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Abstract: The paper develops the concept of a variability coefficient for linear time-varying 
(LTV), discrete-time (DT) systems. The main idea is to introduce frequency analysis tools 
for LTV systems which involve Singular Value Decomposition (SVD) and Discrete Fourier 
Transform (DFT) as well as Power Spectral Density (PSD). The general objective of this 
paper is to examine the first order system to show how the value of the proposed variability 
coefficient depends on the variability of particular system parameters and whether it is a 
good measure of the degree of the system variability. Especially we examine how the vari-
ability of two matrices of the state space model (scalars, in this case 1st order) influences the 
value of this coefficient. Three different cases of one-dimensional LTV DT system have 
been considered. The results of analysis for each case are shown in 2 diagrams: five pro-
posed coefficients versus given parameter epsilon and step responses  for given parameters. 
Examples are preceded by theoretical considerations and on the basis of these examples the 
most important conclusions are drawn and properties of the introduced concept summa-
rized. Copyright © 2005 IFAC 
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1. INTRODUCTION 

One of the first attempts to analyse LTV systems in 
the frequency domain was made by Zadeh (1950, 
1961). The time-varying transfer function has been 
defined by extending the Laplace transform to the 
varying impulse response. Other works on the fre-
quency aspects of LTV systems focus on the modal 
analysis. The ideas of varying eigenvalues or varying 
natural frequencies have been used without a rigor-
ous definition by Bogoliubov (1961), Maia (1997). 
The concept of pseudo-modal parameters was intro-
duced and described by Liu (1999), (Liu, Kujath 
1999). The concept of frequency analysis of LTV 
systems using SVD-DFT approach (Singular Value 
Decomposition – Discrete Fourier Transform) with 

connection to Power Spectral Density (PSD) has 
been recently presented in (Orlowski 2003, 2004). 
The diagrams introduced in that work have similar 
properties to classical Bode diagrams for LTI sys-
tems. Approximated Bode diagrams are given by a 
finite set of frequencies (or singular vectors) and 
their corresponding gains.  

An important extension of the SVD-DFT method can 
be obtained by defining two coefficients of variabil-
ity of the LTV system and this is done in this paper. 
If the set of the system matrices have been obtained 
via the system identification (Liu 1999), the coeffi-
cients provide information on whether the system is 
LTI or LTV and if the variability can be omitted. 



2. MODEL DESCRIPTION 

Dynamic, discrete-time system can be given by set of 
difference equations, called the state space model 

( 1) ( ) ( ) ( ) ( )p p pk k k k k+ = ⋅ + ⋅x A x B v ,           (1) 

)()()( kkk pp xCy ⋅= , k∈N,   xp(0)=0,  (2) 

where Nn
p )()( Rx ∈⋅  is nominal state, ( ) ( )m N

p ⋅ ∈v R  

is nominal control, Np
p )()( Ry ∈⋅  is nominal output, 

and ( ) ( )nk ∈A RL , ( ) ( , )m nk ∈B R RL , 

( ) ( , )n pk ∈C R RL  are system’s matrices.  

Equivalently the system can be given using following 
operators 

0
ˆ ˆˆ ˆ ˆˆ ˆp p= ⋅ + ⋅y CLB v CN x       (3) 

The operator ˆ ˆ ˆCLB  is a compact and Hilbert-Schmidt 
operator from l2 into l2 and actually maps boundedly 
signals [ ]2( ) 0,k l N∈ =v V  into signals y ∈ Y . 

Matrices of operator are given as follow: 
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and matrix operators ˆˆ  and B C  have diagonal form 
i.e. 
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where vectors xp(⋅), yp(⋅) and vp(⋅) have following no-
tation 
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3. TRANSFORM THEOREMS 

The method is based on Singular Value Decomposi-
tion of the system operator. This spectral decomposi-
tion is a generalisation for SVD of a matrix. For dis-
crete-time systems and finite time horizon the opera-
tor is finite dimensional. In linear algebra, the SVD 
of a matrix describes it by a set of singular values σi 

and corresponding sets of singular input-vectors vi 
and output vectors ui. Any real or complex matrix X 
can be written as X=U⋅Σ⋅V*, where Σ=diag{σi} and 
U and V are composed from ui and vi , respectively. 

Theorem 1 Discrete power density spectrum of 
every orthogonal matrix computed as a sum of 
spectral density column vectors is constant and equal 
to 1. 

In particular, for matrix V={vij}, i,j=1…N, 
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where 
2k

p

k

T N
ω =

⋅ ⋅
, Tp – sampling period. 

Theorem 2. Discrete input-output power density 
spectrum of system, can be computed as a sum of 
spectral density column vectors of product U⋅S.  

The notation is following 
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, Tp – sampling period, σi=sii – i 

– singular value of T ˆ ˆ ˆ⋅ ⋅ = ⋅ ⋅U S V C L B  
decomposition. 

Proofs of theorems 1 and 2 follows directly from the 
orthonormality of the SVD matrix and from unitary 
properties of the DFT transform. Detailed proof can 
be found in e.g. (Orlowski 2004). 

4. AMPLITUDE AND PHASE DIAGRAMS 
APPROXIMATION 

The relation between input and output power spec-
trum density and amplitude diagram is described fol-
lowing. 

2( ) ( ) ( )k k kω ω ω= ⋅y xS G S   (10) 

taking into account theorem 1,  

( ) ( )k kω ω= yG S           (11) 

and finally 
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Phase diagram, can be approximated by  
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Operator’s notation, for which has been defined 
fundamental frequency analysis tools, can be used for 
description and simulation both for time varying and 
time invariant systems. It assumed that, systems are 
defined on finite time horizon.  

5. DEGREE OF SYSTEM TIME VARIABILITY 

Dynamic linear systems can be variable either in the 
frequency domain (linear time invariant systems – 
LTI systems) or in the time domain (linear frequency 
invariant systems – LFI systems). The main differ-
ence between LTI and LFI systems can be recog-
nized by comparison of the output function. The out-
put function of an LTI system is a time domain con-
volution or frequency domain multiplication, 
whereas the output function of LFI system is a time 
domain multiplication or frequency domain convolu-
tion. Essentially, LFI is a static system with a time 
variant gain. In the most general case a dynamic lin-
ear system can be variable in both frequency and 
time domain. From the mathematical point of view a 
dichotomous classification into time or frequency 
variant systems is clearly defined. However, from the 
practical viewpoint determining the degree of time 
nonstationarity on a continuous scale is more signifi-
cant than such a dichotomous classification (variant – 
invariant). This is due to the fact that scattering of 
system parameter values not necessarily must imply a 
change in system properties as a whole; if not, the 
changes can be insignificant. 

To illustrate the problem of determining the degree 
of time variability let us consider a system with a pe-
riodically time variant gain. The system is given in 
the state space by eq. (1-2). 

The system at hand is a single-input single-output, 
first order one. Thus system matrices are scalars. A 
simple analysis can be performed if A(k)≡ 0. In such 
a case we have to do with a typical time-delay sys-
tem. Depending on values the B and C matrices take 
the following four cases given in Table 1 may be dis-
tinguished. 

In this example the degree of time nonstationarity is 
dependent on the ε parameter. The greater is ε, the 
greater is the degree of system time nonstationarity. 
As ε → 0 the system response tends asymptotically 
to the response produced by a time invariant system. 
The output frequency spectrum varies with the de-
gree of system time variability. In the output spec-
trum side bands with 0 0,p pω ω ω ω− +  frequencies 
appear and, in addition, the amplitude of the main 
band ω0 diminishes. These phenomena are caused by 
the system variability modulation. 

 B(k), C(k) Output spectra
Stationary B(k)=1 

C(k)=1 
 

 
Non-
stationary 

B(k)= 
( )1 cos p sk Tε ε ω− + ⋅ ⋅ ⋅  

C(k)=1 
 

Quasi-
stationary 

B(k)= 
( )1 cos p sk Tε ε ω− + ⋅ ⋅ ⋅  

C(k)= 

( )
1

1 cos ( 1)p sk Tε ε ω− + ⋅ −
  

Quasi-
non-
stationary 

B(k)= 1 randnε+ ⋅  
C(k)=1 
 

 
Table 1. Scattering of the signal spectrum for various 

systems. 

A little different effect is produced by white noise 
modulation. The noise modulated by any other signal 
still remains the noise, only the parameters are 
changed. In the quasi-nonstationary system the noise 
has been modulated by a sinusoidal input. As a result, 
a white noise with another variance is produced. A 
change in variance entails a change in standard de-
viation, in proportion to which is the value of the 
zero-frequency component in the system output 
magnitude-frequency response.  

Time and frequency variability for continuous sys-
tems was dealt with in (Bello 1963, Coates 1998 
Debnath 2001, Kozek 1997). An approach has been 
proposed there that is based on the impulse response 
of a time variant system, which presents an out-
growth of the approach originated by Zadeh.  

This approach has been used successfully for analysis 
of time variant communication channels. The meas-
ure of potential time-frequency shifting, which sys-
tem can impart is spreading function. For example, 
asymetrical spreading function or delay Doppler 
spread function introduced by Bello (1963) is ob-
tained: 

( )(1/ 2) 2, ( , ) dti t

H

t

S h t t e π ντ ν τ − ⋅ ⋅ ⋅ ⋅= − ⋅∫        (14) 

For the spreading function to be evaluated, the 
knowledge of the set of system impulse responses 
h(t,t-τ) is needed, where t is the determined time in-
stant, and t-τ is the point in time at which the impulse 
has been generated. 

The generalised spreading function of an LTI system 
with kernel ( ) ( )( , )h t t g t gτ τ τ− = − =  



( ) ( ) ( ),HS gτ ν τ δ ν= ⋅          (15) 

and is concentrated along τ axis reflecting the system 
can only cause time shifts. Dirac function is denoted 
by ( )δ ν . 

Employing the spreading function for system analy-
sis makes it possible to determine the system vari-
ability in both time and frequency domains. To do 
this, however, the knowledge of system responses 
obtained with appropriate resolution over a wide time 
horizon is needed. An attempt made by the author to 
determine the spreading function for a discrete sys-
tem defined over a finite time horizon failed. The 
numerical algorithm turned out to be unstable, and 
the results obtained were almost independent of ac-
tual changes in system parameters. 

Another approach that may be useful to determine 
the system time variability is the modal analysis 
(Maia 1997, Liu 1999). It yields a relatively great 
body of data the interpretation of which requires 
some knowledge and experience. The cardinal virtues 
of PMP are its numerical stability independent of the 
time horizon and a very wide field of application. 

Analysis of output amplitude spectra carried out by 
the author for different systems allows one to define 
certain functions that enable the system time variabil-
ity to be measured. The test input should be chosen 
first. In the light of SVD properties, especially those 
revealed by Theorem 1, the optimal test signal is rep-
resented by the system singular vectors vi with their 
corresponding weights σi. If so, the measure of the 
system nonstationarity may be defined as: 

(I) Weighted main band attenuation. 

The less the output is affected by the parameter non-
stationarity, the smaller is the coefficient (I). Rate of 
parameter changes is here of secondary importance.  

Numerically, the coefficient (I) can be evaluated as a 
sum of squared differences between consecutive dis-
crete values for power spectral density of normed 
characteristic vectors for input and output spectra: 
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(II) Weighted relative distance between the 
side bands and the main band. 

The value of the coefficient (II) depends on the rate 
of parameter changes. The slower the changes, the 
smaller the coefficient (II). 

The coefficient (II) is evaluated from 

var 2
1 1

( ) ( )
N

i
mv mu

i

S f k i k i
σ

σ=

= ∆ ⋅ − ⋅∑       (17) 

where 

kmv(i) is index of maximal value in vector 
VVi=|DFT[vi]|, kmu(i) is index of maximal value in 
vector UUi=|DFT[ui]|, resolution in frequency do-

main 
1

f
T N

∆ =
⋅

 is normalisation factor for eq. (17). 

(III) Main band attenuation. 

Similar to coeff. (I), but simplified to the most sig-
nificant vector only. 

var 3 1 1 2
DFT[ ] DFT[ ] 1000S = − ⋅v u      (18) 

(IV) Quadratic weighted main band attenua-
tion. 

Similar to coeff. (I), with only the difference, that 
linear terms are replaced by quadratic terms.  
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var 4 2 2
1 1
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= ⋅ −∑ v u      (19) 

(V) Weighted relative distance between cor-
responding bands. 

Coefficient (V) is similar to coeff. (II). The im-
provement is that the algorithm for computation take 
into account not only first maximal value in vectors 
U, V but also consecutive values sorted in decreasing 
order with corresponding weights 
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where VVi,j, UUi,j are column sorted matrices of DFT 
v and u respectively. kv(j,i) and ku(j,i) indexes of 
sorted matrices. 

For time invariant systems all coefficients should be 
equal to zero. In the next section an attempt will be 
made to check whether the proposed relationships 
present a good measure of the system nonstationarity. 

6. NUMERICAL EXAMPLES 

In the light of how the variability coefficients (16,20) 
are defined, an analysis of the influence the ε pa-
rameter changes of a non-stationary system exert on 
the whole system properties may be of interest. To 
carry out a numerical analysis four models of sys-
tems with a specified magnitude of parameter varia-
tions that has been presented and discussed in Sec-
tion 5 are used. As a measure of nonstationarity the 
definitions (16-20), and for the purpose of compari-
son the graphical shape of step responses have been 
taken. In this section coefficients of eq. (16-20) vs. ε 



parameter are evaluated for similar systems by way 
of simulation. For purposes of simulation it is as-
sumed that the system is also nonstationary in the 
frequency domain and represents a time lag A(k) = 
0.1. Sampling period is scaled to improve resolution 
in time domain and is equal to Ts=3.2/N=0.0128s, 
k=1,2,…,N, 20pω =  where N=250 is time horizon 
length. The remaining system parameters are the 
same as given in Table 1. 

6.1. Nonstationary system (cosinusoidal) 

System coefficients are as follows: 

( )
( ) 0.1, ( ) 1, ( ) 0,

( ) 1 cos
p s

A k C k D k

B k k Tε ε ω

= = =

= − + ⋅ ⋅ ⋅
 

It is assumed here that ε varies within the range 
810 ,1ε −∈ , from where 10 values of ε have been 

chosen to evaluate the system variability coefficient. 
The results obtained are summarized in Fig. 1. Re-
sults yielded by eq. (16) are marked with “x” (thin 
line). Results yielded by eq. (17) are marked with 
“+”(thin line). For ε < 10-1 Svar2 takes the value 0. Re-
sults yielded by eq. (18) are marked with “o” (thick 
line). Results yielded by eq. (19) are marked with 
“�”(thick line). Results yielded by eq. (20) are 
marked with “◊”(thick line). 
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Figure 1. Variability coefficient vs. ε for a nonsta-

tionary system (cosinusoidal).  
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Figure 2. Step responses obtained for ten biggest val-

ues of ε. (nonstationary system). 

Step responses corresponding to ten highest values of 
ε are depicted in Fig. 2. 

6.2. Quasi-stationary system 

System coefficients are as follows: 

( )

( )

( ) 0.1,   ( ) 1 cos ,

1
( ) , ( ) 0

1 cos ( 1)

p s

p s

A k B k k T

C k D k
k T

ε ε ω

ε ε ω

= = − + ⋅ ⋅ ⋅

= =
− + ⋅ ⋅ − ⋅

 

It is assumed here that ε varies within the range 
610 ,1ε −∈ , from where 10 values of ε have been 

chosen to evaluate the system variability coefficient. 
The results obtained are summarized in Fig. 3. Svar2 
takes the nonzero value only for ε=1. 

Step responses corresponding to ten highest values of 
ε are depicted in Fig. 4. 
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Figure 3. Variability coefficient vs. ε for a quasi-
stationary system.  
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Figure 4. Step responses obtained for ten biggest val-

ues of ε (quasi-stationary system). 

6.3. Quasi-nonstationary 

System coefficients are as follows: 

( ) 0.1, ( ) 1 randn, ( ) 1, ( ) 0A k B k C k D kε= = + ⋅ = = , 
where randn is random noise described by normal 
distribution with parameters N(0,1). 

It is assumed here that ε varies within the range 
810 ,1ε −∈ , from where 10 values of ε have been 

chosen to evaluate the system variability coefficient. 



The results obtained are summarized in Fig. 5. For ε 
< 0.1 Svar2 takes the value 0. 

Step responses corresponding to ten highest values of 
ε are depicted in Fig. 6. 
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Figure 5. Variability coefficient vs. ε for a quasi-

nonstationary system. 
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Figure 6. Step responses obtained for ten biggest val-

ues of ε (quasi-nonstationary system). 

7. CONCLUSION 

The paper has  introduced a new method for estimat-
ing the degree of variability of the system. 

It is shown that the time-variability coefficient of the 
system can be defined using data from the SVD-DFT 
analysis of the system. The key idea of the proposed 
method is to modify the input-output spectra of LTV 
systems. The quantity of the modification can be a 
measure of time-variability of the system.  

Three examples with numerical data provide il-
lustrations of how the variability coefficient can help 
to understand the degree of time variations due to 
different parameter values in the system model. 

In the course of the study some drawbacks of the 
proposed methods have been revealed. This fact  
raises some open questions that will direct further 
studies. 

o The coefficient of the system variability Svar1 
changes its properties whenever any of the poles 
goes beyond the unit circle. Would it be possi-

ble to generalize these observations  to arbitrary 
systems and to define, on this basis, a stability 
concept for discrete-time systems determined 
over a finite time horizon ? (Notice that the re-
sponse of such  systems is always bounded) 

o The coefficient of the system variability Svar2 
gives results only for large ε and exhibits a cer-
tain numerical instability (lower for  Svar3). 

o The feasibility of Svar2 evaluation is conditioned 
largely by the resolution obtained in the fre-
quency domain. Requirements to be met here 
are much higher than those for e.g. Svar1. 

o It may be concluded from figures 1, 3, 5 that 
coefficients Svar5, Svar4, and also Svar1 are more 
stable numerically than Svar2, Svar3, even on short 
time horizons. 
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