putational load, suit the demands of real-time
systems better. Provided the processor allocation
is scheduled based on time at all, the time repre-
sentation usually does not comply with the UTC
standard. Thus, recording all system activities in
reference to UTC, which is fundamental for most
safety-critical applications, requires conversion of
the system time to UTC-time. The necessity of
such conversions as well as the layered OS struc-
ture mentioned above increases the complexity of
real-time operating systems considerably.

The complexity caused by the interaction of pro-
cessor, operating system and application software
results from dividing the program code into inter-
ruptible and non-interruptible parts, the depen-
dence of execution times on the process as well
as the use of mechanisms for task synchronisa-
tion. These facts make proving the timeliness of
the application software, which is fundamental for
these asynchronous systems, either unacceptably
expensive or even impossible. Although the use
of interrupts does not perfectly comply with IEC
61508 for the two highest safety integrity levels,
there are task-based real-time operating systems
available that are certified for SIL3, e. g., OSE
RTOS (ww.ose.com).

It is important to note that the SILs defined
by IEC 61508 are measures of the safety of a
given process; no individual product can carry
a SIL rating. If a vendor claims his product
to be certified for SIL3, this means that it is

certified for use in a SIL3 environment (Smith and
Simpson 2001).

3. DESIGN PRINCIPLES FOR
SAFETY-RELATED PES CONCEPTS

The most appropriate design principle for safety-
related components is Simplicity (Halang and
Konakovsky 1999, Vogrin 2000). Design simplic-
ity avoids engineering errors at first instance and
eases safety-licensing at second instance. Follow-
ing simplicity as major design guideline implies
to avoid any processing policy or function that
increases complexity unnecessarily. Considering
the benefits and drawbacks discussed in the pre-
vious section, a PES concept for safety-critical
applications must realise design simplicity in three
aspects:

• Programming style,
• Temporal behaviour, and
• Architecture.

The programming style is simplified by focussing
on the timing constraints of the process, rather as
on restrictions imposed by the operating principle
of the PES. Hence, the software should be organ-
ised in tasks. This problem-oriented concept must
be supported on the architectural level to enable
proving the feasibility by simple (formal) means.

The temporal behaviour is simplified by minimis-
ing asynchronous component interactions, e. g.,
through synchronisation. Additionally, interrupts,
if not avoidable, must not affect the execution
times of the tasks.

The architecture, which comprises hardware struc-
ture and operating system, is simplified by paring
down to the essential. Identifying the essential
is difficult, since not all dispensable components
or processing methods are as obvious as, e. g.,
cache memories. Consider the following example.
Timing constraints for a task are always defined
by the process, and priority-based scheduling re-
quires to map these constraints to priorities. Thus,
avoiding this mapping by scheduling directly in
accordance with the timing constraints is more
essential. Paring down to the essential also implies
to avoid multilayered structures for the operating
system, and to avoid the distinction between in-
ternal and external (legal) time by processing all
internal activities in direct relation to UTC. The
techniques implemented to achieve fault-tolerance
also need to be reduced to the essential, while still
covering all failure possibilities.

These three simplicity aspects can be considered
as the fundamental requirements for safety-related
real-time PESs. In the sequel, a novel PES concept
is introduced that exemplifies how it is possible to
meet these requirements in every respect.



4. A NOVEL PES CONCEPT

The PES concept presented here bases on physi-
cal separation of real-time operating system and
application processor. Time is quantised into Ex-
ecution Intervals, and tasks are partitioned into
Execution Blocks matching these intervals. This
task execution concept renders the use of inter-
rupts superfluous and conforms particularly well
with IEC 61508. Since the concept does not re-
quire special mechanisms for task synchronisation,
either, the number of functions that the operat-
ing system must provide is minimised, and the
operating system is realisable in form of a dig-
ital logic circuit. This simplifies integration into
a holistic safety concept, which unifies the three
safety-related functions failure detection, forward
recovery at runtime and non-intrusive monitor-
ing. All system components operate periodically
and synchronously, leading to a simple and easy to
model temporal execution behaviour of the entire
system.

4.1 Feasibility of Application Software

In order to ease proving the timely feasibility of
application software, the PES supports a partic-
ularly simple task state model on the lowest pos-
sible level – the hardware level. The model bases
on the execution characteristics: worst case exe-
cution time tC , maximum response time tB , and
minimum activation period tT . These parameters
specify the time behaviour of each task, and en-
able to formally prove the feasibility of application
software. Fig. 1 illustrates the model, which differs
from other ones, e. g. (Halang and Stoyenko 1991),
by the state Suppressing.

Time of activation: T

‘Finish’ within time frame: T ... T +t

‘Release’ at time: T +t

Act

Act Act B

Act T

tC

TAct

t

tT

tB

A
ct

iv
at

io
n

R
el

ea
se

State-transition
induced by
operating system

State-transition
induced by
event or software

Known

Activate

Activated Executing

R
elease Fi

ni
sh

Sup-
pressing

C
ontinue

S
uspend

Sus-
pended

Fig. 1. The task state model employed

The minimum activation period equals the min-
imum delay between two task activations. Thus,
this parameter limits the computational load in-
directly. Only tasks in state Known can be ac-
tivated. In case a task is completely processed

before the time frame TAct . . . TAct + tT elapses,
it is transferred to the state Suppressing. The
transfer back to the state Known is carried out
at TAct + tT , enabling further activations. The
state Suspended is provided for synchronisation
purposes. Since application software is executed
non-pre-emptively in intervals, this state can only
be reached by passing the state Activated. That
means, the suspension is invoked by the program
while the task is in the state Executing, but the
associated state transfer takes place at interval
end.

Since the task state model is supported by hard-
ware, the activation of a task is restricted to one
instance at a time on the lowest possible level.
This complies perfectly with the safety standard
61508, which forbids dynamic instantiation of ob-
jects for applications of highest safety criticality.

To sum up, the hardware supported execution
characteristics allow to formally proof the feasibil-
ity of application software. Appropriate feasibility
conditions are already known but not subject of
this article. Publications that discuss proper feasi-
bility constraints are, e. g., (Teixeira 1978, Soren-
son and Hamacher 1975, Halang and Stoyenko
1991).

4.2 Task Execution without Interrupts

Proving the feasibility of application software for
conventional real-time systems employing inter-
rupts is problematic, since determining the worst-
case execution times (WCET) of tasks is difficult.
Each interrupt induces a context-switch of the
processor which, in turn, influences the actual
response times of all activated tasks. The distinc-
tion between interruptible and non-interruptible
program parts aggravates the situation. The PES
concept presented here avoids this problem by
executing tasks without interrupts.

This is achieved by strict separation of an Appli-
cation Processing Unit (APU) and an Real-Time
Operating System Unit (RTOSU). The APU ex-
ecutes the application-specific program code. It
consists of a processor in Harvard-architecture,
i. e., with separate program and data memories.
The RTOSU is responsible for task administration
and processor scheduling. The latter is done in ac-
cordance with the Earliest-Deadline-First (EDF)
scheduling policy. Henn showed in (Henn 1989)
that this strategy will always lead to a feasible
scheduling, provided timely execution is possible
at all.

Time is quantised into discrete execution intervals
and tasks are partitioned into a number of exe-
cution blocks each. The execution intervals have
a fixed duration, and are defined for the syn-



chronously operating RTOSU and APU. The ex-
ecution blocks have the following characteristics.

• Each execution block can be executed by the
APU within a single execution interval.

• The execution of a block is not pre-emptable.
• Data exchange between execution blocks is

only possible via the APU memory; the con-
tent of the processor registers is lost at the
end of a block’s execution.

• The execution blocks of a task are indexed
for identification.

• The execution blocks of a task do not need
to be executed in consecutive order. For each
task, the RTOSU stores a parameter called
NextBlock in the task list, which identifies
the subsequent execution block.

At the beginning of each execution interval, the
RTOSU outputs the ID of Block to Execute, which
corresponds to the NextBlock parameter of the
task that must be executed according to the
scheduling algorithm. The APU reads this ID and
processes the associated execution block. When
the APU completes the block at the end of the
execution interval, it outputs the ID of Next
Block, which identifies the task’s execution block
that needs to be executed next. The RTOSU
reads the ID and stores it in the task list as new
NextBlock parameter. The flow chart in Fig. 2
illustrates this in more detail.
RTOSU APU

Input

Begin

End

Output

Storing the ID as new
pointerNextBlock

Determination of the
execution block that needs to

be executed next.

Begin

Input

Output

Synchronous begin of
execution intervals

ID of block to execute

ID of next block

Processing the execution
block

Determination of currently
processed task’s

next execution block

Task-administration:
- Control of task-states

(checking activation
characteristics, inducing state

transitions)
- Computation of deadlines

-Determination of tasks with next
and next-but-one deadline

Fig. 2. Illustration of the operating principle with-
out interrupts

If the executed block was a task’s last one, i. e., if
a task is completely executed, the APU outputs
the block ID ‘Nil’. In this case, the RTOSU sets
the state of the associated task from Activated
to Suppressing. Additionally, the RTOSU takes
this completion into account to compute the ID
of Block to Execute for the next execution in-

terval. This is why the RTOSU does not only
determine the task with the earliest, but also the
task with the next-but-one deadline. This enables
the RTOSU to immediately output the NextBlock
identifier of the task with the next-but-one dead-
line, in case the task with the next deadline cor-
responds to the task just been processed and just
been completed by the APU.

This operating principle renouncing the use of
interrupts minimises the complexity of the APU
processor, as no interrupts need to be sup-
ported. What is even more significant in terms
of safety, the operating principle without inter-
rupts also makes synchronisation mechanisms like
semaphores superfluous, since each task has non-
interruptible exclusive access to the processor dur-
ing an execution interval. Tasks can communicate
with each other via the data memory without the
danger of interruptions while writing messages.
Using variables stored in the data memory, mutual
exclusive access to peripheral components can be
realised by simple means. Alternating access of
several tasks can be realised in a similar way,
it only requires the ability of programmed task
activation. The absence of RTOS-supported syn-
chronisation mechanisms results in further sim-
plification of the design. However, since mutually
exclusive access is realisable, methods to prevent
deadlocks need to be applied during software de-
velopment.

In summary, this task execution concept with-
out the necessity of interrupts simplifies the time
behaviour as well as the hardware structure sig-
nificantly, eases formal verification, and increases
conformity to IEC 61508 for systems of highest
safety-criticality (SIL3/SIL4). Of course, the pro-
posed operating principle requires special compi-
lation of the application software.

4.3 PEARL-based Hardware-RTOS

The RTOS of the proposed PES bases on the
task concept of the Process and Experiment
Automation Realtime Language (PEARL), which
was standardised by DIN 66253-2 (1998). One of
the interesting features of this language is the
direct notion of time (Hamuda and Tsai 2003).
This enables exact and problem-oriented specifi-
cation of timing conditions to activate, terminate,
suspend, continue or resume tasks (GI 1998). A
periodic task activation during a given time-frame
is specified by

AT {clock-expression |

[asynchronous-event-expression]+duration1}
EVERY duration2 DURING duration3

ACTIVATE task-name

This is the most general form of a task activation
schedule (Halang and Stoyenko 1991). The hard-



ware implementation of the RTOSU inherently
supports such activation plans. Therefore, each
task is assigned a set of parameters, which facil-
itates configuration for various activation condi-
tions. These activation parameters allow to spec-
ify, e. g., that a task is activated after the occur-
rence of an asynchronous signal and an further,
pre-defined delay.

The proposed PES implements the EDF algo-
rithm in hardware, rendering the differences be-
tween priority-based and EDF scheduling to be
irrelevant in terms of computing time. Thus, there
is no need for task priorities, and the time-based
scheduling policy can be applied. The internal
clock of the PES is permanently synchronised to
UTC, which is the internationally standardised
sole legal time reference. It is available worldwide
via, for instance, GPS and GLONASS. The PES
processes all internal actions with reference to
UTC. Thus, there is only one time-base in an
entire distributed system. This reduces the system
complexity, since the problems related to different
time bases are prevented.

On the hardware level, time instants are repre-
sented by 48 bits wide data words consisting of
binary numbers for year, month etc., and a bit
identifying whether a time value is absolute or
relative. Relative time values are the results of
adding (resp. subtracting) time values to (resp.
from) absolute time values. In order to keep the
hardware simple, the RTOSU performs these com-
putations neglecting leap seconds and the different
numbers of days in a month. These time irregular-
ities are taken into account at the moment they
occur by appropriate substraction operations. Due
to the structure of the RTOS operations, this sim-
ple technique guarantees correct time processing.

A perfect real-time operating system would per-
manently check the activation conditions of all
tasks, and inform about the task to be executed
according to the scheduling policy. This demand
for a continuous working pattern leads to the
objective of implementing the RTOS in form of
a digital logic circuit that processes the kernel
algorithms for all tasks in parallel. Unfortunately,
this would require an unacceptably large amount
of logic gates, considering the extent of the RTOS
kernel algorithms and the fact that a typical real-
time application consists of some 10 to 50 tasks.

For this reason, the hardware architecture of the
RTOS combines parallel and sequential process-
ing. The kernel algorithms are structured in a way
as to allow for parallel processing of the operations
related to a single task, whereas all tasks are
sequentially subjected to these operations. Fig. 3
illustrates this processing pattern. It shows the
main parts of the Real-Time Operating System
Unit (RTOSU), viz., the Task Data Administra-

tion Unit (TDAU) and the unit for Activation
Control and Scheduling (ACS).

ID of execution
block to be
processed

UTC

ID of task’s next
execution block

Asynchronous
event signals

Load
ACS
input

registers

Read
ACS
output
registers

TDAU

ACS

Task List
One set of data

for each task

[]

[]

: Latch for temporary storage within execution interval[]

3-phase
process for each

task

RTOS algorithms imple-
mented as combinational

logic circuit

Operations related to one
task executed in parallel;

most urgent tasks
determined sequentially

Fig. 3. Operating principle of the hardware RTOS;
for each task, the 3-phase process is carried
out once within an execution interval

The TDAU administrates a Task List, which con-
tains a set of parameters for each task such as
information about the current task states, the
activation characteristics, and the execution prop-
erties. The task list has a static size, i. e., all
tasks a certain application is consisting of must
be registered with the RTOSU at set-up time.
Thus, in conformance with the requirements of
IEC 61508 for SIL4 applications, dynamic instan-
tiation of tasks (resp. objects) is not supported.
Instead, the activation characteristics of a task
can be modified.

The TDAU co-operates closely with the ACS
while sequentially processing all tasks within each
execution interval. During this Sequential Task
Administration (STA), the TDAU initiates for
each task a three-phase process:

(1) First, the TDAU accesses the Task List and
transfers the entire data set to dedicated
input registers of the ACS.

(2) Then the ACS processes the task data. This
is carried out by a combinational logic circuit
within one clock cycle.

(3) During the last phase, the TDAU reads the
updated task data from the ACS and trans-
fers them back to the Task List.

The ACS is responsible for the following opera-
tions:

(1) Checking the activation characteristics (this
includes, e. g., checking time schedules and
asynchronous occurrences),

(2) Supervising task state transitions,
(3) Computing deadlines,
(4) Generation of updated task parameters,



(5) Identifying the task with the earliest deadline
and the one next in line,

(6) Output of the ID of Block to Execute.

The first four operations are separately executable
for each task. Therefore, they are performed in
parallel by a combinational digital circuit. The
latter, which implements the most substantial
and most critical functionality of an RTOS, is
inherent simple – especially in comparison to a
conventional software implementation.

The fifth item requires comparing the deadlines of
all activated tasks. This is carried out sequentially,
while the IDs of the two most urgent tasks are
temporarily stored within the iterations of the 3-
phase process. The ID of the execution block that
needs to be processed in the subsequent interval
is output at the end of an execution interval, after
the APU submitted an ID to the RTOSU.

5. SAFETY-RELATED INTEGRATION

The operating strategies of the PES concept de-
scribed in the previous section aim to avoid design
errors by simplifying both architecture and op-
erating principle. In order to guarantee safe and
reliable operation, these strategies must be inte-
grated into a holistic safety concept, which also
takes spontaneous hardware failures into account
and does not ruin simplicity.

The standard IEC 61508 recommends various
techniques to reduce the influence of hardware
failures. Some of these techniques are, e. g., redun-
dant memory banks or multiple processors com-
bined with majority voting. However, these tech-
niques usually cover only few failure sources, and a
combination of several techniques is necessary to
cope with all failure possibilities. This increases
system complexity significantly. Thus, applying
these techniques would infringe the strategy of
design for simplicity.

This is why a rather unusual but more integrative
approach was taken to reduce the influence of
hardware failures. In a redundant configuration,
each PES outputs a Serial Data Stream (SDS)
that provides full information about the internal
processing states. This SDS concept unifies the
following three safety functions.

Detection of processing errors: Each PES can
detect processing errors by comparing its SDS
with the SDSs of the other PESs.

Forward recovery at runtime: In case a PES
is affected by a transient hardware fault, the
SDSs of the redundant PESs enable to copy
the internal state and to resume processing at
runtime.

Recording process activities: The SDSs can
be utilised to record the system‘s execution
behaviour for later program flow analysis.

The redundant PES instances operate periodically
in Module Cycles, which are synchronised to UTC.
Thus, there is no need for an additional global
clock signal. These module cycles define the begin
of the execution intervals. Fig. 4 illustrates this.

STA: Sequential Task Administration;
D: Determination of next execution block

t

Execution interval

Module cycle

N
ex

t m
od

ul
e 

cy
cl

e

Transfer cycle

SDS
content

RTOSU
activity

APU
activity

APU
stream

STA

UTC
synchronous

begin

D

RTOSU
stream

Processing of an
execution block

Fig. 4. Module cycles, which are synchronised to
UTC, define the begin of execution intervals
and transfer cycles

5.1 The SDS Concept

Each PES creates a Serial Data Stream (SDS).
This SDS serially transfers all information that
is necessary to determine the exact state of the
PES at the beginning of a module cycle. The
SDS is organised in Transfer Cycles which match
the module cycles. This causes redundant PES
instances to output their SDSs synchronously.

The state of a PES is defined by the content
of all its storage devices, e. g., registers, latches
and memory blocks. Certainly, complete trans-
fer of this content via the SDS in each transfer
cycle would enable error detection and runtime
recovery. However, this would either restrict the
maximum amount of storage devices in the PES,
require an unacceptably high data transfer rate,
or limit the minimum duration of a transfer cycle
and – as a consequence – of a module cycle. That
is why a complete state transfer is distributed
over a number of consecutive cycles. During each
transfer cycle, only the most recent data changes
(resp. state changes) are transferred via the SDS.
This concept minimises the required data transfer
rate. An extension of this concept guarantees com-
plete state transfer within a predefined number of
transfer cycles.

Due to the operating principle of the PES, the
SDS is composed of the RTOSU Stream and



the APU Stream. The RTOSU Stream is trans-
ferred first, followed by the APU Stream. Fig. 4
shows the SDS content in relation to the RTOSU
and APU activities. At the beginning of each
module cycle, the RTOSU starts the Sequential
Task Administration (STA), and the APU starts
processing one execution block. At the time the
RTOSU finishes the STA, the processing inside
the RTOSU is almost complete, only the next ex-
ecution block still needs to be determined. Thus,
the state of nearly all storage devices inside the
RTOSU is fixed for the rest of the module cycle
and the RTOSU Stream can be generated.

When the APU finishes processing an execution
block, it outputs an identifier. This identifier ei-
ther points to the next execution block of the
task or signalises that the task has been processed
completely. The RTOSU uses this identifier to
determine the execution block that needs to be
processed in the next execution interval. This
identifier and the ID of the next execution block
is inserted at the end of the RTOSU Stream.
Subsequently, the APU Stream starts.

The APU stream terminates a short time before
the next cycle begins. Thus, there is a small time
gap between the end of the transfer cycle and
the end of the module cycle. This gap is neces-
sary to guarantee evaluation of the received SDSs
before the next module cycle begins. The time
gap must compensate the SDS transfer delays and
the (slight) synchronisation differences between
redundant PES instances.

Detection of processing errors:
Errors are detected at bit level. A PES is denoted
as erroneous, if one bit of the SDS differs from its
associated majority value. Therefore, each PES
includes a Majority Voter which compares the
SDS of all redundant PES instances. The majority
voter does not only compare the bits of all data
streams to determine the majority, it also takes
the validity of each stream into account. An SDS
is denoted as ‘invalid’ if, e. g., the associated
PES is in ‘Error State’ or if the reception fails.
The majority voter uses only valid streams to
determine the majority. If a stream differs once
(resp. in one bit), the majority voter does not use
this stream for subsequent evaluation during the
rest of the transfer cycle. In case a PES’s own
SDS does not equal the majority voter’s output
during the whole transfer cycle, it is transferred
to ‘Error State’. The PES stays in this state until
the recovery process completes successfully.

Forward recovery at runtime:
When a PES has been transferred to ‘Error State’,
the recovery process is automatically initiated in
the subsequent module cycle. This process can be
divided into the two phases

• State Equalisation and
• (Waiting for) Resumption.

State equalisation refers to equalising the inter-
nal state of a PES to the state of other running
instances. The internal state of a PES is defined
by the content of all its storage elements (latches,
registers, memories). This includes the memory
content of the APU as well as the register content
of the RTOSU (e. g., task parameters). The main
problem of state equalisation at runtime is that
the internal state of the running modules is not
static. While the internal state is copied, the state
changes continuously. Due to the physical separa-
tion of real-time operating system and application
processing, the runtime equalisation is divided
into the two parts

• equalisation of the APU state and
• equalisation of the RTOSU state.

The PES can only resume its processing when the
internal state is totally equivalent to the state
of the (still running) redundant PES instances.
The applied equalisation method guarantees this
equivalence only at distinct points in time. Thus, a
PES in ‘Error State’ must wait for such a moment
to induce the resumption, which must take place
at the beginning of a module cycle.

5.2 Equalisation of the APU State

In the proposed PES concept, execution blocks
are executed without interruption. Thus, context-
switches occur only at the beginning of a module
cycle. These context switches do not require to
save the register content of the processor, since
using these registers to store data between module
cycles is not allowed. Hence, equalising the APU
state does not require to transfer any APU register
contents. As long as the resumption takes place at
begin of a module cycle, equalising the memory
content is absolutely sufficient.

The memory of the APU is subdivided into Pro-
gram Memory, Help Memory and Data Memory.
The Program Memory contains the software code,
it supports only reading access (ROM). The pur-
pose of the Help Memory is to store intermediate
results during an execution interval; its content is
lost at the end of each execution interval. Data
that need to be accessed in multiple execution
blocks must be stored in the Data Memory. Only
the data memory needs to be copied for state
equalisation of the APU.

The data are transferred in serial form. With
modern techniques it is possible to achieve data
transfer rates of several Mbits per second. Never-
theless, the data transfer rates will always be lower
than the speed at which the APU can process



data. In order to limit the frequency of data word
changes in the data memory, the number of write
accesses allowed during each execution interval is
limited. All write accesses to the data memory are
recorded (addresses and associated data words)
and subsequently output in form of a serial data
stream called APU Stream.

The recovery process requires that the complete
data memory content is transferred via the APU
Streams within a pre-defined time frame. This is
not automatically the case, since only the write ac-
cesses induced by the application-specific software
are added to the APU Stream, and the software
might not perform write accesses to all data mem-
ory cells within this time frame. To overcome this
problem, the APU uses Idle Execution Intervals
to sequentially read and write back all cells of
the data memory. This usage of idle execution
intervals guarantees complete recovery of the data
memory content. The time for recovery depends
on the size of the data memory and the occurrence
frequency of idle execution intervals, which must
be specified at setup time of a system.

The point in time at which all memory cells are
at least once ‘updated’ is automatically detected.
From that point in time on, the PES in error state
and the remaining PESs have at the beginning of
each module cycle identical contents in their data
memories.

5.3 Equalisation of the RTOSU State

The internal state of the RTOSU is defined by the
content of all its storage devices: the registers (or
latches) and memory blocks.

Equalisation of the register content:
Most registers of the RTOSU are solely used to
temporarily store data within a module cycle;
they do not exchange information from one mod-
ule cycle to the next. The content of these registers
does not need to be copied during the recovery
process, since it is irrelevant as long as resumption
takes place at the beginning of a module cycle.
However, some registers are utilised to exchange
information from one module cycle to the next and
must, therefore, be considered in terms of state
equalisation. Fortunately, most of them (e. g., the
ID of Next Block Latch, in which the APU writes
the ID of the task’s next execution block) have no
meaningful content after idle execution intervals.
Thus, resuming the processing after an idle inter-
val is the simplest solution for state equalisation.

Only two circuit parts of the RTOSU contain
registers that have meaningful content after idle
intervals. These are the ID of Block to Execute
latch, which signalises the execution block that
needs to be processed by the APU, and the

Task Info Unit, which enables reading access to
important task data (e. g. current task state).
The ID of Block to Execute can change at the
end of any module cycle and, hence, needs to
be transferred via the SDS within each transfer
cycle. The register content of the Task Info unit
is derived from the current (resp. updated) task
list data during the sequential task administration
of each module cycle. The content of this register
set does not need to be transferred via SDS, since
it can be derived from the recovered task list data.

Equalisation of the Task List memory:
The memory block that stores the Task List is
the only memory block that needs to be recov-
ered in terms of state equalisation. Equalising
this memory is more complex than equalising the
APU memory content, because the frequency of
RTOSU task data changes (in the following only
‘task data changes’) cannot be limited like the
write accesses to the data memory of the APU.
Every task can perform a state transition at any
time, and independent from the states of the other
tasks. Thus, in theory, it is possible that all tasks
change their state from ‘known’ to ‘activated’
within the same module cycle. This would cause a
huge amount of data changes (storing activation
times, modifications of the activation schedules).
Transferring such a huge amount of data within
one cycle tC to achieve state equalisation is not
desirable, since it would either require a very high
data transfer bandwidth, restrict the minimum
cycle duration tC , or limit the number of man-
ageable tasks.

The amount of data that must be transferred
within one module cycle can be reduced by taking
the task characteristics into account. It is not
possible to predict the time instants of task data
changes (resp. state changes), but the maximum
number of task data changes is known in ad-
vance. The activation of a task itself causes a
data change, but also each ’Suspend’ operation
that the software code of a task contains. Since
the maximum activation frequency of each task
is indirectly given by the minimum activation
period, the maximum rate of RTOS data changes
is limited, computable and constant.

The ‘Age-Variable’ concept:
Some Task List data are changed quite frequently,
while others are changed only seldom. If one data
value changes multiple times during the equal-
isation process, only its last value needs to be
transferred, since the old values are obsolete. This
characteristic is useful to minimise the required
data transfer rate. Therefore, an integer variable
is assigned to each RTOSU memory data word
that represents the age of the data value. These
integers are subsequently referred to as Age vari-
ables.



By default, the age variables are set to zero. Each
time the associated data word is modified, the
integer value is set to the maximum representable
value. If the age value does not equal zero or
‘1’, these variables are decremented by one at the
beginning of each module cycle. Thus, the lowest
integer values (except zero) identify the ‘oldest’
modified values. During each cycle, a subset of
the oldest data words is inserted in the SDS and
the associated age variables is set to zero.

This operating policy restricts the transfer to data
words that are modified. An extension is neces-
sary to facilitate transfer of all RTOS data words
within a reasonable time frame. The extension
must take into account, that all redundant PES
instances must generate identical SDSs, otherwise
majority voting methods cannot be applied to
check the streams received. This requires a strat-
egy that transfers the remaining, not modified
data words of redundant SDS instances at the
same points in time. Since all PESs are synchro-
nised to UTC, this can be achieved by setting
all age variables to their maximum representable
value at UTC-synchronous time instants.

With the proposed extension, the policy of in-
serting a subset of the oldest data words in the
SDS will lead to a total transfer of the RTOSU
data, provided the frequency of RTOSU data word
changes is sufficiently low. Therefore, the num-
ber of RTOSU data words that the SDS includes
within each transfer cycle must be higher than the
average number of changed data words.

Each time an RTOSU data word is added to the
SDS, the associated age variable is set to zero. The
complete transfer is signaled by all age variables
being zero. This situation is suitable to resume
the processing of the execution module.

5.4 Resumption

The state equalisation of the APU data memory
and the RTOSU data is initiated after a pro-
cessing error has been detected. Within a pre-
dictable period of time after the PES state has
been denoted as erroneous, the identity of the data
memory content will be provided at the beginning
of each module cycle. Thus, from that time on,
the PES must only wait until the content of the
RTOSU storage devices has been completely re-
covered.

The state equalisation of the RTOSU also com-
pletes within a predictable period of time. In con-
trast to the equalisation of the APU data memory,
this does not necessarily mean that this state
identity is also reached in all subsequent module
cycles. It is most probable, but if, e. g., too many
task state transitions happen within one module

cycle, the amount of RTOSU data changes is too
large to be transferred via the SDS within one
transfer cycle and, consequently, state identity
cannot be maintained in the subsequent cycle.
Moreover, total state equalisation of all RTOSU
storage devices can only be reached after an idle
execution interval. Because of this fact, the occur-
rence frequency of idle execution intervals must be
selected high enough to guarantee the coincidence
of state equivalence and an idle execution interval
within a given time frame.

At the moment the identity of the data memory
content and the RTOSU data is reached after
an idle execution interval, the recovery process is
complete and the PES can resume processing.

5.5 Communication Technique

For communication one interface is used which
does not only suit the needs to exchange the
serial data streams between the redundant PES
instances, but also supports data exchange with
the process periphery (e. g. sensors, actuators).
This results in low wiring expenses. The communi-
cation technique bases on the fieldbus ‘Interbus S’,
because of its low hardware requirements and in-
herent simplicity (Baginski and Müller 1998). All
system nodes, i. e., the redundant PES instances
as well as sensors and actuators, are connected
to a ring and data are transferred from node to
node as in a shift register. The data transfer is
organised in transfer cycles that match the UTC-
synchronous module cycles. Each data word is
shifted through all nodes of the ring within a cycle.

Conventional ring-based communication techni-
ques increase safety by using both possible data
transfer directions. This approach cannot guar-
antee system availability in case of more than
one ring interruption or device outage. That is
why the proposed PES makes use of a different
approach, which bases on a second (i. e., third)
communication ring. The output of a node is not
only connected to the next node in the ring, but
also to the next-but-one node. The additional
wires are arranged in a second communication
ring which is physically separated from the first
one. This second ring is subsequently called Re-
serve Communication Ring (RCR). Similarly, the
first communication ring is named Primary Com-
munication Ring (PCR). Fig. 5 illustrates the
connection scheme.

With the RCR, communication does not fail even
if one communication wire is cut or a node
fails completely. This ‘multi-ring’ technique allows
scalable safety by adding further rings and, more-
over, can even be combined with the bi-directional
method. Fig. 5 illustrates the connection scheme.



PES

1

PES

2

PES

3

Sensor
1

physical
separation

RCR

PCR

Sensor
2

Actuator
1

Actuator
2

Fig. 5. Connection scheme with three redundant
PESs

Although all nodes are physically connected to
one ring, the communication method employs
multiple transfer channels. That means, each
physical wire transfers multiple channels. There
is one channel for general I/O communication
and one channel for each SDS. This multi-channel
technique causes only small delays to shift the
SDS through all nodes, since the transmitted
data must only be repeated by the PES instances
passed. Fig. 6 illustrates this multi-channel tech-
nique for a PES configuration with three redun-
dant instances.

PES

1

PES

2

SDS
Channel 2

SDS
Channel 3

I/O
Channel

}

{
SDS

Channel 1

Fig. 6. Multi-channel technique; since each PES
generates an SDS, three SDS channels are
necessary for a PES configuration with three
redundant instances

5.6 Hardware Implementation

The SDS concept as well as the periodic com-
munication method have been realised in form
of a digital logic circuit. In contrast to most
other task-based PESs, the proposed architecture
even realises forward recovery in hardware. This
hardware-oriented approach simplifies the PES
architecture, since the RTOSU and the APU have
also been realised in hardware and, hence, no com-
plex software/hardware interfaces between system

components are necessary. Furthermore, the tem-
poral behaviour of the entire system is simplified,
since all PES components operate periodically
and synchronously. All PES functionalities ,e. g.,
task administration, forward recovery, are realised
in hardware and the PES software consists only
of application specific program code. This clear
distinction between architectural components of
the PES and the application specific software
minimises the effort for safety-licensing, once the
PES has been certified for use in a safety-related
environment.

6. CONCLUSION

The programmable electronic systems (PESs)
that are currently employed in safety-critical ap-
plications have been sub-divided into two classes.
Periodically operating PESs operate in cycles of
constant duration and process their program code
always completely within each cycle. They suit
the demands for safety-licensing best, since their
architecture, temporal behaviour and application
specific software are of remarkable low complexity.
However, their field of application is limited to
simple control tasks. Task-based PESs use inter-
rupts to control software execution. On the one
hand, they support a more problem-oriented pro-
gramming style and have a less restricted field
of application, on the other hand, their inherent
complexity causes huge effort for safety licensing.
Moreover, since interrupts play a major role in
conventional task-based systems, this PES cat-
egory actually does not comply with the safety
standard IEC 61508, which restricts the use of
interrupts for the two higher safety integrity levels
SIL 3 and SIL 4.

Based on the benefits and drawbacks of the two
PES classes, the ideal characteristics for a safety-
related programmable real-time system were de-
rived and mapped to requirements for the pro-
gramming style, the temporal behaviour and the
system architecture. Then, a novel PES concept
was introduced that meets these requirements in
every respect and combines the advantages of
both conventional PES categories. What distin-
guishes this concept from other ones is that ‘De-
sign for Simplicity’ was followed as the major
development guideline. The simplicity achieved
eases verification and – more importantly – lowers
the cost for safety licensing.

Simplicity of design is achieved by strictly separat-
ing operating system and application processor.
The operating system realises the task-processing
strategies of the real-time programming language
PEARL in form of a digital logic circuit. This
enables task scheduling in direct relation to
Universal Time Co-ordinated (UTC). Time is



quantised into Execution Intervals, and tasks are
partitioned into Execution Blocks matching these
intervals. This operating principle renders the use
of interrupts superfluous. As a result, not only
the processor architecture is simplified, but also
the time behaviour of the total system. The hard-
ware implementation of the RTOS ensures short
response times without utilising a complex multi-
layered structure nor minimising the computa-
tional effort by applying a primitive priority-based
scheduling algorithm. Instead, the kernel algo-
rithms follow the time-based Earliest-Deadline-
First (EDF) policy.

Many techniques were developed in the past
to increase the reliability and availability of
programmable electronic systems. Unfortunately,
most of these techniques cover only a small
amount of failure sources and various techniques
need to be combined in safety-related systems,
causing the design complexity to increase signifi-
cantly. The proposed system integrates error de-
tection, forward recovery, and non-intrusive mon-
itoring in a unified concept. This functional uni-
fication, which bases on exchanging Serial Data
Streams between redundant PES instances, leads
to a hardware design with minimum complexity.

The proposed PES concept is completed by an
inherently simple communication strategy, which
serves both data exchange between redundant
PES instances and with the process peripherals. A
‘multi-ring’ technique combines high, scalable reli-
ability and low wiring expenses with an especially
simple structure. Like the application processing,
the communication is performed in discrete inter-
vals.

All system components operate periodically and
synchronously, leading to a simple and easy to
model temporal behaviour of the entire system.
As a result, formal verification of the application-
specific software is simplified. In comparison to
conventional cyclically operating PES, the field of
application of the proposed PES concept is larger,
since it is capable of task-based software execution
with process-dependent program lows.

So far, a VHDL description has been prepared
that realises, to a large extent, the proposed PES
concept as a System-on-Chip. The APU builds up
on a soft-processor compatible to the well known
8051 processor from Intel, which is provided as cir-
cuit description by Oregano Systems. The VHDL
design has extensively been tested by simulation
and, then, implemented in a field programmable
gate array. Our current work focuses on complet-
ing this prototype. Later, the 8051 soft-processor
is planned to be replaced by a processor core that
is formally proven correct. Such a core is currently
under development.

The article covered only the fundamental operat-
ing principles and how they simplify the design.
Various aspects like, e. g., the exact synchronisa-
tion of redundant PES instances, the handling of
leap seconds and leap days, the data transfer via
SDS, detection of processing failures in a redun-
dant configuration, forward recovery at runtime,
etc. could not be discussed in detail. These prob-
lems have all been solved in particularly simple
ways but describing them would exceed the page
limit for this article. The interested reader is in-
vited to contact the author for further informa-
tion.

REFERENCES

Baginski, A. and M. Müller (1998). Interbus.
Hüthig Verlag. Heidelberg.

Biedenkopf, K. (1994). Komplexität und Kom-
pliziertheit. Informatik Spektrum 17, 82–86.

Bolton, W. (2003). Programmable Logic Con-
trollers. Elsevier Books. Oxford.

GI, Technical Committee 4.4.2 (1998). PEARL90
Language Report. www.real-time.de. Bonn.

Halang, W. A. and A. D. Stoyenko (1991).
Constructing Predictable Real Time Systems.
Kluwer Academic Publishers. Boston.

Halang, W. A. and R. Konakovsky (1999).
Sicherheitsgerichtete Echtzeitsysteme. Olden-
burg Verlag. Munich.

Hamuda, G. and G. Tsai (2003). Formal specifi-
cation of a real-time operating system’s com-
ponent. Real-Time Programming. pp. 19 – 24.
Elsevier. Oxford.

Henn, R. K. J. (1989). Feasible processor alloca-
tion in a hard-real-time environment. Real-
Time Systems 1, 77 – 93.

Rabiee, M. (2002). Programmable Logic Con-
trollers: Hardware and Programming. Ingram.
New Orleans.

Shaw, A. C. (2001). Real-Time Systems and Soft-
ware. John Wiley. New York.

Smith, D. J. and K. G. Simpson (2001). Func-
tional Safety. Butterworth-Heinemann. Ox-
ford.

Sorenson, P.G. and V.C. Hamacher (1975). A
real-time system design methodology. INFOR
13(1), 1 – 18.

Teixeira, T.J. (1978). Static priority interrupt
scheduling. Proc. 7th Texas Conference on
Computing Systems. pp. 5.13 – 5.18.

VDI (1982). Richtlinie VDI/VDE 3554: Funk-
tionelle Beschreibung von Prozessrechner-
Betriebssystemen. Beuth Verlag. Berlin-
Cologne.

Vogrin, Peter (2000). Safety Licenable and High
Speed Programmable Digital Controllers Pro-
viding Any Required Control Behaviour. VDI
Verlag. Düsseldorf.


