

AN ICT PLATFORM FOR THE VERTICAL AND HORIZONTAL INTEGRATION OF
INFORMATION IN LARGE UTILITIES PLANTS

Salvatore Cavalieri

University of Catania, Faculty of Engineering, Dept.Computer and Telecommunications Engineering
Viale A.Doria 6, 95125, Catania, Italy

Abstract: One of the main limits of the current technology for the management of large
plant is the lack of Vertical and/or Horizontal Integration of Information. Vertical
integration refers to the need to integrate systems implemented at different administrative
level of an organisation. Horizontal integration allows the user of large plant to execute
very complex transformations on data coming from several real applications, also of
different types. The Mobicossum project, IST 1999-57455, is a CRAFT project which aims
to realise both Vertical and Horizontal Integrations, providing for a set of high level
services useful for the management of large plant. This goal has been realised through the
definition of a Middleware between user (including mobile workers using mobile devices)
and lower level applications. Copyright © 2005 IFAC

Keywords: Plants, Management Systems, Information Integration, Enterprise Integration,
Man/Machine Interfaces, Networking

1. INTRODUCTION

One of the main limits in the current technology for
the management of large plant is the lack of
Integration of Information, both Vertical and
Horizontal one (Wangler and Paheerathan, 2000).

Vertical integration refers to the need to integrate
systems implemented at different administrative level
of an organisation. As an example, in manufacturing
industry there is the presence, at the lowest level, of
process control systems and computerised Numerical
Control machinery adopting proprietary formats of
data and messages. Frequently they are based on
different operating systems and use different
networking technologies. These systems need to be
fed with control data stemming from higher level
planning and scheduling systems while the lower
level applications need to collect data and pass them
upwards (Wangler and Paheerathan, 2000). In the
management of plants, the lower level applications
are Supervisory Control and Data Acquisition
System - SCADA, Decision Support System - DSS,
and Geographic Information System - GIS. These
systems collect and maintain information coming
from the field devices present in the plant (in a plant

for water distribution, examples of field devices are
pumps and valves). The higher level of the
monitoring and control organisation relevant to the
management of a plant is made up by applications
performing useful management functions basing all
the activities on the information maintained by a
SCADA, GIS or DSS. A software tool managing
alarms (e.g. alerting the proper team of technicians
when an alarm occurs), is an example of high level
application which interacts with a SCADA system
from which it receives information about the kind of
alarm and the features of the malfunctioning devices.
Vertical integration implies integration of
information transmitted along the vertical direction
from high level applications towards low level
applications (e.g. SCADA, GIS and DSS) and vice
versa; the integration must be platform-, data
representation- and data mining- independent.

Horizontal integration improves the concept of
integration, allowing the user of large plant execution
of very complex transformations on data coming not
only from one application, but relevant to several real
applications, also of different types. A typical
example of horizontal integration is Supply Chain
Management, in which an organisation tries to

optimise the complete set of activities of order entry,
purchasing, production, shipment, etc., in order to
minimise the lead-time and costs for production, at
the same time maximising value for the customer
(Wangler and Paheerathan, 2000). In the plant
management, a typical example of horizontal
integration is the realisation of a SCADA, which
acquires information coming from other SCADAs
placed inside the plant. In this case, Horizontal
integration is required as the different SCADAs run
on different platform, are featured by different set of
services and commands and use different data
representation and mining.

Vertical and Horizontal integration is often realised
in automatic fashion by the definition of particular
algorithms, known as Business Logics. They are
made up by a set of more or less complex functions,
concerning transformation of data produced and/or
maintained by different applications inside the plant.

Vertical and Horizontal integration generally features
the definition of the same (graphical) interface to the
final user, nevertheless which lower level
applications are present. Definition of this interface
has the advantage to avoid to the user the need to be
trained to use different tools and interfaces. So,
coupling Vertical/Horizontal integration with the
definition of a common interface to the lower level
applications, has the direct advantages to reduce the
training period for the workers, to optimise their
performances and to minimise their response time to
critical events (e.g. faults).

The Mobicossum project, IST 1999-57455, is a
CRAFT project (V European Framework
Programme) involving medium and small European
enterprises working in the field of gas and water
distribution and wastewater treatment. It started on
September 2002 and has been concluded in
December 2004. One of the RTD performers inside
the project is the Department of Computer and
Telecommunications Engineering, to which the
author of the paper belongs. The main goal of the
Mobicossum project was realization of both Vertical
and Horizontal Integrations in large utilities plant in
the area of interest of the partners, mainly water and
gas distribution and wastewater systems. Both
integrations have been realised through the definition
of a set of high level services useful for the
management of the plant. All these services have
been grouped inside a Middleware between (mobile)
worker and the lower level applications.

Literature presents many other approaches aiming to
define middleware to integrate information in
industrial environment. Among them, the most recent
ones propose technologies like Java and/or CORBA;
see for example (Martì et al., 1999) (Martì et al.,
2000). The main innovation introduced by this paper
to the existing approaches, is the use of a technology
based on Web Services (Newcomer, 2002). This

technology is platform-independent, like Java and
CORBA; but unlike Java and CORBA, many
applications like SCADAs, DSSs currently offer
interfaces based on it. For this reason, the author
believes that an easier integration may be achieved
adopting Web Service technology.

The paper will focus on the description of the
Middleware, highlighting the software technologies
adopted. The description will allow to point out how
the Vertical and Horizontal integration has been
realised, taking into account the management of large
plant.

2. IST 1999-57455 "MOBICOSSUM" PROJECT

Mobicossum aims to define a Middleware conceived
to offer specialised services for the management of
large plant, like water/gas distribution and
wastewater treatment systems. Middleware is placed
between users and the applications providing for
information related to the plant (e.g. SCADA, GIS
and DSS). One of the typical user profiles considered
in the project is a mobile worker inside the large
plant, equipped with PalmPC, connected to the
Control Station by GSM/GPRS/Wi-Fi; the tasks
carried on by the mobile worker may range from the
recovery of a failure in some device or part of the
plant, to the installation/removal of devices. Another
typical Mobicossum user profile is a supervisor who
is in charge to schedule the activities of the crews of
mobile workers.

Mobicossum is made up by different subsystems:
Presentation Manager (PM), Central Services (CS),
Logical View (LV), Data Management (DM) and the
Generalised Interface (GI). Figure 1 shows the
Mobicossum internal architecture.

Fig. 1. Mobicossum Middleware Architecture.

The PM generates the pages presented to the users
through his mobile device, as a function of the user
name, his location, the used presentation device
(Pocket PC, WAP phone, etc.), the application status,
etc. These pages are needed by the user to pass
and/or to receive information to/from the Control
Room.

The CS offers several services, among which secure
user access logging. Furthermore, when a particular
user accesses the system, it is required that the
middleware identifies its profile (e.g. technician,
manager, and so on). In this way, the Mobicossum

SCADA GIS DSS

Generalised Interface

Data
Management

Logical
View

Central
Services

Presentation Management

system may be automatically aware of the data
needed by the user, avoiding the need to explicitly
request the data desired. Other Central Services are
those concerning localisation of each mobile worker,
which is a very important requirement in large plant.

The DM is in charge of providing data brokerage. It
collects data from the different application connected
to Mobicossum. The data can be retrieved according
logical names and/or geo-references.

The LV realises both the Horizontal and the Vertical
Integrations described in the introduction.

The GI is the core of the Middleware. This
subsystem directly interfaces to the SCADA, GIS
and DSS applications. The main aim of the GI is that
to offer a unique set of services to access data
maintained by SCADA, GIS and DSS applications
and unique way to access these data. This allows
decoupling the high level applications with the real
SCADA, GIS and DSS ones.

The paper will focus on the description of the LV and
GI as they are the two modules mainly involved in
the realisation of the Vertical and Horizontal
Integration. In fact, the GI provides for a common
interface to every low level applications integrated
into Mobicossum environment. The LV uses this
common interface to allow the user to run specific
Business Logic realising the Vertical and/or
Horizontal Integration. It's very important to point
out that the Business Logics are not strictly linked to
a specific application (i.e. vendor) as they are written
using the common interface offered by the GI.

3. GENERALISED INTERFACE

Low level applications in a plant (e.g. SCADA, GIS
and DSS) offer specialised services, whose meaning
and scope is common to the most part of the products
available in the market. If the meaning and scope of
these services is the same, their implementation is
strictly linked to the particular application.
Considering, for example, a SCADA application, it's
always be possible to find groups of services
conceived to retrieve and update information from/to
field devices, but the names, the relevant syntax, the
number of parameters, the error codes returned by the
services are totally different changing from a
SCADA application to another one.

Presence of different set of services for the different
low level applications makes impossible (vertical
and/or horizontal) integration of the information flow
from/to each of these applications. For this reason,
the main aim in the definition of the Generalised
Interface was that to define a unique set of services
for each SCADA, GIS and DSS application. Each
service defined in the GI is (one-to-one or one-to-
many) mapped into the real corresponding service(s)

offered by the particular SCADA, GIS and DSS
application.

The definition of the common services for the GI has
been based on a study carried on during the first
months of the Mobicossum project. This study
pointed out the user requirements, in the sense of
services real needed by users in large plant for its
management, focusing on the field of water/gas
distribution and wastewater treatment systems, which
are the three areas of interest of the Mobicossum
partners.

A great problem strongly felt when accessing to
different SCADA, GIS and DSS applications, is the
different mechanisms used to achieve the access.
Different solutions, like COM, DCOM, OPC, Web
Services, currently exist and development of a client
application often means including different access
schema according to the SCADA, GIS, DSS
application the client application needs to access.
Accessing to a new SCADA, GIS, DSS application
implies to add new accessing schema for the specific
application. Again it's clear that (Vertical and/or
Horizontal) Integration could be achieved only if a
common access schema has been defined.

Current literature presents several approaches for
definition of communications between distributed
applications, but that based on Web Services
technology (Newcomer, 2002) features a lot of
advantages, as pointed out in the introduction.

For this reason, development of the access schema
offered by the GI was mainly based on Web Service
technology. In particular, it was assumed that the GI
exports the services defined trying to generalise the
services generally offered by SCADA, GIS and DSS
applications available on the market (as said before),
using the Web Service technologies. Web Service
technology has been used also for the exchange of
information between GI and the SCADA, GIS and
DSS applications.

XML/SOAP based communications (Newcomer,
2002) has been assumed to send/receive
request/response to/from the Generalised Interface
and to realise the exchange of information between
the Generalised Interface and the Web Services
related to each application.

As said before, integration of existing applications
may occur if each SCADA, GIS and DSS application
provides for Web Services-based access. Further,
Mobicossum Middleware, and in particular the GI,
has to acquire a complete know-how about the
applications below it and their available Web
Services, including all the Web Methods offered.
This is realised through the definition of a Web
Service Specification for each application. A Web
Service specification is a XML-Schema (Walmsley,
2001) file describing both Web Methods offered by

Web Services related to each SCADA, GIS and DSS
application, and the format of the XML/SOAP
messages to be exchanged with these Web Services.
According to the Web Service-based philosophy, also
the Generalised Interface has to provide for a XML-
Schema Generalised Interface Specification,
describing the generalised services offered by the GI.

On the basis of the Generalised Interface
Specification and the Web Service Specification
related to each application registered inside
Mobicossum, two mapping files must be defined for
each application; they will be used by a particular
component of the GI (the Mapper) to map the
request/response written according to Generalised
Interface Specification, into request/response written
according to Web Service specification of the
specific application. It was assumed to realise the
mapping of XML/SOAP document using XSLT
language (Tennison, 2002).

A key point in the definition of a Middleware like
that relevant to Mobicossum, is that to reduce as
much as possible the effort to integrate existing
SCADA/GIS/DSS applications, otherwise real use of
such a Middleware is very improbable. On the basis
of what said until now, the main requirement for the
integration of existing application into Mobicossum
is that these applications export their own
functionalities through Web Services. This seems a
constraint not so hard, as Web Services technology is
currently adopted by many SCADA/GIS and DSS
vendors, as said in the introduction. In any case,
realisation of wrappers translating existing interfaces
into Web Services-based Methods is feasible with a
very low effort.

3.1. Internal Architecture of the GI

The GI is made up by the following internal
components: Parser, Mapper and Dispatcher. The
Parser receives the XML\SOAP request coming from
the client of the GI (i.e. the upper modules in
Mobicossum Middleware, according to Figure 1) and
checks if the XML document is valid. For the
document validation, the Parser verifies that the
XML/SOAP message is well formed and has been
prepared according to the Generalised Interface
Specification describing the correct structure of the
incoming requests, as said before. If the request
doesn’t match, an error message will be returned; on
the other hand, if the document is valid, the request
will be sent to the Mapper module. For each response
coming from the application, the Parser will receive a
document from the Mapper component (described in
the following). In this case the Parser will check that
the format of the document has been prepared
according to the XML-Schema for the response,
passing the valid document to the client.

The Mapper performs the translation of XML/SOAP
request, sent to GI, into the format recognised by

destination application. As said before, this mapping
has been realised on the basis of suitable Mapping
files written in XSLT language (Tennison, 2002).
When the Mapper receives a request, written
according to Generalised Interface Specification, it
maps the request in the XML/SOAP request format
of the destination application, using a Request Map
file, that is the map file (in XSLT language) related
to the specific application. The document resulting
by mapping represents the format of the request that
must be delivered to the specified destination
application. Once the Mapper has processed a
request, the request is passed to the Dispatcher. The
same process is made for the response, coming from
the application. To map the response, coming from
application, the Mapper uses another map file
(Response Map file) that allows translating the
message wrote according to the format of the specific
application in the format defined by GI specification.
For each request forwarded by the Mapper, the
Dispatcher establishes the HTTP connection with
web service relevant to the requested application.

A particular problem concerning the communication
between Dispatcher and the Web Services of each
application is that the HTTP is a stateless protocol.
Each request to a Web Service is independent, and
the application retains no memory of a client’s past
requests. To overcome this limitation, the sessions
state handle has been introduced, allowing the GI to
use HTTP cookies for maintenance of the state.

GI is able to handle concurrent multiple connections
concerning different requests by the same client or by
different clients. For each request, an instance of the
GI modules (Parser, Mapper, Dispatcher) is created.
The instance is deleted when the request has been
satisfied.

3.2 GI Implementation

The architecture of the GI described in the previous
section, has been implemented trying to avoid
dependence on particular commercial products; so it
was based on the use of free libraries and wasn't
linked to a specific platform.

Implementation has been realised on the basis of an
analysis of the state of the art about free
software/libraries useful to manipulate XML files for
the parser, mapper and dispatcher. The analysis
performed has highlighted the advantages in using
DOM libraries to realise parsing of XML documents
and Dispatcher functionalities, and XSLT engine to
realise the Mapper. DOM presents an easy processed
standardised interpretation of an XML document to
applications and scripts. Different free
implementations of the DOM exist in different
languages and platforms, see (Marini, 2002) for
example.

In order to implement the Mapper, use of the XSLT
engine has been considered. The XSLT engine can be
an external component, a library or a class. Different
free implementations of this engine exist, again in
different platforms.

Dispatcher has been implemented as class. It is
instanced after the Mapper has performed the SOAP
request transformation. The Dispatcher exports one
method that implements the routine to handle the
communication with the Web Service of each
specific SCADA, GIS and DSS application.

Implementation based on the use of DOM and XSLT
Engine is featured by very few constraints on the
software requirement. DOM and XSLT Engine are
not linked to a specific platform, as it's possible to
find libraries for Windows and for Unix platform.
Management of Web Services can be realised by IIS
or by Apache for example, but there is no constraints
on this item. No need to use a specific software run-
time or development environment (like .NET run-
time and Visual Studio .NET) is present.

4 LOGICAL VIEW: VERTICAL AND
HORIZONTAL INTEGRATION

As said in the introduction, vertical and horizontal
integration is a very felt need in the management of
large plant, due to the daily execution of Business
Logics retrieving and transforming data maintained
by distributed applications, like SCADA, GIS and
DSS.

An example of Business Logic is related to the
management of anomalies in a utility plant for the
water distribution. A technician, using a mobile
device equipped with GSM/GPRS and GPS cards,
discovers an anomaly in the plant, while moving
inside it. Through his mobile device (connected to
the control system by the GSM/GPRS card), he
invokes the Business Logic relevant to the
management of anomalies. This Business Logic, first
of all, allows the mobile worker to be localised
(through GPS card) by the control system; then
information maintained in GIS and concerning the
map of the plant near to the worker (with the list of
devices there present) is sent to him. On the basis of
the map received, the worker can enquire the system
about detailed information concerning the devices he
assumes involved in the anomaly encountered. The
system retrieves information from a SCADA to give
the worker what he has requested. In order to take
decisions about what to do (for example, closing a
valve or starting a pump), the technician may ask the
system to be supported by a DSS, running a
simulation in order to understand, for example, what
happens closing a valve or starting a pump.

This example of Business Logic clearly clarifies what
Vertical and Horizontal integration means. As it can

be seen, Vertical integration is realised for each
single application taken into account (i.e. SCADA,
DSS and GIS), as information needed to the user are
given to him in the exact format he requests; this
includes data transformation according to a requested
data representation and visualisation according to the
specific mobile device used by the worker.
Horizontal integration is realised as the Business
Logic seen before involves data flow and data
transformations relevant to several applications.

Management of the Business Logics is realised by
the Logical View (LV) module in Mobicossum
Middleware. As can be seen from Figure 1, this
module is placed between the Presentation
Management (PM) and the GI, because it has to
receive, through the PM, the identification of the
Mobicossum user (e.g. the mobile worker), the kind
of business logic he wants to run, all the information
needed to execute the business logic; finally, the LV
has to provide for the relevant results to the user.
Data exchange with the real applications occurs
during execution of the business logic and is based
on the Generalised Interface (GI) services, so making
the Vertical and Horizontal Integration of
Information independent from the particular
application, vendor and platform. This points out the
important role played by the GI inside Mobicossum
platform.

In order to perform its role, the LV has also to
interact with the Data Management (DM) and the
Central Services (CS). Mainly the LV uses the DM to
have information about the real applications and data
available; as an example, it may happen that the LV
has to know the path (e.g. internet URL address) of
the real application (e.g. SCADA) maintaining data
relevant to the devices placed near to the worker, and
has to know the list of the variable tags, inside each
SCADA, relevant to these devices (to read their
values, for instance). Central Service is mainly used
by LV to authorise user access and for his
localisation.

The realisation of the Horizontal and Vertical
integration performed by the LV has been based,
inside Mobicossum project, on the following
hypotheses:
1. For each user profile (linked to its role inside the

plant), a set of business logics is defined and
maintained inside Mobicossum middleware (in
the Central Service).

2. Each business logic is implemented as a script
able to perform simple/complex manipulations on
data coming (i.e. maintained) by
SCADA/GIS/DSS applications.

3. A Directory Service inside the Central Service
module is in charge to maintain all the
information needed to the LV to retrieve the
Business Logic script requested by the (mobile)
user (e.g. its path inside a repository).

4. Each script corresponding to a business logic
contains invocations to methods offered by the
LV. Each LV methods may invoke in turn,
methods offered by the other modules inside
Mobicossum (i.e. GI, DM, CS).

According to the hypotheses seen before, the main
activities performed by the LV can be summarised:
• The LV receives, from the PM, the identification

of the (mobile) user accessing the middleware
and the information about the Business Logic he
has chosen.

• The LV invokes particular services offered by the
Central Service module to have back from the
Directory Service the path needed to retrieve the
script requested by the (mobile) user.

• The LV executes the Business Logic Script
chosen by the (mobile) user, giving him the
related results through the PM.

The LV has been realised by a layered architecture,
made up by the Business Logic Level (BLL) and the
Basic Logical View (BLV). The BLL offers to the
PM the methods allowing the user to interact with
Mobicossum Middleware. A set of web service-based
methods have been defined at the interface with PM,
allowing the (mobile) user to retrieve value, image,
time series and to dynamically interact with
Mobicossum environment trough a dialog
mechanism. Further, the BLL is in charge to search
and retrieve (using the CS services) the Business
Logic selected by the user through the PM, and to
execute it. In order to achieve this goal, a script
manager module inside the BLL has been defined.

The BLV mainly offers the services useful to access
the other modules of Mobicossum (GI, DM and CS),
according to the Business Logic to be executed.
Following the philosophy of the project, the
communication between the BLL and the BLV has
been realised through Web Services technology. The
Web Services offered by the BLV to the BLL
concern the monitor and control of a plant, the
management of anomalies and alarms of devices, the
access to simulation models, and the warehouse
management.

4.1. LV Implementation

Implementation of both the BLL and BLV has been
based on open source software, without any
constraints to use a specific operating system. As an
example, the implementation of the Script Manager
module and the Web Services offered by the BLL has
been based on PHP (Schlossnagle, 2004).

5. FINAL REMARKS

The paper has presented an overview on the main
features of the CRAFT IST 1999-57455 project,
highlighting the internal architecture and

implementation of the Middleware, conceived to
provide for services useful in the management of
large plants (generally utilities plant, like that for
water distribution). The main feature of this
middleware is its capability to provide for vertical
and horizontal integration, which are very needed in
the management of plants, as clearly explained in the
paper.

Mobicossum project has been concluded in 2004.
Before its conclusion, three pilot installations have
been realised in order to highlights the real
advantages of the projects. They were realised in a
Spain, in a gas distribution utility plant, in Italy, in a
water distribution utility plant, and in Germany, in a
wastewater treatment system. The partners and the
RTD performers of the project made a lot of effort to
develop the Mobicossum project, mainly because
they trust on the real advantages that can be
introduced by Mobicossum ICT Platform in a real
management of a large plant.

REFERENCES

Martí, P., Aguado, J.C., Rolando, F.,Velasco, M.,

Colomar, J., and Fuertes, J.M., (1999), A Java-
Based Framework for distributed supervision
and Control of industrial processes,
Proceedings of the 7th IEEE International
Conference on Emerging Technologies and
Factory Automation. Barcelona, Spain.

Martí, P., Aguado, J.C., Rolando, F.,Velasco, M.,
Colomar, J., and Fuertes, J.M., (2000),
Distributed Supervision and Control of
Fieldbus-Based Industrial Processes,
Proceedings of the 3th IEEE Internacional
Workshop on Factory Communication Systems.
Porto, Portugal.

Marini, J. (2002), Document Object Model
(Developer's Guide), Osborne McGraw-Hill.

Newcomer, E. (2002), Understanding Web Services:
XML, WSDL, SOAP, and UDDI, Addison-
Wesley Professional.

Schlossnagle, G. (2004), Advanced PHP
Programming, Sams

Tennison, J. (2002), Beginning XSLT, Wrox Press
Inc.

Walmsley, P. (2001), Definitive XML Schema,
Prentice Hall.

Wangler, B. and S.J. Paheerathan (2000), Horizontal
and Vertical Integration of Organizational IT
Systems, in Information Systems Engineering:
State of the Art and Research Themes, (S.
Brinkkemper, E. Lindencrona and A. Solvberg
(eds.)), Springer.

