

SOFTWARE PROJECT MANAGEMENT FOR DEVELOPING COUNTRIES

Christopher Peterson
Zenon Chaczko

Craig Scott
David Davis

University of Technology, Sydney
ICT Group, Faculty of Engineering

PO Box 123, Broadway NSW 2007, Australia

Abstract- Software is developed and implemented by enterprises that wish to increase their
efficiency and effectiveness. This process is often undertaken by persons who have little or no
formal training in the field, particularly in developing countries. The results are frequently
disadvantageous and often fatal to the enterprise. The University of Technology, Sydney has
designed a special short postgraduate program targeted at persons in developing countries who
have or wish to have such software responsibility. The response to this program has proven to
be significant as it provides a fast and effective approach to increasing the software project
management capability. Copyright © 2005 IFAC

Keywords: software engineering, computers, education, information technology, software
project management

1. INTRODUCTION

For a number of years, university software education
in postgraduate programs around the world has failed
to explicitly recognize the need for Software Project
Management specialists in the industry. This
oversight is not perceived just in terms of traditional
approaches to teaching and learning in which
software and management topics are taught as a
loose collection of subjects such as software
programming, object oriented design, database
theory, project management, risk management and
others; but in almost completely failing to recognize
the specifics and complexities of managing projects
in the software industry. Enterprise software
projects are not only about solving often abstract and
complex systems problems but they also require ever
more sophisticated tools, the integration and

configuration of disparate technologies, building of
product lines, a complex hierarchy of stakeholders,
IP and legal issues as well as the social dynamics of
highly motivated and trained collaborating
specialists. In time, when the domestic software
engineering industry has evolved to become a
significant part of a nation’s economy, practitioners
have the opportunity in their work to observe and
learn the essentials of good software management.
No matter how advanced a country’s software
industry has become there is always the opportunity
for improvement through formal education, for we
must do better than to allow the management of
software projects to be run by managers who may
have only a very general and informal training in the
discipline.

The process of building, configuring, maintaining,
integrating and managing software by every
enterprise in an efficient and effective manner is
critically important for developing nations who
commonly experience rapid growth of their software
industry. In these countries in particular, the
management of software development is often
undertaken by persons who have little or no formal
training in the field, usually because there is no other
person to be accountable. Generally there are limited
opportunities for learning in industry due to the low
level of software development being undertaken.
The results are frequently disadvantageous and often
fatal to the enterprise.

To address these dual issues of effective software
management education for practitioners in
developing countries and those practicing in more
developed environments, the University of
Technology, Sydney (UTS) in Australia has designed
a special one year postgraduate program called
Master of Software Engineering Management
(MSEM). Candidate students are expected to have
had some experience in software technology. The
response to this program has proven to be significant
as it provides a fast and effective approach to
increasing the software project management
capability of persons, and is particularly relevant for
those from developing nations. The student mix of
experiences is a remarkable catalyst that supplements
the delivered program. It is noted that Australia is
one of the preferred choices for students because of
the quality of education, language, favourable
exchange rates and quality of living.

The advent of software engineering management as a
“new” profession in a rapidly expanding and
changing industry with its technological, social and
economic characteristics meant that a new program
was needed in training professional software project
managers for both the local and international market.
In this new approach the traditionally individual
software and management subjects are taught in a
unifying and coherent framework that yields a
demonstrable and measurable increase in
professional performance. Various practice-based
subjects taught within the program concern
themselves with the software project management,
risk management, technology assessment, problem
definition, formal and informal requirements
analysis, architecture and middleware, design and
implementation, testing, integration, verification and
validation, delivery and maintenance, software build
and configuration management. Most subjects
require the student to complete project management
and architectural work in teams to develop computer
based hardware and software of medium to large-
scale complexity. This guided teamwork has been
shown to be a highly effective teaching method

(Hilborn 1991; Peterson et al 1991). The main driver
for the introduction of these subjects was an industry
based demand for software professionals that have
“real experience” in management of medium to large
industry-based projects that involve considerable
numbers of people, projects that are focused, process
and outcome driven, and which permit
experimentation with hierarchies and the dynamics
of the project stakeholders. This approach was
balanced against the academic and pedagogic
interests of engineering and the necessary technical
depth, discipline and formalism. To achieve this
balance all subjects are designed to complement each
other by reference to the unifying theory of the
Software Development Life-Cycle (SDLC).
Outcomes are focused on the depth of research,
scholarship, problem solving, analytical skills,
critical and reflective thinking coupled with social
and communication skills including group formation,
group participation, role playing and role rotation.
Most critical of all is the development of the
individual as a confident, coherent, ethical software
management professional.

The new program fulfils industry demands by
applying the theory, practice and personal
development engendered in all subjects and focusing
on effective management and tools, processes,
delivery, schedules, budgets and risk management.
This results in projects that produce high quality
maintainable, reliable and usable products through
appropriate management.

Fig 1. The domain model of teaching and

learning

Pedagogy MethodologyStakeholders Needs

Best Practices Technology Economics

Project
Management

Process

Technical
Skills

Collaborative
Teamwork

Communication

This report describes the experiences of teaching
software project management subjects as well as
evaluation of the outcomes of these experiences with
the object of following a reflective process at each
phase of a subject to improve the quality of learning
and teaching. Also, the goal is to describe methods
applied in the teaching and learning framework,
which combines best practice aspects, software
standards, didactics, project management,
economics, the problem domain analysis, software
paradigms, stakeholders concerns, technology and
tools. The model can be best described as including
several dimensions of an adopted reflective approach
to teaching and learning, see Figure 1. Using this
approach, reflections on the effectiveness, efficiency
and comprehension of management and project
issues involved are efficiently analyzed and resolved.

2. THE EMERGING IT INDUSTRY

Developing countries with an economy usually based
on agriculture have a significant need for information
technology, even if the per capita income is low.
This, as always, originates from the need to use
computing tools of varying degrees of sophistication,
from standalone office applications to financial tools
for business administration. In addition there is
always the demand for large software packages,
particularly from Government and public utilities
where there is a concentration of resources. These
packages invariably require implementation, with
extensive configuration and with appropriate
treatment of legacy systems, and then there is the
need for ongoing enhancement. From here it is a
short step to the development of novel systems to
meet special needs. The demand for project
managers for implementation and for development
cannot always be met by consultants, particularly
international consultants, so there is great pressure to
appoint local staff to manage the effort. These staff
would have experience in installing, configuring,
interfacing and coding but frequently would not have
had a management responsibility.

The educational system in virtually all developing
countries supports high quality Universities with
courses in Information Technology. The syllabus for
technical courses is well understood and freely
accessible (Bagert et al 1999) and the resulting
graduates are capable in coding and system analysis.
The position with software project management is
quite different, for although there are many excellent
resources it requires persons with advanced
academic qualifications and industry experience to
create and operate an effective course (Peterson et al
1991). It is the tutorials, laboratory exercises, group
workshops and case studies that consolidate

management issues, without which management
courses do not achieve their objective of creating
effective professional practitioners. It is the lack of
such suitably qualified and experienced academics,
coupled with the high demand for the technical
graduates that are produced, that lead to the
deficiency in software project management
programs.

The result is that local staff are commonly appointed
to manage software projects who have some
technical background (not always to tertiary level),
are capable and motivated, but who lack peer support
or an educational infrastructure to assist them in
effectively performing their task. There is a
misconception that if a person is excellent at
producing code then they should also be able to
manage others who write code, and software is
frequently seen to be ‘easy’ as a relative novice can
write a short program. The basis of this
misconception is that software can be so adaptable
that faults are either not recognized or can be ignored
for most of a project, and that the real issues are in
the system specification (a skilled human
undertaking) and in the project estimation and
monitoring. A small project can be successful
despite ineffective management; it is when projects
become larger, the resources are so much greater and
the loss if a project is unsuccessful that the full
appreciation of good management is understood. In
this situation there is an urgent demand for a
relatively short and highly effective means to
improve the software project management abilities of
designated staff.

3. SPECIFICATIONS FOR A FORMAL IT
PROJECT MANAGEMENT PROGRAM

From a survey of domestic and overseas
postgraduate students studying software technology
in Australia it was determined that the dominant
profile of persons who would benefit from a short
software project management program were those
who
* hold an engineering or science degree or

equivalent from a higher education institution;
or

* hold a Graduate Certificate or Graduate Diploma
in Engineering; and

* have some professional knowledge in the IT
industry

* have adequate English skills; and
* have adequate science background (maths,

physics, scientific communication at secondary
school level); and

* have been involved in software development.

Some industry experience was deemed to be
necessary as the students would then have some
appreciation of the main issues when leading a
software project.

Given this entry level it was seen that a balance was
to be made between management issues and
technology matters, for management decisions are
frequently dependent on the technology. A course of
one year full time, conducted in English, was an
appropriate compromise between oversimplification
and excessive duration. This permitted eight
subjects to be taught, requiring a commitment by the
students of approximately 32 hours a week during
each of the two semesters in a year. The eight
subjects fall into several groups: basic technology,
current technology, engineering processes and
advanced management.

The basic technology subject is required to be
studied in the first semester; it provides
comprehensive coverage of software development
and serves a supplementary role of bringing all
students to the same level of understanding.

The current technology subjects encompass analysis,
design, architecture, middleware and quality topics.

The engineering process subjects include decision
making in the presence of uncertainty, judgment and
entrepreneurship.

Advanced management is both general engineering
management and the specifics of managing software
development.

4. DESIGN OF A FORMAL IT PROJECT
MANAGEMENT PROGRAM

There are several design constraints when creating
new subjects, foremost is that the study program
must be able to be completed within 2 semesters.
This mitigates against an extensive prerequisite
structure, so the decision was made to have just one
requirement, that the basic technology subject must
be taken in the first semester of study. It was
possible to design the other subjects so they had no
prerequisites. The eight subjects themselves are

Basic technology: Software Technologies
Current technology: Software Quality Processes,

Software Analysis and Design, Software
Architecture and Middleware

Engineering processes: Judgement and Decision
Making, Entrepreneurship in Engineering

Advanced management: Managing Projects,
Software Project Management

Important as individual subjects are, it is the teaching
and learning environment that is equally significant
for the effective transmission and retention of
learning. At UTS the philosophy of all engineering
programs, undergraduate as well as postgraduate, is
that it be practice based, where theory is informed by
industrial and commercial practice (Chaczko et al
2004). This program has been recognized as
embodying world leading standards and practices,
the educators all having held positions in industry as
well as undertaking research programs. The students
find that a year devoted to study for a higher degree
permits them to focus without distraction on the
deeper content of the material, to assimilate it better
and to reflect on their experience. All programs that
are available to overseas students must comply with
Federal Government regulations and the Universities
need to be accredited, thus providing an additional
quality process and a level of assurance to
prospective students.

5. IMPLEMENTATION OF THE FORMAL IT
PROJECT MANAGEMENT PROGRAM

The individual subjects are structured so that their
content is not dependent on one another but they
interlock, delivering a cohesive set of principles and
practices once completed. Students have noted that
one of the advantages of the program, apart from the
topic coverage, is the flexibility it offers in
timetabling and subject sequencing. The essential
characteristic of each subject derives from the
combination of subject matter and practical
exercises.

Software Technologies: theories of software systems,

ethics, professional writing and verbal
communication, research skills, software
engineering lifecycles, C++ and object oriented
analysis and design, agile programming,
operating systems and development tools,
concurrency. Students are required to create a
set of project plans and to undertake a group
software development project.

Software Quality Processes: software quality

overview, quality planning, configuration
management, change control, implementation
issues, coding style, verification and validation,
test planning and specification, and integration.
Students are required to create model quality
standards and to professionally critique case
studies.

Software Analysis and Design: theories of analysis,
design and test, principles of system
architecture, modelling system
architectures/high level design against legacy
systems, requirements validation, design
approaches and tools, testing designs, good
design and poor design, design patterns.
Students are expected to work in small to
medium size teams, to produce on time and to
specification.

Managing Projects: project quality, risk, time and

cost, techniques and practices at each stage in
the project lifecycle, the management, financial
and contractual responsibilities. Assessment is
through group projects and presentation, project
report and project artifacts.

Software Project Management: how software is

different to other engineering endeavours, types
of software, the triple constraint, expectations of
a software project manager, time estimates and
tools, cost estimates and tools, functionality
including deliverables and ownership, political
and human factors, group dynamics,
personalities, project completion activities and
technical audits. Students are to estimate in an
uncertain environment, identify actions in poorly
run projects, justify make or buy decisions,
propose and execute remedial actions and
undertake actual software project audits.

Judgment and Decision Making: rational decision

aids and when to apply them, modern theories of
judgment, organizational choice and decision in
the context of individual, group and strategic
decision making processes. Students are
required to develop their critical analysis skills
and apply them in a wide variety of engineering
situations.

Software Architecture and Middleware: the role of

software architecture, the possible and practical
alternatives, selection criteria for an architecture,
open infrastructure concepts and the role of
middleware. The effective use of modern
middleware components and the enhancement of
portability, interoperability and scalability.
Students’ skills are developed in the analysis of
open systems via a framework for their
comparison and evaluation.

Entrepreneurship in Engineering: the essential

components for converting a concept to a
successful company by identifying
opportunities, writing a business plan, raising
investment and structuring an organisation. The
students’ strategic thinking, selling skills,
service delivery, negotiation, communication,

leadership and intellectual property abilities are
the focus of the practical component of the
subject.

6. OUTCOMES OF THE PROGRAM

Students have undertaken these subjects from a wide
variety of countries including India, Pakistan,
Bangladesh, Hong Kong, Thailand, Spain, Sweden,
Jordan, Taiwan, Vietnam and China. Variously they
have furthered their careers as academics and
become team and project leaders in the software
industry. The combination of overseas and domestic
students, with their rich variety of professional
backgrounds, brings a vitality and synergy to the
program that greatly accelerates the learning process.

Through program design and delivery there are of
course significant benefits to the individual. In
addition to this there are a range of economic
spillovers that benefit the community to which they
return, benefits that accrue neither to the individual
nor to their organization. These spillovers include
the following, all of particular advantage to a
developing country.

Import Replacement: skilled locals are able to
replace international consultants, who may have a
low commitment to the country even though they are
dedicated to the project. This provides foreign
exchange savings.

Knowledge Spillovers: indigenous project managers
will disseminate their skills and methods through
their professional and informal contacts, thus
providing a multiplier effect of the knowledge gained
through completing the program. Knowledge spread
throughout the organization is directly captured
through the raising of the capability of employees,
yet there are contacts with others outside the
company that significantly benefit the community.

Strategic Community Benefits: there is a net
community benefit from improved management of
critical projects through applications failing less
often, or perceived to fail less often. In addition,
there is net community benefit through a higher level
of service when online difficulties occur. It is
common that the organization is not rewarded
directly through higher reliability, maintainability,
usability and so on, yet these are tangible economic
consequences from utilizing greater skills and
capabilities.

7. PROGRAM EFFECTIVENESS

At enrolment students provide a list of problems they
previously encountered on software projects.
Overwhelmingly (4 out of 5 problems) these are
management related issues such as inadequate and/or
incomplete software requirements, poor state of
documentation, lack of accountability, no statement
of operational need and poor configuration control.
Interestingly, the issues around system integration,
which is a pertinent problem in computer systems
and the IT industry as a whole, never receives much
attention among aspiring software engineers. Our
experience with undergraduate programs (Peterson et
al 1992) verified by results of final exams, surveys
and feedback from industry advisers to the program
leads us to believe that graduates of our programs are
able to deal with integration issues with confidence
and engineering rigor.

Students were generally able to resolve specific
technical problems encountered, such as tools and
response times, by themselves and often pointed to
their need to improve their understanding of
management practices that are unique to software
development.

After completion of the degree students provide a
reflection of their experiences and suggestions to
improve the course syllabus and delivery. A
recurring comment has been that graduates have
“implemented some of the practices at their
workplace and are impressed with the improvement”.
The use of industry speakers and consolidation of
material with frequent small assignments was very
favourably received. The students requested greater
depths on system implementation, integration and
testing; and improved means of judging the size of a
project before development commenced so as to
provide more confidence in estimates. Requests for
a greater emphasis on Entity–Relationship (ER)
analysis and database issues that encapsulate aspects
of business processes and less on real-time and data
flow diagrams indicate areas where the bulk of
system development activity is undertaken in
industry and commerce. The feedback from
graduates has been evaluated and wherever feasible,
incorporated through changes on emphasis,
modification of practical exercises and new
representative case studies.

8. CONCLUSIONS

The Master of Software Engineering Management
program, through its design and implementation, is
achieving its objectives of providing accessible,
effective software management education to
professionals at an early stage in their career. At this
point there is the maximum leverage for individual,
organizational and national benefits. From the
number and variety of student nationalities it is clear
that one of the prime objectives, to cater for the
needs of developing countries, is being achieved is a
practical and effective manner.

REFERENCES

Bagert, D., T. Hilburn, G. Hislop, M. Lutz, M.
McCracken, S. Mengel (1999) Guidelines for
Software Engineering Education Version 1.0,
Carnegie Mellon University Software
Engineering Institute CMU/SEI-99-TR-032,
ESC-TR-99-002
http://faculty.db.erau.edu/hilburn/se-
educ/99tr032.pdf

Chaczko Z., D. Davis, V. Mahadevan (2004) New
Perspectives on Teaching and Learning
Software Systems Development in Large
Groups. In 5th Internat Conf on IT Based
Higher Ed and Training ITHET ’04 p278

Hilborn, S. (1994) Team Learning for Engineering
Students. In IEEE Trans Ed 37 (2) pp207-211

Peterson C., C. Drane, J. Leaney (1991) Systems
Engineering for Large Groups. In 6th Annual
Conference of Australasian Association for
Engineering Education,
(Parr and Johnston (Eds)) pp 541-547

Peterson C., C. Drane, J. Leaney, N. Carmody, K.
Fung, A. Ginige, P. Mallon, R. Meegoda, S.
Murray (1992) Reflections Upon a Completed
Computer Systems Engineering Degree.
In 4th Annual Conference of Australasian
Association for Engineering Education,
(Simmons, Radcliffe and Wallace (Eds)) pp
334-337

