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Abstract: In augmented reality, the position and orientation of the camera must be
estimated very accurately. This paper will propose a filtering approach, similar to
integrated navigation in aircraft, which is based on inertial measurements as primary
sensor on which dead-reckoning can be based, and features inthe image as supporting
information to stabilize the dead-reckoning. The image features are considered to be
sensor signals in a Kalman filter framework.Copyrightc©2005 IFAC.
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1. INTRODUCTION

The idea inaugmented reality (AR)is to add synthetic
background and objects to streaming video images in
real-time, while allowing the camera to move. One
of the major technical challenges to achieve this is
to determine the camera’s position and orientation in
3D with very high accuracy and low latency. Typical
applications of such a system includes studio record-
ings with synthetic scenes (Thomaset al., 1997) and
virtual reconstruction of historical buildings (Vlahakis
et al., 2002).

Prior work in this recent research area focuses on im-
age processing algorithms, where the streaming image
is the primary information source (Davison, 2003).
This requires quite a lot of features in each image,
and has lead to a development of marker-based sys-
tems, where bar-coded markers are installed in the
studio (Thomaset al., 1997). Later work has tried
to avoid artificial markers, by including other infor-
mation like accelerations and angular velocities from
inertial sensors (Youet al., 1999; You and Neu-
mann, 2001).

When it comes to using vision in AR two fundamen-
tally different strategies have been used:

• The environment is prepared in advance using
artificial markers, which impose a significant
additional cost to these systems. Examples of
this kind of system can be found in (Caarlset
al., 2003; Yokokohji et al., 2000; Thomaset
al., 1997).

• Markerless systems, which use natural features
occurring in the real scene as markers. The ap-
proach presented in this paper will utilize this
strategy. The need for this kind of systems is
motivated in (Azumaet al., 1999). A common
characteristic of these systems is that they use
some kind of model of the scene. Some attempts
to create such a system are given in (Youet
al., 1999; Klein and Drummond, 2003).

In this contribution, the reverse approach is applied.
An inertial measurement unit (IMU) with three de-
grees of freedom accelerometers and gyroscopes is
used as the primary source of information. Dead-
reckoning gives a position and orientation relative to
the initial camera location. This estimate will quite
soon drift away and become completely useless, un-
less it is supported with secondary sensors, which in
this case are provided by the images.



Our approach mimics the navigation systems in air-
craft (Nordlund, 2002; Schönet al., 2004). There are
obviously many similarities of aircraft navigation and
our approach to augmented reality: the aircraft and
camera have the same state vector, navigation is based
on dead-reckoning IMU sensor signals, and both have
to be supported by secondary information. For aircraft,
infrastructure based positions from instrument landing
systems or satellite positioning systems can be used.
In military applications terrain navigation systems can
be employed (Bergmanet al., 1999). In this paper,
features in the image are used as secondary sensors
in two different ways:

• Feature displacement: An observed movement of
a distinct feature in the image can be directly
related to a movement in the camera, which will
be shown to correspond to a one-dimensional
measurement equation for each feature displace-
ment.

• Recognition of known 3D-objects: Certain char-
acteristic features in the scene are stored in a
scene model prior to filtering. When such a fea-
ture is observed in the image, two degrees of
freedom of the camera position can be deter-
mined.

A possible third direction is to use the homogra-
phy (Hartley and Zisserman, 2003). However, this is
not elaborated on within this article. This idea has pre-
viously been discussed in e.g., (Dielet al., 2005; Vidal
et al., 2001).

By using the IMU as primary sensor, it is not neces-
sary that all six degrees of freedom are present in the
features in every image. This is the main advantage in
the approach of fusing information from the inertial
sensors with the information from the vision sensor.

2. DYNAMIC MOTION MODEL

The dynamic state equations for the camera consist
of a set of nonlinear differential equations describing
how the camera pose is related to the readings from
the accelerometers and the gyroscopes according to

ẋ(t) = f(x(t), u(t), t), (1)

where the state vectorx(t) consists of positioncf , ve-
locity vf (vf = ċf ) and orientation (represented using
unit quaternions)q(q = qcf), i.e.,x = [cT
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f , qT ]T ,
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Regarding the notation,cf is used to describe the posi-
tion of the camera center (pointC in Fig. 1) expressed
in theF -system. Furthermore, the accelerometer,ac,
and the gyroscope,ωc, readings are considered to be
input variables,u, i.e.,

u =

[
ac

ωc

]

(3)

In the subsequent sections the relevant coordinate
systems are defined and the nonlinear functionf(·)
in (1) will be derived.

2.1 Geometry and Coordinate Systems

The following three coordinate systems are used:

(1) Fixed (F): This is considered to be an inertial
system (the rotation of the earth is ignored),
which is fixed to earth. The navigation will be
performed in this system. Furthermore, the scene
model is given in this system.

(2) Camera (C): This coordinate system is attached
to the camera and hence it is moving with the
camera. Its origin is located in the camera center.

(3) Image (I): The image is projected into this co-
ordinate system, which is located at the principal
point.

These three coordinate systems are illustrated in
Fig. 1. Furthermore, a fourth coordinate system, the
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Fig. 1. Illustration of the different coordinate systems
and how they are related. PointC is the position
of the camera (optical center) and pointS is
the position of a certain static feature in the real
scene.

sensor system, is used. This is the coordinate system
in which the inertial measurements are obtained. It
is not discussed in this paper, which implies that a
somewhat unrealistic assumption is used, namely that
the inertial sensors are placed in the camera center.
However, everything discussed in this paper can rather
straightforwardly be adapted to the fact that the sensor
coordinate system is present as well.

2.2 Position

The position of the camera is given by the position
of the camera center (pointC in Fig. 1). The ac-
celerometers measures the inertial forces w.r.t. an in-
ertial system (theF -system in this work). Hence, the
accelerometers will measure the difference between



the acceleration of the camera,af , and the gravity
vector,gf . However, since the accelerometers are at-
tached to the camera (strapdown inertial system) the
measurements will be resolved in the camera coordi-
nate system, according to

ac = Rcf (af − gf ), (4)

whereRcf is a rotation matrix which rotates vectors
from theF -system to theC-system. Notice that the ac-
celerometer measurement can be modelled as a mea-
surement signal (Rehbinder and Hu, 2004),y = ac,
or as an input signal,u = ac, (common in the air-
craft industry). In this work the accelerometer signal is
modeled as an input signal, in order to avoid additional
states. However, by including the acceleration and the
angular velocity in the state vector the acceleration
and angular velocity can be modeled by shaping the
process noises for these states. The dynamic motion
model is according to Newton’s second law a double
integration of the measured acceleration:

ċf = vf , (5a)
v̇f = Rfcac + gf . (5b)

By assuming that the input signal is piecewise con-
stant it is straightforward to derive a discrete-time
version of (5).

2.3 Orientation

Finding a suitable representation for the orientation of
a rigid body in 3D is a more intricate problem than
one might first guess. In Section 2.2 rotation matrices
(commonly referred to as Direction Cosine Matrices
(DCM)) were used to describe rotations. These matri-
ces belong to a group called SO(3), defined by

SO(3) = {R ∈ R
3×3 : RRT = I, detR = +1}.

(6)
The name SO stands forspecial, orthogonal, due to
the constraints (6) (Murrayet al., 1994). Hence, the
most natural description to use is DCM. However,
this description has some problems, since it requires
six parameters and since it is hard to enforce the or-
thogonality condition. It has been shown that five is
the minimum number of parameters that have to be
used in order to parameterize the rotation group in
such a way that a global description, without singular
points is obtained (Hopf, 1940; Stuelpnagel, 1964).
However, the dynamics for this parameterization is
quite complicated, which implies that it is not used.
Using four parameters, unit quaternions1 , to describe
the orientation provides the best alternative, since it is
a representation that is nonsingular and the dynamics
is linear (bilinear if the angular velocity is modelled
as a state variable) in the states. The downside is
that the unit constraint has to be maintained and that
the parameterization is non-global. However, this non-
global property will not be a problem in practice.

1 Another name for the unit quaternion is Euler-Rodrigues sym-
metric parameters, or Euler symmetric parameters (Shuster, 1993).

Another commonly used parameterization is the Euler
angles. The advantage of this parameterization is that
it only requires three parameters, but the dynamics is
nonlinear and it is a singular, non-global representa-
tion. According to the authors the best trade-off for pa-
rameterizing the rotation group is provided by the unit
quaternion. Hence, all computations are performed us-
ing unit quaternions. However, when the orientation is
presented to the user Euler angles are used, since this
parameterization is easiest to interpret and visualize.

A good account of the twelve most common rotation
parameterizations is given in (Shuster, 1993). Further-
more, (Shoemake, 1985) provides some good intuition
regarding the unit quaternions. The dynamic equation
for the quaternions is

q̇(t) =
1

2
Ω(ω)q(t), (7)

where
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The quaternion has to be normalized, i.e.,

qT (t)q(t) = 1, (9)

in order to represent an orientation. By invoking the
assumption that the angular velocity is constant be-
tween the sampling instants the rotation vectorθ can
be defined as

θ = ωtTs, (10)

and under this assumption it can be shown that the
solution to (7) is

qt+1 = A(θ)qt, (11)

whereA(θ) can be shown to be

A(θ) = cos(‖θ‖/2)I4 +
sin(‖θ‖/2)

‖θ‖
Ω(θ). (12)

Care has to be taken when estimating the orientation,
since the set of all rotations, SO(3) is not a vector
space, but rather a manifold, due to the constraint (6).
Using quaternions this is handled simply by normal-
izing the estimate. However, the best would of course
be if an estimator could be derived that delivered esti-
mates, which inherently existed on the manifold. The
problem is that the resulting problem is nonconvex.

3. USING VISION AS A SENSOR

In order to be able to incorporate the information
available in the image sequence into the estimation
problem measurement equations

yt = h(xt, et, t), (13)

have to be derived. These equations should describe
the relationship between the state variable,x, and
the information available in the images. In the sub-
sequent sections two different approaches on how to



derive these equations are discussed. Since a single
image contains large amounts of information the most
essential information has to be efficiently recovered.
The approach using in this work is to extract fea-
tures from the images. In the computer vision liter-
ature animage featureis any structural feature that
can be extracted from the image. The idea of using
inertial sensors and features extracted from the images
have previously been exploited e.g., in (Rehbinder and
Ghosh, 2003; Jianget al., 2004).

3.1 Camera Model

A camera is a device that provides two dimensional
projections of a three dimensional real scene. The
camera model describes this projection in mathemati-
cal terms. Hence, the camera model is most essential
in forming the measurement equations. The camera
model used in this work is thepinhole model(Hartley
and Zisserman, 2003),

[xi, yi]
T = [fx/z, fy/z]T , (14)

where[xi, yi]
T are the coordinates for the feature in

the image coordinate system, see Fig. 1. Furthermore,
[x, y, z]T is the corresponding position in the real
scene andf is the focal length. The model (14) is
simply a way to state that two objects lying on the
same ray will be projected onto the same point in the
image plane. This model is used due to its simplicity.
However, all equations derived in this paper can be
extended to more advanced camera models including
parameters for optical distortion etc. For more de-
tails on different camera models the reader is referred
to (Hartley and Zisserman, 2003).

3.2 Two Dimensional Feature Displacements

The goal of this section is to derive a measurement
equation using the fact that an observed movement of
a static feature in the image can be directly related to a
movement of the camera. This measurement equation
can then be used within the Kalman filtering frame-
work. The derivation starts with the simple fact that,

r = r ⇔ 0 = r + xex + yex + zez, (15)

where ther-vector, defined in Fig. 1, has been ex-
pressed in two different coordinate systems, the rotat-
ing C-system and the fixed feature system. Differenti-
ating (15) w.r.t. time gives

0 = ṙ + ẋex + ẏey + żez + xėx + yėy + zėz.
(16)

From Fig. 1;ṙ = ṗ − ṡ = ṗ, which together with the
fact thatxėx + yėy + zėz = ω × r gives

ẋ = −zωy + yωz − vx, (17a)
ẏ = −xωz + zωx − vy, (17b)
ż = −yωx + xωy − vz , (17c)

wherev = ṗ. Differentiating (14) gives

ẋi = f
ẋz − xż

z2
, ẏi = f

ẏz − yż

z2
. (18)

Inserting (14) and (17) in (18) gives

ẋi =
xiyi

f
ωx − f(1 +

x2
i

f2
)ωy + yiωz

︸ ︷︷ ︸

ẋi,R

+
−fvx + xivz

z
︸ ︷︷ ︸

ẋi,T

,

(19a)

ẏi = f(1 +
y2

i

f2
)ωx −

xiyi

f
ωy − xiωz

︸ ︷︷ ︸

ẏi,R

+
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z
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ẏi,T

,

(19b)

where the velocity has been split into one rotational
part (indicated with subscriptR), and one translational
part (indicated with subscriptT ). It is impossible to
use (19) to gain perfect information about the present
position and orientation of the camera, which has
previously been discussed in i.e., (Youet al., 1999;
Matthieset al., 1988; Longuet-Higgins and Prazdny,
1980). However, in combination with the other sensors
these equations will help in the task of finding the
position and orientation of the camera. Gyroscopes
provide measurements of the angular velocity,ω, and
hence the rotational terms in (19) can be considered to
be known (with a certain degree of uncertainty).

The measurements are the projection of the features in
the image plane, i.e.,

yj =

[
xj

i

yj
i

]

+ ej
t , j = 1, . . . , N, (20)

whereN is the number of features, ande the measure-
ment noise. However, since (19) is used the measure-
ment equations will be implicit, i.e., the measurement
equations will not be in the form (13), but rather in the
following form:

0 = h(yt, yt−1, xt, et, t). (21)

There is one problem with the derived measurement
equations, the depth informationz of the feature is
still present. This problem can be tackled in numerous
ways. The first idea that comes to mind is to extend
the state vector with the depth stateszi, i = 1, . . . , N .
In (Davison, 2003) an algorithm similar to the particle
filter is used to estimate the depths. Alternatively,
the depths can be thought of asnuisancevariables
which should be eliminated. Substitutingz from (19a)
into (19b) gives

ẏi − ẏi,R

ẋi − ẋi,R

=
−fvy + yivz

−fvx + xivz

, (22)

which is the resulting one-dimensional measurement
equation. It is straightforward to rewrite (22) on the
form (21), using the Euler approximation for the dif-
ferential operator, according to

αt(−fvx,t + xi,tvz,t) = −fvy,t + xi,tvz,t, (23)

where

αt = (
yi,t − yi,t−1

Ts

− ẏi,R)/(
xi,t − xi,t−1

Ts

− ẋi,R).



Finally (23) can be written
[
−fαt f (αtxi,t − yi,t)

]

︸ ︷︷ ︸

Ct

vf = 0. (24)

This is the resulting measurement equation for two
dimensional feature displacement.

3.3 Three Dimensional Features and Model

The vision system delivers a list ofN feature coor-
dinates in the image plane,{xj

i , y
j
i }

N
j=1 and the cor-

responding positions,{sj = [sj,x, sj,y, sj,z]}
N
j=1, in

the real scene. This position is obtained from a three
dimensional model of the world in which the camera is
moving. This model is generated off-line. Intuitively,
this information should provide valuable information
for estimating the camera pose. Using (14) and Fig. 1
gives

[xi, yi]
T = [frc,x/rc,z, frc,y/rc,z]

T , (25)

whererc is the vector from the camera center to the
current feature. Fig. 1 also reveals that

rc = Rcf (cf − sf ). (26)

The resulting measurement equation is found by using
the idea from the previous section, i.e., writing the
measurement equation in the implicit form (21). This
results in

0 =

[
rc,zxi − frc,x

rc,zyi − frc,y

]

+ e, (27)

which simply corresponds to multiplying (25) with
rc,z. Similar ideas have been presented in e.g., (Davison,
2003). The difference is that in this work an off-line
model of the real scene is used in combination with
information from inertial sensors. Hence, the costly
procedure of preparing the environment with artificial
markers is not necessary. Furthermore, the informa-
tion from the inertial sensors is obtained at a higher
frequency than the vision measurements and will be
especially helpful during fast maneuvers.

4. ILLUSTRATIONS

In order to evaluate the ideas proposed in this paper a
virtual environment, briefly described in this section,
is used. More specifically a three dimensional model
of a car is used. Fig. 2 provides two images from
the video sequence. The car is standing still and the
camera is moving around the car in such a way that the
camera is always facing the car. Since the true position
and orientation of the camera is known, the accelera-
tion and angular velocity can be calculated. Using this
the inertial measurements can be simulated, simply by
adding the proper noise to the true accelerations and
angular velocities. Furthermore, the 3D model of the
car provides an image sequence from which features
can be extracted. These features will constitute the
vision measurements, which will be included in the
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Fig. 2. Two images from the video stream used to
obtain the vision measurements. Furthermore,
several 2D features have been indicated in the
images. The camera has been rotated 10 degrees
from the upper to the lower image.

estimation problem using the ideas discussed in Sec-
tion 3.

The next step is to use authentic inertial and vision
measurements, which will be provided by our partners
at BBC R&D in London. They have a positioning
system installed in their studio (referred to as free-
D (Thomaset al., 1997)), providing the true pose,
which can be used to assess the estimation perfor-
mance. The authors are currently working together
with Xsens (Xsens, 2005) on using the idea presented
in Section 3.3. The preliminary results looks promis-
ing.

5. CONCLUSIONS

This paper propose a filtering approach for estimat-
ing the position and orientation of a camera in three
dimensions. The underlying idea of supporting iner-
tial sensors using additional sensors has previously
been successfully used for instance within the aircraft
industry. The difference is that in this work vision
is used, instead of for instance terrain elevation data
bases, to support the dead-reckoning of the inertial
sensor information. Furthermore, two different strate-
gies regarding the process of incorporating vision
measurements in the Kalman filtering framework were
discussed. Finally, some brief illustrations on how to
evaluate these ideas were given.



ACKNOWLEDGMENTS

This work has been performed within the MATRIS
consortium, which is a sixth framework research pro-
gram within the European Union (EU), contract num-
ber: IST-002013. The authors would like to thank
the EU for the financial support and the partners
within the consortium for a fruitful collaboration
this far. For more information about the MATRIS
consortium, please visit the consortium home-page,
www.ist-matris.org.

REFERENCES

Azuma, R., J.W. Lee, B. Jiang, J. Park, S. You
and U. Neumann (1999). Tracking in unpre-
pared environments for augmented reality sys-
tems.Comp. & Graphics23(6), 787–793.

Bergman, N., L. Ljung and F. Gustafsson (1999). Ter-
rain navigation using Bayesian statistics.IEEE
Cont. Sys. Mag.19(3), 33–40.

Caarls, J., P. Jonker and S. Persa (2003).Lecture
Notes in Computer Science. Chap. Sensor Fusion
for Augmented Reality, pp. 160–176. Vol. 2875.
Springer Verlag. Berlin.

Davison, A.J. (2003). Real-time simultaneous local-
isation and mapping with a single camera. In:
Proc. Ninth IEEE Int. Conf. on Comp. Vis.. Vol. 2.
Nice, France. pp. 1403–1410.

Diel, D.D., P. DeBitetto and S. Teller (2005). Epipolar
constraints for vision-aided inertial navigation.
In: proceedings of the 7th IEEE Workshop on
Motion and Video Computing. Vol. 2. Colorado,
USA. pp. 221–228.

Hartley, R. and A. Zisserman (2003).Multiple View
Geometry in computer vision. 2 ed.. Cambridge
University Press. Cambridge, UK.

Hopf, H. (1940). Systeme symmetrischer bilin-
earformen und euklidische modelle der pro-
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