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Abstract: This article deals with the problem of designing finite dimensional controllers 
for a class of nonlinear infinite dimensional systems for which inertial manifolds are 
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1. INTRODUCTION 

 
The problem of stabilising the dynamics of infinite 
dimensional systems is relevant to many practical 
engineering systems including chemical reactors 
(Christofides, 2000), flexible robot arms and space 
structures, fluid flow and smart material structures 
(Banks et al.,1996).  
 
For obvious reasons only controllers that are finite 
dimensional can be implemented in practice. The 
finite dimensional controller can be obtained as a 
discretisation of an infinite dimensional controller or 
directly by designing a controller based on a finite 
dimensional approximation of the infinite 
dimensional plant.  
 
The direct approach is particularly appealing because 
many classes of infinite dimensional systems exhibit 
low-dimensional dynamical behaviour. This 
behaviour has been related to the existence of a finite 
dimensional global attractor for the infinite 
dimensional flow. The global attractor however is in 
principle very complex and difficult to compute.  
 
A more practical concept, originally introduced in 
(Foias, et al., 1988a), is that of inertial manifold. The 
inertial manifold is a smooth, low-dimensional 
invariant manifold which contains the global 
attractor and attracts exponentially all the 
trajectories. Furthermore, the dynamics of the 
system, when restricted on the inertial manifold, is 
described by a system of ordinary differential 

equations, which are known as the inertial form of 
the corresponding infinite dimensional system.   
The existence of an inertial manifold has been proven 
for certain dissipative evolutionary equations (Foias, 
et al., 1988a).   
 

The main advantage of the inertial form is that it 
can be used to carry out detailed simulations, 
stability and bifurcation analysis for the infinite 
dimensional system at much lower computational 
cost than that which is usually associated with 
standard approximating methods (Foias, et al., 
1988b). Many simulation, analysis and control 
problems related to infinite dimensional systems, 
which are prohibitively expensive from a 
computational point of view, can become tractable 
within the IM framework. 
 
For control applications, the inertial form offers in 
many ways the optimum finite-dimensional 
approximation for controller synthesis. In particular, 
it leads to reduced order controllers and also 
simplifies stability analysis of the close loop infinite 
dimensional system, an issue which otherwise is 
difficult to resolve, especially when the system is 
nonlinear (Balas,1984,1991).     
 
A number of authors have exploited the inertial 
manifold theory to address the global stabilisation 
problem for nonlinear infinite dimensional systems.  
A good review of existing results in this area can be 
found in the article by Rosa (2003). The same article 
also presents the most general approach to date, 
which uses the concept of inertial manifold. 



     

The approach presented here also applies for a quite 
large class of semi-linear dissipative evolution 
problems including well known reaction diffusion 
equations. 
 
Unlike in the paper by Rosa (2003), where the 
control law was computed as the fixed point of a 
contraction mapping, which in practice it is expected 
to be less robust, this article proposes a nonlinear 
state feedback controller which does not assume 
exact cancellation of the nonlinear term.  The 
proposed approach does not require the explicit 
computation of an approximate inertial manifold 
used by Christofides and Daoutidis (1997) to 
synthesize a finite dimensional output feedback 
controller to exponentially stabilise the closed loop 
PDE system.  
 
In this work, it is assumed that the inertial form can 
be identified directly from experimental observations 
of the process or from data generated by numerical 
simulations of large scale approximations of the 
equations.  
 
 

2. THE EVOLUTION EQUATION 
 
The nonlinear infinite dimensional plant is assumed 
to be described by the following equations  
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where H is a Hilbert space with an inner product 〈·,·〉 
and norm | · |. In equation (1) Au is a linear 
unbounded self-adjoint operator on H with domain 
D(A) dense in H. Furthermore, A is positive and A-1 
is compact. It follows that A has an orthonormal 
basis of eigenvectors {wj} and a corresponding set of 
eigenvalues {λj} that satisfy  
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It should be noted that there is no loss of generality 
in assuming that A is positive (see Sell and You, 
2002: Section 4.7). In practice, this means that the 
results will apply for the case when A has negative 
(unstable) eigenvalues.  
 
Furthermore, the fractional powers Aα of A and the 
fractional power spaces V2α :=D(Aα) are defined for 
all α∈IR. Vα is a Hilbert space endowed with the 
scalar product (u,v)α=( Aα/2u, Aα/2v) and norm 
|u|α= 2/1),( αuu where u,v∈D(Aα/2). 
 
The control and observation operators are assumed to 
be the spectral projectors of the linear part of the 
equation that is P=B=C=PN where PN:H→PNH is the 
orthogonal projection on the finite dimensional 
subspace PNH spanned by the first N eigenvectors 

w1,…,wN of A. Let Q=QN be the orthogonal 
complement of PN , i.e. QN=I- PN.  
 
In practice, the infinite dimensional system will be 
controlled using a finite-dimensional feedback law 
v=vN= Pv(yN) obtained as a function of the finite 
dimensional output yN= P u.  
 
Here it is assumed that the function vN(yN) is chosen 
such that the nonlinear term 
 

Fv(u)=F(u)-vN(Pu) 
 
is bounded 

 
|Fv(u)|<c0 for all u∈Vα                   (3a) 

 
globally Lipschitz continuous 
  

|Fv(u1)-Fv(u2)|≤ c|u1- u2|α for all u1, u2 ∈ Vα   (3b) 
 
for some 0≤α<2, and |Fv(0)|=0.  
 
In practice, if Fv is locally Lipschitz, the results 
remain valid locally, for solutions starting in a region 
around the origin. 
 
For every solution u(t) of (1) it is possible to define 
p(t)=Pu(t) and q(t)=Qu(t). It follows that p and q are 
solutions of the following system of equations  
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An inertial manifold for (1) is a finite dimensional 
Lipschitz continuous manifold in Vα⊂H, which is 
positively invariant and exponentially attracting 
(Foias, et al.,1988, Sell and You, 2002) .  
 
An inertial manifold for (1) has been shown to exist 
(Foias, et al.,1988, Sell and You, 2002) providing 
that the gap between λN and λN+1 is sufficiently large. 
More precisely 
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The inertial manifold is constructed as a graph 
M=Graph Φ of a Lipschitz function Φ(p):PH∩Vα → 
QH∩Vα. 
 
The function Φ(p,vN), which depends on the choice 
of function vN, is commonly obtained as the fixed 
point of a Lyapunov-Perron integral operator 
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where p(t)=p(Φ,p0,t) denotes the solution (backward 
in time) of  
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Furthermore (p(t),q(t))  is a solution of (4) and u(t)= 
p(t)+q(t) is a solution of (1) where  
 

q(t)=Φv(p)= Φ(p,vN(p)). 
 
The function Φv:PH→QH satisfies 
 

|Φv (p)|α≤b, for all p∈PD(Aα/2)                 (8a) 
 

|Φv (p1)− Φv (p2)|α≤l|p1-p2|α, for all p1, p2∈PD(Aα/2) 
       (8b) 

 
The existence of an inertial manifold implies that the 
long term dynamics of the system (1) is described by 
the inertial form (7). 
 
 
3.  COMPUTING THE INERTIAL MANIFOLD 
 
The theoretical approach for the construction of the 
inertial manifold does not provide an explicit form of 
Φ(p). Moreover since Φ(p)  has infinite dimensional 
range, in practice, it has to be approximated by a 
finite dimensional function ΦM(p), which, for 
example, can be computed as in (Foias et al., 1988b) 
as the fixed point of a finite dimensional contraction 
mapping or as in (Christofides and Daoutidis, 1997) 
using a power series expansion.  Other numerical 
approximation schemes can be found in (Demengel 
and Ghidaglia,1991) and (Robinson, 2002). 
 
Specifically, following the scheme proposed in 
(Foias, 1988b), for example, the finite dimensional 
approximation ΦM(p) of Φ(p) could be computed as 
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where τ is a constant comparable to 1/λN+1. 
 
A possible solution to capture implicitly the exact 
mapping Φv(p) would be by direct identification of 
the nonlinear term from (experimental) input-output 
data vN and yN.  
 
A similar identification method to that proposed by 
Coca and Billings (2003), which is based on finite 
element approximations, could be used to estimate 
equation (7) based on the spectral projection of the 
solution yN=Pu for a given forcing function 
vN∈PH∩Vα. 
 
Here it assumed that the conditions (2),(3a,b) and (4) 
are valid uniformly with respect to the forcing 
function vN, which ensures the existence of an 
inertial manifold M(vN) and of a fixed point Φv of (6) 
that depends continuously on vN (Foias, et al.,1988). 

The identification procedure could be used to 
estimate 
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The advantage of this approach is that (9), in 
principle, would represent the exact inertial form (7) 
where Φv(p) is implicitly modelled by 
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Another advantage is that this method could be used 
when an accurate PDE model of the system is not 
available.  
 
The system identification approach can also be used 
to construct an arbitrarily accurate approximation of 
the inertial form using data obtained by numerical 
simulation of a large scale approximation of the 
original PDE. 
 
Because of the reduced computational costs involved 
(there is no need to compute an approximation of 
Φv(p) at every time step), the identification approach 
would be better suited for real-time implementation 
than the other alternative, which involves the explicit 
computation of Approximate Inertial Manifolds 
based on the original equations.  
 
 
4.  THE FINITE DIMENSIONAL CONTROLLER 

 
The aim is to design, using the inertial form (7), a 
feedback control law such that the origin of the 
infinite dimensional system is globally exponentially 
stable.  
 
Unlike in (Rosa, 2003) where the control law was 
computed as the fixed point of a contraction 
mapping, which owing to parameter uncertainty and 
computational errors means that in practice the 
controller may not be very robust, a nonlinear state 
feedback controller is proposed here. It is shown that 
the nonlinear feedback control 
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where K: PH∩Vα→ PH∩Vα, G(p)∈ PH∩Vα, results 
in a infinite dimensional closed loop system which is 
globally exponentially stable in the origin. The role 
of the linear feedback term K is to assign the 
eigenvalues to the linear part so that it dominates the 
resulting nonlinear term  
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whilst ensuring that the spectral gap condition is 
satisfied.    
 
The main assumptions are as follows: 
[A1] 

α〉−Φ−Φ〈 2121 ),)((ˆ))((ˆ pppFPpFP vGvG
+c2|p1-

p2|
2
α ≥0, ∀ p1,p2∈ PH∩ Vα 

[A2]| )()( 21 uFuF GG − |α≤(c-λN)|u1−u2|α , ∀u1, u2∈ 
H∩Vα 
[A3] 0)0)((ˆ =ΦvvFP  

[A4] 〈(A+K)p, p〉α≥ c3|p| 2
α , with c2≤c3 ,∀p∈ PD(Aα/2) 

[A5] 
Nj ,1

max
=

(λ’j)≤ λN where λ’j represent the 

eigenvalues of A+K and λN is the Nth eigenvalue of 
A. 
 
Assumptions [A1-A5] are achieved by design, i.e. by 
appropriately choosing K and G. Assumption [A1] 
ensures that the nonlinear term satisfies a global 
sector condition. Assumptions [A2-A5] guarantee 
existence of an inertial manifold for the closed-loop 
infinite dimensional system. The fact that exact 
cancellation of the nonlinear term is not required 
makes this design procedure more robust.  
 
The control input calculated from (10) can be 
expressed in terms of the first N eigenvectors of A. In 
order to implement the control however, vN has to be 
represented as vN=Σbi(x)v’i(t) where bi describe  how 
the action of the ith actuator is distributed in the 
spatial domain. That is, the actual actuator actions 
need to be determined subsequently from vN. The 
number and distribution of actuators could be 
optimised based on the number and characteristics of 
the eigenfunctions wj and properties of bi.  

The following theorem provides a stability result for 
the infinite dimensional closed-loop system 
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where K: PH∩ Vα→ PH∩ Vα, G∈ PH∩ Vα. 

Theorem 1: For the closed-loop infinite dimensional 
system of Eq. (11), resulted from applying the control 
law in Eq (10), for which assumptions [A1-A5] hold, 
to the original PDE system in Eq. (1), the origin is 
globally exponentially stable. 

Proof: The closed-loop system (10) admits an inertial 
manifold as the graph of Φv(p(t)) which is the unique 
fixed point of the operator 
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where p(t) is the unique solution (t→-∞) of  
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This follows from [A5], which states that the 
eigenvalue gap for (A+K) is the same as for A. This 
also implies that |KPu|α<λN|Pu|α so that using [A2] 
we have FG+KPu=F(u)+G(Pu)+KPu is globally 
Lipschitz with constant c. It follows that the spectral 
gap condition (5) holds. 

One can check that all conditions in (Foias, et 
al.,1988;Theorem 2.1) are satisfied and hence the 
long term dynamics of closed-loop system (11) is 
described by 
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where as before PAu=APu=p. By taking the scalar 
product of the second equation with p it follows that 
 

0),())((,)(||
2
1 2 =+Φ++++ ppGppPFppKAp

dt
d

v
  

(13) 
 

Using [A1] with p1 =p and p2=0, [A3] and [A4] it is 
easy to show that 
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where c3-c2>0. Consequently one has 
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which implies that 
  

tcceptp )( 23|)0(||)(| −−≤             (15) 
 
Since we assumed that F(0)=0 then u(t)=0 is a long 
term solution (with t→∞) of  (11). Therefore the pair 
(p=0,q=0) should belong to the inertial manifold that 
is q(t)=Φv(p(t)) for q(t)=p(t)=0. It follows that 
Φv(0)=0.  
 
The asymptotic completeness property of the inertial 
manifold states that for any trajectory starting off the 
inertial manifold, the distance from the manifold 
decays at an exponential rate dist(u(t;u0),M) ≤ 

teuk µ−)( 01 (Foias, 1989). Using the Lipschitz 
property of Φv (8b) it is easy to show that 
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for any p’∈M where k2 is a positive constant which 
depends of l. If follows that 
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which implies  
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where γ=min(µ,c3-c2). Finally, 
 

 teulktqtptu γ−≤+= ),(|)(||)(||)(| 0        (19) 
 
which means that u(t)=0 is globally exponentially 
stable. 
 
Remark 1: In many practical cases, F is locally 
Lipschitz on a domain Ωρ⊂H which contains the 
origin and possibly the global attractor of (1). In that 
case, it is possible to prove exponential stability of 
the system for any initial condition inside any 
compact subset of Ωρ.  A typical example is the 
reaction-diffusion system involving a polynomial 
nonlinearity, F(u)=u(1−u)(u−a), for 0<a<1.    
 
Remark 2: The stability result in Theorem 1 will hold 
for any alternative control strategy which stabilises 
the inertial form and guarantees existence of the 
inertial manifold for the closed-loop infinite 
dimensional system.   
 

 
5. CONCLUSIONS 

 
This paper has shown that nonlinear infinite 
dimensional systems for which inertial manifolds are 
known to exists, are globally/locally exponentially 
stabilisable using finite dimensional controllers 
based on the inertial form. The proposed 
methodology does not require the explicit 
computation of the inertial manifold, which is often a 
requirement of other approaches. A numerical study 
is currently under way.         
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