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Abstract: This paper deals with adaptive estimation of unknown disturbances
in a class of nonminimum phase nonlinear systems. The unknown disturbances
are combination of sinusoidal disturbances with unknown frequencies, unknown
phases and amplitudes. The only information of the unknown disturbances is the
number of distinctive frequencies inside. The class of nonlinear systems considered
in this paper consists of nonlinear systems in the output feedback form and the
systems may be nonminimum phase, ie, with unstable zero dynamics. An adaptive
estimation algorithm is developed to give exponentially convergent estimates of the
unknown disturbance and the system states. The asymptotic convergent estimates
of unknown frequencies are also obtained. The proposed estimation algorithm
works for both minimum phase and nonminimum phase nonlinear systems in
output feedback form.Copyright c©2005 IFAC
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1. INTRODUCTION

In engineering systems, there are deterministic
disturbances, apart from random disturbances.
Among the various types of deterministic dis-
turbances, sinusoidal disturbances have attracted
a large amount of research interests, from the
estimation of the disturbance frequencies to the
compensation or rejection of disturbances. Es-
timation and reconstruction of unknown distur-
bances have their importance for detection and
monitoring, apart from the stabilization of a sys-
tem and disturbance rejection. It was until fairly
recently that a global convergent estimation al-
gorithm was proposed for estimation of a single
frequency of the stand alone sinusoidal signal (Hsu

et al., 1999), and more recently an algorithm was
proposed to estimate multiple frequencies from a
sinusoidal signal using adaptive observers (Marino
and Tomei, 2002).

This paper deals with estimation of unknown si-
nusoidal disturbances for nonlinear systems in the
output feedback form. The proposed algorithm
allows the system to be nonminimum phase. A
new set of filters are designed to extract the contri-
bution of the disturbance to the states and to es-
timate disturbance and the frequencies. The esti-
mation starts from the contribution to the output
of the system, from which the disturbance char-
acterization such as frequencies can be obtained.
Based on this estimation, the contributions to



other states can then be calculated and finally
the unknown disturbance is reconstructed. The
proposed estimation algorithm imposes no restric-
tion on the number or the range of disturbance
frequencies, and no restriction such as projection
used in (Marino et al., 2003) for the adaptive
law for parameter estimation. The estimated dis-
turbance and frequencies asymptotically converge
to their true values. An illustrative example is
included with simulation results shown in figures.

2. PROBLEM FORMULATION

Consider a singleinputsingleoutput nonlinear sys-
tem which can be transformed into the output
feedback form

ẋ=Acx+ φ(y) + b(u− µ)

y =Cx (1)

with
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where x ∈ Rn is the state vector, u ∈ R is the
control, φ, is a known nonlinear smooth vector
field in Rn with φ(0) = 0, µ ∈ R is a matched
disturbance which is generated from an unknown
exosystem

ẇ= Sw

µ= lTw (2)

with w ∈ Rs.

Assumption 1. The zeros of polynomial B(s) =
∑n

i=ρ bis
n−i have non-zero real parts.

Remark 1. Assumption 1 only requires that B(s)
has not zeros on the imaginary axis. It allows
B(s) to have positive real parts, ie, the case of
nonminimum phase systems.

Assumption 2. The eigenvalues of S are with zero
real parts and are distinct.

Remark 2. Assumption 2 ensures that the dis-
turbances are combination of sinusoidal signals
including constant bias. It follows the assumption
made on unknown exosystems in (Nikiforov, 1998;
Ding, 2003).

Remark 3. As shown in (Ding, 2003), the un-
matched disturbances in the nonlinear systems
in the output feedback form can be transformed

to the matched case of (1), if Assumption 2 is
satisfied.

The estimation problem considered in this paper
is to estimate the disturbance µ, the state x and
the unknown disturbance frequencies character-
ized by the eigenvalues of S.

3. PRELIMINARY DESIGN AND ANALYSIS

If the disturbance does not exist in (1), the
system (1) is in the linear-observer-error format
(Isidori, 1995). In that case, a state observer can
be designed as

ṗ= (Ac + kC)p+ φ(y) + bu− ky (3)

where p ∈ Rn, k ∈ Rn is chosen so that Ac + kC
is Hurwitz. The difficulty in the state estimation
is due to the unknown disturbance µ. Based on
Assumption 2 and the design of k, Ac + kC, and
S have exclusive eigenvalues, and therefore there
exists a solution Q ∈ Rn×s of the following matrix
equation for given S

QS = (Ac + kC)Q+ blT (4)

Define

q(w) = Qw (5)

then (4) guarantees

q̇= (Ac + kC)q + bµ (6)

Since S is unknown, the solution Q from (4)
does not exist and the filter (6) cannot be im-
plemented due to the unknown disturbance µ.
But the two equations (4) and (6) are impor-
tant in the reformulation of the estimation prob-
lem through the property stated in the following
lemma (Ding, 2003).

Lemma 3.1 The state variable x can be expressed
as

x = p− q + ε (7)

where p is generated from (3) with q and ε
satisfying (6) and (8) satisfying

ε̇ = (Ac + kC)ε (8)

The state estimation is solved if an estimate of q
is provided. Referring to (6), the problem which
is going to be solved is to estimate both the state
and the unknown input to a nonminimum phase
linear dynamic system. The solution depends on
the characteristics of the matched disturbance µ.

For the convenience of filter design for adaptive es-
timation, the exosystem (2) is to be reformulated.



Choose a controllable pair {F,G} with F ∈ Rs×s

Hurwitz and G ∈ Rs. For a matrix S satisfying
Assumption 2, there exists a solution M ∈ Rs×s

of the following equation

MS − FM = GQ(1) (9)

where Q(i) denotes the ith row of Q. Introduce a
state transform of the exosystem

η = Mw (10)

it follows that

η̇ = (FM +GQ(1))w

= (F +GψT1 )η

:= Foη

q1 = ψT1 η (11)

where ψT1 = Q(1)M
−1. In the new coordinate η, q

can then be expressed as

q = QM−1η := [ψ1, . . . , ψs]
T η (12)

and

µ = lTM−1η := ψTu η (13)

Relating q and µ expressed in (12) and (13) to the
dynamics shown in (6)gives

ψTi Fo = ψTi+1 + kiψ
T
1 , for i = 1, . . . , ρ− 1 (14)

and

ψTi Fo =ψTi+1 + kiψ
T
1 + biψ

T
u , for i = ρ, . . . , n− 1

ψTnFo = knψ
T
1 + bnψ

T
u (15)

Define

ψTz := [ψρ+1, . . . , ψn]
T −

ρ
∑

i=1

Bρ−ib̄ψTi (16)

where B and b̄ are given by
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It can be shown from (15) that

ψTz Fo = BψTz + kzψ
T
1 (17)

where

kz = [kρ+1, . . . , kn]
T −

ρ
∑

i=1

Bρ−ib̄ki +Bρb̄

Using the notation ⊗ for the Kronecker product
of matrices and vec(·) for the vector obtained by
rolling out the column vectors of a matrix, and
using the identity vec(ABCT ) = (A ⊗ C)vec(B)
(Graybill, 1983), from (17), it is obtained that

[F To ⊗ I(n−ρ) − Is ⊗B]vec(ψz) = vec(ψ1k
T
z )(18)

and

vec(ψz) = Σ−1vec(ψ1k
T
z ) (19)

where

Σ = F To ⊗ I(n−ρ) − Is ⊗B (20)

4. FILTER DESIGN AND DISTURBANCE
ESTIMATION

Based on the analysis of the influence of distur-
bance in the state variables through Q, a set of
filters and estimation algorithm are proposed for
state variables and the input disturbance. From
the analysis in the previous section, it is clear that
q and µ can be estimated or evaluated if η and ψ1

are available. For the estimation of η and ψ1, the
following filters and adaptive law are designed as

ξ̇ = Fξ +G(p1 − y) (21)

ζ̇ = Fζ +Gψ̂T1 ξ (22)

˙̂
ψ1 = Γξ(ξ − ζ)TPG (23)

where Γ is a positive definite matrix, and P is the
positive definite matrix satisfying

PF + F TP = −2Is (24)

The following lemma describes the properties of
the estimates.

Lemma 4.1 The estimates ξ and ψ̂1 converge to
η and ψ1 respectively. Furthermore the errors
of the estimates are bounded by exponentially
decaying functions, ie, there exist some positive
real constants dξ , dψ, λξ and λψ such that

‖η(t) − ξ(t)‖ < dξe
−λξt (25)

‖ψ1 − ψ̂1(t)‖ < dψe
−λψt (26)

Proof. Let us define eξ = ζ−ξ. It can be obtained
from (22) and (21) that

ėξ = Feξ + Cε (27)

From (8), it can be seen that ε is exponentially
decaying. In fact, putting eξ and ε together gives,



[

ėξ
ε̇

]

=

[

F GC
0 (Ac + kC)

] [

eξ
ε

]

(28)

Since F and (Ac + kC) are Hurwitz, the system
(28) is exponentially stable, and therefor there
exist positive reals d1 and λ1 such that (25) is
satisfied.

To establish the convergence of ψ̂1, define

e = ξ − η (29)

From (21) and (22), it follows that

ė= Fe+GψT1 eξ −GCε+GξT ψ̃1 (30)

where ψ̃1 = ψ − ψ̂1. Define

ē =





e
eξ
ε



 (31)

Based on (8), (28) and (23), the adaptive systems
can be arranged in the following format,

˙̄e= Āē+ Ω(t)T ψ̃1

˙̃ψ1 =−ΓΩ(t)P̄ ē (32)

where ψ̃1 = ψ1 − ψ̂1,

Ā =





F GψT1 −GC
0 F GC
0 0 (Ac + kC)





Ω(t) =
[

ξGT 0 0
]

P̄ =





P
γ1P

γ2Pε





with γ1 and γ2 being positive reals and Pε being
the positive definite matrix satisfying

Pε(Ac + kC) + (Ac + kC)TPε = −2I (33)

Let

P̄ Ā+ ĀP̄ = −Q̄ (34)

A direct evaluation gives

Q̄ =





2Is −PGψT1 PGC
−ψ1G

TP 2γ1Is −γ1PGC

CTGTP −γ1C
TGTP 2γ2In



(35)

From the structure of Q̄, Q̄ can be made positive
definite by choosing a sufficient large γ1 and then
a sufficient large γ2.

Define

V = ēT P̄ ē+ ψ̃T1 Γ−1ψ̃1 (36)

Then from (32), it follows that

V̇ = −ēT Q̄ē (37)

Therefore ē and ψ̃1 are bounded and the in-
variant set theorem (Khalil, 2002) ensures that
limt→∞ ē(t) = 0.

The consistent excitation condition of Ω(t) is

needed to establish the convergence of ψ̂1. From
the definition of η in the previous section, it can be
seen that η is persistently excited, ie, there exist
two positive reals T and γ3 such that

t+T
∫

t

η(τ)η(τ)T dτ ≥ γ3Is > 0, ∀t ≥ 0 (38)

With

t+T
∫

t

Ω(τ)Ω(τ)T dτ = ‖G‖2

t+T
∫

t

ξ(τ)ξ(τ)T dτ

= ‖G‖2

t+T
∫

t

(η(τ) − eξ(τ))(η(τ) − eξ(τ))
T dτ(39)

and the fact that η is bounded and eξ converges
to 0 exponentially, it can be concluded that there
exist a to > 0 and a γ4 with 0 < γ4 < γ3‖G‖

2

such that

t+T
∫

t

Ω(τ)Ω(τ)T dτ ≥ γ4Is > 0, ∀t ≥ t0 > 0 (40)

Since ē(t0) and ψ̃1(t0) are bounded, applying
Lemma B.2.3 (Marino and Tomei, 1995) leads
that (ē, ψ̃1) = 0 is a globally exponentially stable
equilibrium point for (32), which implies (26).

With the estimates ψ̂1 and ξ for ψ1 and η respec-
tively, the following algorithms are proposed for
estimation of ψi, i = 2, . . . , n, and finally for q
and µ. For i = 2, . . . , ρ,

ψ̂Ti = ψ̂Ti−1(F +Gψ̂T1 ) + ki−1ψ
T
1 , (41)

and







ψ̂Tρ+1
...

ψ̂Tn






= ψ̂Tz −

ρ
∑

i=1

Bρ−ib̄ψ̂Ti (42)

where

vec(ψ̂z) =
|Σ̂|

σ + |Σ̂|2
adj(Σ̂)vec(ψ̂1k

T
z ) (43)

with



Σ̂ = (F +Gψ̂T1 )T ⊗ I(n−ρ) − Is ⊗B (44)

σ̇ =−λσσ, σ(0) = σ0 (45)

for some positive reals λσ and σ0. Notations | · |
and adj(·) are used to denote the determinant and
the adjoint matrix of a matrix respectively. The
following theorem summarize the results of the
disturbance and state estimation.

Theorem 4.2 Based on the filters (21), (22), (23)
and estimates shown in (41) and (43), the esti-
mates of the state and the disturbance of (1) are
given by

x̂= p+ ψ̂T ξ (46)

µ̂= ψ̂Tu ξ (47)

where

ψ̂Tu =
1

bρ
[ψ̂Tρ+1 − ψ̂Tρ (F +Gψ̂T1 ) − kρψ

T
1 ] (48)

and the estimate of exosystem matrix F +GψT1 is
given by

F̂o = F +Gψ̂T1 (49)

There exist positive real constants λx, dx, λµ, dµ,
λF , and dF such that

‖x(t) − x̂(t)‖ ≤ dxe
−λxt (50)

‖µ(t) − µ̂(t)‖ ≤ dµe
−λµt (51)

‖Fo − F̂o(t)‖ ≤ dF e
−λF t (52)

Proof. Define, for the convenience of expression,
that an estimate is an exponentially convergent
estimate if the estimation error is bounded by
a decaying exponential function.It is to be es-
tablished that the estimates for the state and
for the disturbance are exponentially convergent
estimate. Let F̃o = Fo − F̂o. From (11) and (49),
it can be obtained that

‖F̃o‖= ‖Gψ̃T1 ‖ ≤

√

√

√

√

s
∑

i=1

s
∑

j=1

G2
i ψ̃

2
j

= ‖G‖‖ψ̃1‖ ≤ ‖G‖d2e
−λ2t (53)

Hence, (52) is established. Let ψ̃i = ψi− ψ̂i. From
(14) and (41), it follows that, for i = 2, . . . , ρ,

‖ψ̃i‖ = ‖ − ψ̃Ti−1Fo − ψ̂Ti−1F̃o + ki−1ψ̃
T
1 ‖

≤ ‖ψ̃i−1‖‖Fo‖ + ‖ψ̂i−1‖‖F̃o‖ + |ki−1|‖ψ̃1‖(54)

Since ψ̂1 and F̂o are exponentially convergent es-
timates, and ψ̂1 is bounded, it can be concluded
from (54) that ψ̂2 is an exponentially convergent

estimate. To use (54) recursively, it can be ob-

tained that ψ̂i, for i = 2, . . . , ρ are exponentially
convergent.

It can be shown that |Σ̂| and adj(Σ̂)vec(ψ̂1k
T
z )

are exponentially convergent estimates of |Σ| and
adj(Σ)vec(ψ1k

T
z ) respectively, as they are func-

tions of the elements of ψ̂1 obtained by multipli-
cations and additions. From (19) and (43), it can
be obtained that

vec(ψz) − vec(ψ̂z)

=
1

|Σ|
adj(Σ)vec(ψ1k

T
z )−

|Σ̂|

σ+|Σ̂|2
adj(Σ̂)vec(ψ̂1k

T
z )

=
σadj(Σ)vec(ψ1k

T
z )

|Σ|(σ+|Σ̂|2)
+

(|Σ̂|−|Σ|)adj(Σ̂)vec(ψ̂1k
T
z )

|Σ|(σ+|Σ̂|2)

+
|Σ̂|[(adj(Σ)vec(ψ1k

T
z )adj(Σ̂)vec(ψ̂1k

T
z )]

|Σ|(σ + |Σ̂|2)
(55)

It can be shown that each of the three terms
in (55) is bounded by a decaying exponential
function, as σ is a decaying exponential function.
Therefore it can be concluded from (42) that ψ̂i,
i = ρ + 1, . . . , n are exponentially convergent
estimates, and hence

Ψ̂ := [ψ̂1, . . . , ψ̂n] (56)

is exponentially convergent. Finally from

‖x− x̂‖= ‖ε− ΨT η + Ψ̂T ξ‖

= ‖ε− ΨT (η − ξ) + (Ψ̂T − ΨT )ξ‖

≤ ‖ε‖+ ‖Ψ‖‖η − ξ‖ + ‖Ψ̂− Ψ‖‖ξ‖(57)

‖µ− µ̂‖= ‖ψTu η − ψ̂Tu ξ‖

≤ ‖ψu‖‖η − ξ‖ + ‖ψu − ψ̂u‖‖ξ‖ (58)

it can be concluded that x̂ and µ̂ are exponentially
convergent estimates of x and µ respectively.

5. AN EXAMPLE

Consider a nonlinear system in output feedback
form

ẋ1 = x2 − y3 + (u− µ)

ẋ2 =−(u− µ)

y= x1 (59)

where µ is a sinusoidal disturbance generated by

ẇ=

[

0 ω
−ω 0

]

w(0) = w0

µ= lTw (60)

with ω, l and w0 unknown. It is easy to see that
the system (59) are in the format of (1) with
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Fig. 1. Estimate of ψ1

φ(y) = [−y3 0]T and b = [1 − 1]T . The system is
nonminimum phase with the nonminimum phase
zero at s = 1.

The filters for disturbance estimation can be de-
signed accordingly. The simulation study has been
carried out for the disturbance estimation. The
simulation results shown below are for the settings
k1 = −3, k2 = −2, f1 = 3, f2 = 2, g = 1,
Γ = 1000I . The settings for the disturbance are
ω = 1, w0 = [0, 1]T , i.e., the disturbance is set
as µ(t) = sin t. The estimate for ψ1 is shown

in Figure 1, where ψ̂1 converges to [−8, 3]T , the
correct value for ψ1. In fact, it is easy to check that
the eigenvalues of (F + G[−8, 3]T ) are ±1j.The
estimate of the disturbance is shown in Figure 2,
with a clear convergence to the disturbance. An
enlargement of a section of Figure 2 is shown in
Figure 3.

8. CONCLUSIONS

A disturbance estimation algorithm has been pro-
posed for nonlinear systems in the output feed-
back form. With the estimation of the unknown
disturbance, the system state can also be esti-
mated. The big difference between the proposed
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Fig. 3. An enlargement of a part of Figure 2

method and the methods in the literature for
nonlinear systems is that the algorithm proposed
in this paper works for the nonminimum phase
nonlinear systems, and the others do not. The
nonminimum phase makes the estimation much
more diffcult. Despite the diffculty of dealing
with nonminimum phase, the proposed algorithm
achieves exponentially convergent estimates of the
disturbance and its characteristic matrix, from
which the disturbance frequencies can be calcu-
lated. The results presented in this paper will be
very useful in control design for rejecting unknown
disturbance.
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