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1. INTRODUCTION

There has been significant amount of research
work viewing the controller design problem as
a design that is to be performed for a nominal
system, which might be affected by some pertur-
bations (uncertainties), and the wide domain of
these efforts is by now commonly referred to as
robust control, with the robust stability analy-
sis constituting a major part. In this paper, we
consider the robust stability analysis problem for
structured linear time-varying (LTV) uncertain-
ties with bounded norms and rates-of-variation.
Our interest in this problem is intrigued mainly
by the results of Poolla and Tikku [1995]; Jönsson
and Rantzer [1996], and we are especially in-
terested in developing nonconservative and nu-
merically efficient robust stability analysis tests.
For -at least a partial- achievement of this goal,
we employ the IQC approach of Megretski and
Rantzer [1997] to robust stability analysis and
make use of LMI methods. We start with some
preliminaries, followed by the description of the
considered problem and the relevant literature.
Section 4 summarizes the IQC approach to ro-
bust stability analysis and Section 5 presents our
contributions. We also provide an example, after
which we conclude by some final remarks.

2. NOTATION AND PRELIMINARIES

We work in a discrete-time setting with square-
summable sequences, x ∈ `n

2 , as signals and linear
operator maps as systems (see e.g. Willems [1971]
for some preliminaries). We treat real-valued ma-
trices, X ∈ Rm×n; real-rational transfer func-
tions, H ∈ RLm×n

∞
; and bounded linear maps,

T ∈ Lm×n, from `n
2 into `m

2 , in a unified setting
all as operators. In particular, we refer to the set
of symmetric positive-definite matrices by Pm×m;
to the set of stable and causal transfer functions
by RHm×n

∞
; and to the set of causal and unity

norm-bounded linear operators by BLm×n
,{T ∈

Lm×n :‖T‖i2≤1}, where ‖·‖i2 denotes the induced
`2-norm. We denote the identity operator of size
m by Im; right shift (delay) operator of size m by
Z−1

m , z−1⊗Im; and the zero operator of size m×n
by 0m×n. For a given linear operator ∆ ∈ Lm×n,
we define its variation as V∆ , ∆Z−1

n − Z−1
m ∆

and refer to ‖V∆‖i2 (≤ 2‖∆‖i2) as the rate-of-

variation of ∆. For a compact representation
of structures, we denote the block-diagonal op-
erators as [Ti]

κ
i=1 , diag[T1, . . . , Tκ] and employ

the Kronecker product to describe the commuting
structures. We make use of the following Kro-
necker product commutation identity, which will
generalize as the swapping lemma in the sequel:



Lemma 1. (Kronecker Product Commutation Iden-
tity)Let T1∈Rm1×n1&T2∈Lm2×n2 . Then we have

(Im2
⊗T1)(T2 ⊗ In1

) = (T2 ⊗ Im1
)(In2

⊗T1) . (1)

The identity is valid also for the case T1 ∈
RHm1×n1

∞
and T2 ∈ RHm2×n2

∞
.

We work mainly in an IQC-based robust sta-
bility analysis setting, which is established on
some basic notions in inner product spaces (see
e.g. Jönsson [2001]). With the inner product of
x, y ∈ `n

2 defined as 〈x, y〉 ,
∑

t xT (t)y(t), the
adjoint of an operator T ∈ Lm×n is defined
as the unique operator, T ∗ ∈ Ln×m, for which
〈Tx, y〉 = 〈x, T ∗y〉 , ∀x ∈ `n

2 ,∀y ∈ `m
2 . A self-

adjoint operator, T = T ∗∈Lm×m, is described as
positive semi-definite (T ≥ 0) if it satisfies
〈Tx, x〉 ≥ 0,∀x ∈ `m

2 .Within the environment de-
fined by these notions, we employ in the sequel the
following lemma, which is a slightly modified ver-
sion of a standard inequality in operator theory:

Lemma 2. (Bounding Lemma) Let T1, T2 ∈ Lm×n

and X ∈ Pm×m. Then we have

∓ (T ∗

1 T2 + T ∗

2 T1) ≤ T ∗

1 XT1 + T ∗

2 X−1T2 . (2)

3. PROBLEM FORMULATION

The standard setup of stability analysis is given
in Figure 1, where M ∈ RHη×η

∞
denotes a known

causal and stable LTI operator (which is referred
to as the plant) and ∆ ∈ Lη×η denotes some
causal LTV operator (which is referred to as the
uncertainty or the perturbation). The feedback
interconnection in Figure 1 is well-posed (or in
short (M,∆) is well-posed), if, for any u1, u2 ∈
`η
2e, there exist e1, e2 ∈ `η

2e, which depend causally
on u1, u2 ∈ `η

2e (see Willems [1971] for a detailed
discussion of well-posedness). We say that the
system in Figure 1 is `2-stable, if we have e1, e2 ∈
`η
2 whenever u1, u2 ∈ `η

2 . We say that M is

robustly stable against ∆, if the feedback
interconnection of M and ∆ is stable for all ∆ ∈
∆, where ∆ denotes the set of uncertainties. In
this setting, we consider the following problem:

Problem 3. Consider the feedback system in Fig-
ure 1 with a given causal and stable LTI plant
M ∈ RHη×η

∞
, together with causal and stable

structured LTV uncertainties ∆ that come out of
the set ∆ = ∆s

ν ⊂ BLη×η, which is defined as

∆s
ν,

{

[Ili ⊗ ∆i]
κ
i=1 : ∆i ∈ BLmi×mi ,

‖V∆i
‖i2≤νi; i=1:κ,∆∗

i =∆i; i=1:κ1≤κ

}

,(3)

where s = {li,mi × mi}κ
i=1; η =

∑κ

i=1
limi and

ν = {νi}κ
i=1; νi ∈ [0, 2] describe, respectively, the

structure and the maximum rate-of-variation of
the uncertainty, and κ1 denotes the number of self-
adjoint channels (considered basically with mo-
tivations coming from parametric uncertainties).
Determine if M is robustly stable against ∆s

ν .

M

∆

u1

u2

e1

e2

Fig. 1.Standard setup for robust stability analysis.

There are various results available in the litera-
ture as partial solutions to Problem 3. It is well-
established by now that the structured singular
value analysis provides an exact test (under some
minor technical assumptions) for robust stability
analysis in the linear time-invariant (LTI) pertur-
bations case, i.e. ∆ = ∆s

0 , which is of natural
interest as a limiting case within the description of
Problem 3. Due to the computational complexity
of the structured singular value calculation, anal-
ysis is based on upper bound calculation using D-
scales, and ∃H,H−1∈RHη×η

∞
s.t.H∆ = ∆H ,∀∆ ∈

∆& ‖HMH−1‖∞ < 1, is provided as a sufficient
test for robust stability (see Packard and Doyle
[1993] for details/extensions). Although D scal-
ing test is known to be conservative for certain
LTI perturbations, it has been shown by Shamma
[1994] in `2 framework that the test with constant
D-scales, H ∈ Rη×η, is exact (under some tech-
nical assumptions) in the case of arbitrarily time-
varying block diagonal uncertainties with full sub-
blocks, i.e. ∆ =∆s

2 (see also Paganini and Doyle
[1994];Meinsma et al. [2000] for some generaliza-
tions). The case of slowly time-varying perturba-
tions was considered by Poolla and Tikku [1995]
for uncertainties with full sub-blocks, the rates-
of-variation of which are all bounded by the same
value and it was shown that frequency-dependent
D-scales test is necessary and sufficient in the case
of strictly proper plants perturbed with arbitrarily
slowly time-varying uncertainties. In particular,
a conservative bound of the maximum allowable
rate-of-variation was provided in terms of the D-
scales. Yet, let alone exactness, an efficient calcu-
lation of this bound by some sort of search over
D-scales seems to be difficult if at all possible. The
problem was considered with concerns about nu-
merical efficiency by Jönsson and Rantzer [1994,
1996] for scalar repeated uncertainties and an
IQC-based robust stability test was developed in
a continuous-time setting. A slight improvement
to this was reported by Helmersson [1999]. There
are also some relevant works by Tchernychev and
Sideris [1999, 2000], who also study the problem
for repeated scalar uncertainties with a slightly
different approach.



4.IQC-BASEDROBUSTSTABILITYANALYSIS

Among the various others, the IQC approach
has recently emerged as a unifying framework
of robust stability analysis based on operator
methods. We summarize the central result by
Megretski and Rantzer [1997] in the following
theorem, with adaptations from Jönsson [2001]:

Theorem 4. (IQC Stability, Megretski and Rantzer
[1997]) Let the set ∆Π be defined as

∆Π ,

{

∆ ∈ Lη×η :

[

Iη

∆

]

∗
[

Π11 Π12

Π∗

12 Π22

][

Iη

∆

]

≥0

}

, (4)

where the IQC multiplier Π ∈ RL2η×2η
∞

is a self-
adjoint transfer function formed by the sub-blocks
Π11 = Π∗

11,Π22 = Π∗

22,Π12 ∈ RLη×η
∞

. The feed-
back system of Figure 1 is robustly stable against
∆ if the following conditions are all satisfied:

(i) (M, τ∆) is well-posed ∀τ ∈ [0, 1] and ∀∆ ∈ ∆.
(ii) τ∆ ∈ ∆Π, ∀τ ∈ [0, 1] and ∀∆ ∈ ∆.
(iii) There exists anε∈R+ such that, ∀ω∈ [−π, π],
[

M(eω)
Iη

]

∗
[

Π11(e
ω) Π12(e

ω)
Π∗

12(e
ω) Π22(e

ω)

][

M(eω)
Iη

]

≤−εIη . (5)

PROOF. See Megretski and Rantzer [1997]. 2

Remark 5. The well-posedness of the feedback
loop will be assured if M is strictly proper. If
the IQC multiplier satisfies Π11 ≥ 0 & Π12 = 0
or Π11 ≥ 0 & Π22 ≤ 0, we have τ∆ ∈ ∆Π for
τ ∈ [0, 1], whenever ∆ ∈ ∆Π.

After an appropriate factorization of the multi-
plier, the frequency domain inequality in (5) can
be transformed into an LMI by employing the
(discrete-time and strict version of the) celebrated
Kalman-Yakubovich-Popov (KYP) lemma:

Lemma 6. (Kalman-Yakubovich-Popov Lemma)
Let Φ ∈RHmΦ×nΦ

∞
be a causal and stable trans-

fer function that has a realization of the form

Φ =

[

AΦ BΦ

CΦ DΦ

]

, CΦ(ZkΦ
−AΦ)

−1
BΦ+DΦ, where

AΦ ∈ RkΦ×kΦ , BΦ ∈ RkΦ×nΦ , CΦ ∈ RmΦ×kΦ , DΦ ∈
RmΦ×nΦ , with AΦ having all its eigenvalues
strictly inside the unit disk, and let Q = QT ∈
RmΦ×mΦ be a symmetric matrix. Then the fol-
lowing conditions are equivalent:

(i) There exists an ε ∈ R+ such that

Φ∗(eω)QΦ(eω) ≤ −εInΦ
, ∀ω ∈ [−π, π] . (6)

(ii) There exists a symmetric matrix P = P T ∈
RkΦ×kΦ and an ε ∈ R+ such that





IkΦ
0

AΦ BΦ

CΦ DΦ





T



−P 0 0
0 P 0
0 0 Q









IkΦ
0

AΦ BΦ

CΦ DΦ



 ≤ −εInΦ
. (7)

PROOF. See e.g. Rantzer [1996]. 2

5. AN IQC-BASEDROBUSTSTABILITYTEST
FOR STRUCTURED LTV UNCERTAINTIES

In this section, we present the main contributions
of the paper, which basically generalizes the robust
stability analysis method developed by Jönsson
and Rantzer [1994] using the so-called swapping
lemma (see Chou and Tits [1995] for a discrete-
time version).We first generalize the swapping
lemma, which we then employ together with the
bounding lemma to prove our main result. As a
direct corollary, we finally provide a robust sta-
bility test in terms of an LMI feasibility problem.

5.1 Generalized Swapping Lemma

Lemma 7. (Swapping Lemma) Let ∆ ∈ Lm∆×n∆

be a causal and bounded linear operator and let
H ∈ RHmH×nH

∞
be a causal and stable transfer

function that admits a realization of the form

H =

[

AH BH

CH DH

]

, where AH ∈ RkH×kH , BH ∈

RkH×nH , CH ∈ RmH×kH , DH ∈ RmH×nH , with
AH having all its eigenvalues strictly inside the
unit disk. With HB ∈ RHkH×nH

∞
and HC ∈

RHmH×kH

∞
defined respectively as

HB , ZkH
(ZkH

− AH)−1BH , (8)

HC , CH(ZkH
− AH)−1ZkH

, (9)

and with V∆ , ∆Z−1
n∆

− Z−1
m∆

∆ denoting the
variation of ∆, we have

(ImH
⊗ ∆) (H ⊗ In∆

) − (H ⊗ Im∆
) (InH

⊗ ∆)

= (HC ⊗ Im∆
) (IkH

⊗ V∆) (HB ⊗ In∆
) . (10)

PROOF. Let us consider the identity
[(

IkH
− Z−1

kH
AH

)

⊗ Im∆

] [

IkH
⊗

(

∆Z−1
n∆

)]

= (IkH
⊗ V∆)

+
[

IkH
⊗

(

Z−1
m∆

∆
)] [(

IkH
− Z−1

kH
AH

)

⊗ In∆

]

,

which can be verified by adding/subtracting
[

IkH
⊗

(

Z−1
m∆

∆
)]

to/from the left hand side and
rearranging the terms after employing the identity
(AH ⊗ Im∆

) (IkH
⊗ ∆) = (IkH

⊗ ∆) (AH ⊗ In∆
).

Moving the last term to the left hand side,
left/right multiplying both sides of the equa-
tion, respectively, by HC ⊗ Im∆

and HB ⊗ In∆
,

and finally employing the commutation identities
(IkH

⊗ ∆) (BH ⊗ In∆
) = (BH ⊗ Im∆

) (InH
⊗ ∆),

(CH ⊗ Im∆
) (IkH

⊗ ∆) = (ImH
⊗ ∆) (CH ⊗ In∆

),
we obtain

(ImH
⊗ ∆)

([

CH (ZkH
− AH)

−1
BH

]

⊗ In∆

)

−
([

CH (ZkH
− AH)

−1
BH

]

⊗ Im∆

)

(InH
⊗ ∆)

= (HC ⊗ Im∆
) (IkH

⊗ V∆) (HB ⊗ In∆
) .

Adding/subtracting (ImH
⊗ ∆)(DH ⊗ In∆

) =
(DH ⊗ Im∆

)(InH
⊗∆) to/from the left hand side,

we end up with (10). 2



Remark 8. The form of the swapping lemma for
scalar repeated uncertainties, as it appears in
Jönsson and Rantzer [1996]; Chou and Tits [1995],
can be recovered from (10) as a special case
corresponding to m∆ = n∆ = 1. Another special
case deserving interest is the case of full-block
uncertainty considered with a repeated scalar LTI
system, which is basically the case corresponding
to mH = nH = 1.

Remark 9. When a block-diagonal structured un-
certainty, ∆ = [Ili ⊗∆i]

κ
i=1; ∆i ∈ Lmi×ni , is con-

sidered together with a transfer function that has
a structure of the form H = [Hi ⊗ Imi

]κi=1; Hi ∈
RHqi×li

∞
, application of (10) for each block leads

to
∆lHr − H∆ = HC∆̃HB , (11)

where HB and HC are defined (consistently with
(8) and (9)) as HB = [HiB ⊗ Ini

]κi=1; HiB ∈
RHki×li

∞
, HC = [HiC ⊗ Imi

]κi=1; HiC ∈ RHqi×ki

∞

respectively; Hr and ∆l are given by Hr = [Hi ⊗
Ini

]κi=1 and ∆l = [Iqi
⊗ ∆i]

κ
i=1; and ∆̃ is an

operator that is formed with the repeated forms
of the variations of the sub-blocks of ∆ according
to ∆̃ = [Iki

⊗V∆i
]κi=1. We would like to note that

an implicit version of the swapping lemma (based
on the commutation properties of the realization
matrices of the LTI system with the LTV uncer-
tainty) is given by Helmersson [1999].

5.2 Main Result

Theorem 10. Consider the setup of Problem 3.
Assume that (M, τ∆) is well-posed for all ∆ ∈ ∆s

ν

and τ ∈ [0, 1]. Then, M is robustly stable against

∆s
ν if (5) is satisfied for some Π ∈ Πsc

ν , with the

multiplier set Πsc

ν being defined as

Πsc

ν , {ΠR + ΠS : ΠR ∈ ΠR,ΠS ∈ ΠS} , (12)

where

ΠR ,



























































ΠR =

[

Π11 0
0 Π22

]

:

Π11=R∗XR1R + R∗

BVRYRVRRB

Π22=R∗XR2X
−1
R1

XR2R − 2R∗XR2R
+R∗XR2RCVRY −1

R VRR∗

CXR2R

R = [Ri ⊗ Imi
]κi=1 ;Ri ∈RHqi×li

∞

XR1= [XR1i
⊗ Imi

]κi=1 ;XR1i
∈Pqi×qi

XR2= [XR2i
⊗ Imi

]κi=1 ;XR2i
∈Pqi×qi

YR = [YRi
⊗ Imi

]κi=1 ;YRi
∈Pki×ki



























































(13)

ΠS ,























































ΠS =

[

Π11 Π12

Π∗

12 0

]

:

Π11=ET S∗

BVSYSVSSBE

+ET XSSCVSY −1
S VSS∗

CXT
S E

Π12=ET (XSS − S∗XT
S )E

S = [Si ⊗ Imi
]κ1

i=1 ;Si ∈RHqi×li
∞

XS = [XSi
⊗ Imi

]κ1

i=1 ;XSi
∈Rli×qi

YS = [YSi
⊗ Imi

]κ1

i=1 ;YSi
∈Pki×ki























































(14)

Here; RB , RC , SB , SC are defined for R = [Ri ⊗
Imi

]κi=1 and S = [Si ⊗ Imi
]κ1

i=1 (consistently with
(8) and (9)) as RB = [RiB ⊗ Imi

]κi=1; RiB ∈
RHki×li

∞
, RC = [RiC ⊗ Imi

]κi=1; RiC ∈ RHqi×ki

∞
,

SB = [SiB ⊗ Imi
]κ1

i=1; SiB ∈ RHki×li
∞

, SC =

[SiC ⊗ Imi
]κ1

i=1; SiC ∈ RHqi×ki

∞
; VR and VS are

matrices that contain the information on rate-
of-variation bounds, with their definitions being
VR , [

√
νiIki

⊗ Imi
]κi=1 & VS , [

√
νiIki

⊗
Imi

]κ1

i=1; and E is a matrix that is introduced
to assure dimensional compatibility by extending
the relevant operators with zeros according to
E , [Iη1

0η1×η2
] with η1 =

∑κ1

i=1
limi and η2 =

∑κ
i=κ1+1

limi = η − η1.

PROOF. The proof is based on an application of
the IQC stability theorem and follows somewhat
parallel lines to the work of Jönsson and Rantzer
[1996]. We prove the theorem by showing that,
for all ∆ ∈ ∆s

ν and all τ ∈ [0, 1], we have
τ∆ ∈ ∆Π for any Π ∈ ΠR as well as for any
Π ∈ ΠS . It then follows that, for all τ ∈ [0, 1],

we have τ∆ ∈ ∆Π for any Π ∈ Πsc

ν , which means
according to the IQC stability theorem that the
feedback system is robustly stable, provided that
the frequency domain inequality of (5) is satisfied

for some Π ∈ Πsc

ν .

We can show that, ∆ ∈ ∆s
ν implies ∆ ∈ ∆Π

for any Π ∈ ΠR, by considering the self-adjoint
operator 2(H∆)∗(H∆) for some H = UR, where
R = [Ri ⊗ Imi

]κi=1; Ri ∈ RHqi×li
∞

; U = [Ui ⊗
Imi

]κi=1; Ui, U
−1
i ∈ Rqi×qi and applying the gen-

eral form of the swapping lemma given in (11) for
structured uncertainties, together with the bound-
ing lemma to write

2∆∗H∗H∆ ≤ H∗∆∗

l X∆lH + ∆∗H∗X−1H∆

+ H∗

B∆̃∗Y ∆̃HB + ∆∗H∗HCY −1H∗

CH∆ ,

where we restrict the choices of X and Y to the
structured matrices of the form X = KT K =
[KT

i Ki ⊗ Imi
]κi=1; Ki,K

−1
i ∈ Rqi×qi and Y =

LT L = [LT
i Li ⊗ Imi

]κi=1; Li, L
−1
i ∈ Rki×ki .

Thanks to these specific choices of the struc-
tures of X and Y , it can easily be shown
(by using the Kronecker product commutation
identity and by employing ‖∆i‖i2 ≤ 1 and
‖V∆i

‖i2 ≤ νi) that H∗∆∗

l X∆lH ≤ H∗XH and

H∗

B∆̃∗Y ∆̃HB ≤ H∗

BV 2
RY V 2

RHB . Inserting H =
UR; HB = RB ; HC = URC , from which it follows
that H∗H = R∗UT UR = R∗XR2R; H∗XH =
R∗XR1R; H∗HC = R∗XR2RC ; H∗X−1H =
R∗XR2X

−1
R1

XR2R, with the definitions XR1 ,

UT XU ; XR2 , UT U , and setting Y = V −1
R YRV −1

R

for purposes of annihilating in the channels with
νi = 0, the terms attributed to the swapping affect
(which is clearly nonexistent for the time-invariant
channels), we conclude that ∆ ∈ ∆Π. Since we
have Π12 = 0 for Π ∈ ΠR, we conclude that
τ∆ ∈ ∆Π for all Π ∈ ΠR and for all τ ∈ [0, 1].



The fact that ∆ ∈ ∆s
ν implies ∆ ∈ ∆Π for any

Π ∈ ΠS can be proved by first considering the
self-adjoint part of the uncertainty (∆ = [Ili ⊗
∆i]

κ1

i=1) together with some H = XSS, where

S = [Si ⊗ Imi
]κ1

i=1; Si ∈ RHqi×li
∞

; XS = [Xi ⊗
Imi

]κ1

i=1; Xi ∈ Rli×qi , and again employing the
swapping and the bounding lemmas to write

∆∗(H − H∗) + (H∗ − H)∆

≤ H∗

B∆̃∗Y ∆̃HB + HCY −1H∗

C ,

where Y is assumed to be of the form Y =
[LT

i Li ⊗ Imi
]κ1

i=1; Li, L
−1
i ∈ Rki×ki . Inserting

H∗

B∆̃∗Y ∆̃HB ≤ S∗

BV 2
S Y V 2

S SB ; H = XSS; HB =
SB ; HC = XSSC , setting Y = V −1

S YSV −1
S due

to the concerns for the time-invariant channels,
and finally introducing the extension matrix E =
[Iη1

0η1×η2
] to rewrite the inequality for the

complete ∆ operator, we conclude that ∆ ∈ ∆Π.
Since Π11 ≥ 0 and Π22 = 0 for Π ∈ ΠS , we have
τ∆ ∈ ∆Π for all Π ∈ ΠS and τ ∈ [0, 1]. 2

Remark 11. The multiplier sets defined in (13)
and (14) have some differences than those in
Jönsson and Rantzer [1994, 1996]. In the multi-
plier sets defined by Jönsson and Rantzer [1994],
we have XR1 = XR2 and also the matrices YR

and YS are restricted to be positive-definite matri-
ces of scalar repeated sub-blocks. In Jönsson and
Rantzer [1996], YR and YS are both set to identity
matrices of relevant sizes. On the other hand, YR

and YS as defined in (13) and (14) can have full
sub-blocks at the channels where the uncertainty
has repeated scalar sub-blocks (i.e. for mi = 1).
This (as well as not necessarily equal XR1 and
XR2) introduces extra freedom in the search for a
suitable multiplier that satisfies (5). Moreover, it
will become clear in the next subsection that an
efficient search is possible over YR and YS , which is
also not discussed by Jönsson and Rantzer [1994].
In the LTI case, VR = 0;VS = 0, we recover
the well-known multiplier class corresponding to
the D-G scaling with XR1 = XR2, which can
be imposed in this case without introducing any
conservatism. However, due to the -somewhat-
different nature of the discrete-time setting, it is
not straightforward to conclude that the multipli-
ers should be constant for arbitrarily fast time-
varying uncertainties, i.e. for VR=

√
2I, VS=

√
2I.

5.3 LMI Test for Robust Stability Analysis

We can apply the Schur complement lemma to
linearize inequality (5) in the matrix variables
(by a suitable extension of the plant and the
multiplier, as also done by Jönsson and Rantzer
[1996]), and then employ the KYP lemma (after
factorizing the extended multiplier to separate the
matrix variables from the dynamic part) to end up
with the following stability test:

Corollary 12. Consider the setup of Problem 3
and assume that (M, τ∆) is well-posed for all ∆ ∈
∆s

ν and τ ∈ [0, 1]. With R = [Ri ⊗ Imi
]κi=1; Ri ∈

RHqi×li
∞

and S = [Si ⊗ Imi
]κ1

i=1; Si ∈ RHqi×li
∞

being given transfer functions (e.g. with Ri =

Si =
[

Ili . . . Z−pi

li

]T
and thus qi = (pi + 1)li,

ki = pili), define Φ as

Φ ,
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RM 0 0 0
R 0 0 0
R 0 I RCVR

VRRBM 0 0 0
−E 0 0 0

SEM 0 0 0
EM 0 0 0
SE SCVS 0 0

VSSBEM 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I








































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Then, M is robustly stable against ∆s
ν if there

exist: (i) a symmetric matrix P = P T ∈ RkΦ×kΦ ;
(ii) a structured matrix Q ∈ Q; and (iii) an ε ∈ R+

such that (7) is satisfied, with

[

AΦ BΦ

CΦ DΦ

]

denoting

a minimal realization of Φ and Q being defined as

Q,
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:

XR1= [XR1i
⊗ Imi

]κi=1 ; XR1i
∈ Pqi×qi

XR2= [XR2i
⊗ Imi

]κi=1 ; XR2i
∈ Pqi×qi

YR = [YRi
⊗ Imi

]κi=1 ; YRi
∈ Pki×ki

XS = [XSi
⊗ Imi

]κ1

i=1 ; XSi
∈ Rli×qi

YS = [YSi
⊗ Imi

]κ1

i=1 ; YSi
∈ Pki×ki
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Remark 13.The method identified by Corollary 12
provides to Problem 3 a solution that is numeri-
cally efficient for problems of moderate size, also
allowing gradual reduction of the conservatism
(for instance by larger pi). With νi = ν; ∀i, we
obtain the setup considered by Poolla and Tikku
[1995], who provide a conservative estimate of the
maximum allowable rate-of-variation bound for
robust stability. The form of this estimate does not
allow an efficient search. On the other hand, we
can employ the test of Corollary 12 (with VR = νI
and VS = νI) in a bisection type search to de-
termine an estimate of the maximum allowable
rate-of-variation for the uncertainties that are not
jeopardizing stability.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
β 1 =

 m
ax

 ||
∆ 1|| i2

ν
1
 = max ||V∆

1

||
i2

/β
1

Stability regions in the "β
1
−vs−ν

1
 domain" for different ∆

2
 sets

(Stability verified below the curves)

∆
2
=∆

2
* =δ I; ν

2
=0.1; X

R1
=X

R2
, Y

R
=Y

S
=I

∆
2
=∆

2
* =δ I; ν

2
=0.1

∆
2
=δ I; ν

2
=0.1

∆
2
 full; ν

2
=0.1

∆
2
=∆

2
* =δ I; ν

2
=0.3; X

R1
=X

R2
, Y

R
=Y

S
=I

∆
2
=∆

2
* =δ I; ν

2
=0.3

∆
2
=δ I; ν

2
=0.3

∆
2
 full; ν

2
=0.3

Fig. 2. Robust stability regions in ν1−β1 domain.

6. ILLUSTRATIVE EXAMPLE

We provide in this section some analysis results
(obtained via an implementation of the test de-
scribed by Corollary 12 in MATLAB-LMILAB
within a bisection search) for a strictly proper
plant M with the realization

[

AM BM

CM DM

]

=







0.04 0.09 −0.14 0.02 0.22 0.06

0.09 0.25 0.05 −0.24 −0.08 0.64

−0.04 −0.06 −0.04 0.22 −0.82 0.40

1.00 −1.00 2.00 0.00 0.00 0.00

−1.00 2.00 −1.00 0.00 0.00 0.00

1.00 1.00 1.00 0.00 0.00 0.00







,

and block-diagonal structured LTV uncertainties
with two uncertainty channels, ∆1 ∈ L1×1 and
∆2 ∈ L2×2. With magnitude and normalized rate-
of-variation bounds imposed on ∆i denoted by
βi = max ‖∆i‖i2 and νi = max ‖V∆i

‖i2/βi, we
present in Figure 2 the robust stability regions
(verified using bases of the form Ri = Si =
[

I Z−1
]T

) in the β1−ν1 domain (as ν1 varies from
0 to 2), for three different structure (self-adjoint
scalar repeated, arbitrary scalar repeated and full
blocks) and two different normalized maximal
rate-of-variation (ν2 = 0.1 and ν2 = 0.3) choices
of ∆2, for all of which β2 = 0.45. As expected,
the region where the stability is verified (usually)
gets larger as the restrictions on the structure
and the nature of the second block are relaxed.
Moreover, the verified region gets significantly
smaller (especially for large ν1 values) for XR1 =
XR2, YR = I and YS = I, with which we get the
multipliers of Jönsson and Rantzer [1996].

7. CONCLUDING REMARKS

We have generalized the stability analysis method
developed by Jönsson and Rantzer [1994, 1996]
for structured LTV uncertainties with repeated
scalar sub-blocks to general structured LTV un-
certainties. The results admit generalizations to
the case of non-square plants/uncertainties and to
continuous-time setting with modest difficulty. A
naturally challenging research direction is the in-
vestigation of the degree of conservatism involved
in the method and in particular the possibility of
(or conditions for) exactness.
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