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Abstract: A model of cortex-basal ganglia-thalamus-cortex loop is presented. Even 
though the mentioned loop has been proposed to take part in different cognitive 
processes, the model exploits only the “action selection” function. The analysis of the 
model is based on the stability analysis of a non-linear dynamical system. Thus a 
biologically valid model of a cognitive function is given and its analysis is accomplished 
using system theory tools.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Modelling the cognitive processes has at least twofold 
advantage, inspiration of new engineering concepts 
and understanding the mechanisms behind the 
cognitive behaviour. Simple models of cognitive 
processes may be restrictive in explaining the 
considered phenomena in whole, but could give clues 
for the observed dysfunctions.  
 
In this paper, “action selection” function of basal 
ganglia will be examined from systems level point of 
view. Basal ganglia are a group of sub-cortical brain 
structure, which take part not only in motor functions 
but also in cognitive processes as action gating, action 
selection, sustaining working memory representations 
and sequence processing (Prescott, et al., 2003; 
Gurney, et al., 2001; Taylor and Taylor, 2000). 
While, the proposed model is simple compared to 
already existing realistic models in the sense of 
neurobiology (Gurney, et al., 2001; Taylor and 
Taylor, 2000; Hasan, et al., 2004), it is much more 
complicated than models accomplishing its “action 
selection” function by a MAX-NET structure 
(Kaplan, et al., 2003). The simplicity of the model 
eased the analysis, thus provided some explanation on 
the effect of the internal connection of basal ganglia 
structures and dopamine discharge. By perturbing 
parameters corresponding to interconnection weights 
and dopamine discharge, dysfunction of “action 
selection” property is obtained.  Thus one function of 
a sub-cortical structure is modelled as a non-linear, 
dynamical, discrete time system and its analysis is 
carried out utilizing the concept of fixed points, 

LaSalle’s invariance principle, constructing domains 
of attraction, etc. 
 
In the second section, following a brief explanation of 
cortex-basal ganglia-thalamus-cortex loop (C-BG-
TH-C), the model will be introduced and the stability 
analysis of the system will be given. The effect of 
parameters on the behaviour of the model will be 
considered. In the third section, how the model 
accomplishes action selection will be explained, the 
domains of attraction will be illustrated and how they 
could be interpreted to explain the “action selection” 
will be discussed. Furthermore, the model can be 
utilized in discriminating more than two actions and 
this property is obtained in subsection 3.2. The effect 
of parameters on “action selection” disabling the 
selection between competing actions also will be 
explained.  In the fourth section, the dopamine effect 
will be introduced and its effect on “action selection” 
will be presented. 
 
2. A MODEL FOR CORTEX-BASAL GANGLIA-

THALAMUS-CORTEX LOOP 
 
Basal ganglia (BG), most thoroughly studied neural 
structure, once was thought to be effective only in 
motor control but now its role in cognitive processes 
is more appreciated (Packard and Knowlton, 2002). 
The dysfunctions of this structure exploit itself 
especially in brain disorders as Parkinson’s disease, 
Huntington’s disease and schizophrenia. Existence of 
at least five different loops of C-BG-TH-C has been 
suggested (Alexander and Crutcher, 1990). In each of 
these loops different substructures of cortex and BG 



 

     

            
Fig. 2. Activation function of a neuron 
and its saturation regions ( bold ) 

are employed. The principle substructures of BG are 
proposed to be the striatum (STR), the subthalamic 
nucleus (STN), the globus pallidus internal and 
external (GPi, GPe), the substantia nigra pars 
reticulata and compacta (SNr, SNc). As different 
substructures are active for different functions 
(Gurney, et al., 2001; Taylor and Taylor, 2000), only 
those exploited in Figure 1 are considered in the 
proposed model. The main input components of BG, 
STR and STN, and the main output components, GPi 
and SNr, are all considered in the model. The main 
effect of BG on thalamus is inhibitory thus in the 
model the connection from BG to thalamus is 
negative, whereas the connections from cortex to BG 
are positive and these are shown as excitatory 
connections in Figure 1. As system level of modelling 
is considered the number of neurons for each 
structure is minimized. To carry out the analysis, first 
only one neuron for each structure in C-BG-TH-C 
loop is considered then in the following sections the 
number of neurons will be multiplied according to 
function considered.  
 

The principal structures of basal ganglia considered in 
the model are STR, STN, and GPi/SNr and they are 
denoted in equation (1) by ),(kr  ),(kn and ),(kd  
respectively. The other structures, which have 
connection with basal ganglia are denoted by 

)(km and ),(kp and they correspond to thalamus and 
cortex, respectively.   
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Due to biological structure considered, the parameters 
a, b are positive quantities. 
 
The subsystem given by equation (1) is rewritten in 
compact form as follows: 
 

))(()()1( kxFkxkx Λ+Γ=+          ( 1Σ ) 

 

 In system 1Σ , 55: ℜ→ℜF  and 55  , ×ℜ∈ΛΓ . )(xf  

is defined as )1)6.0(2(tanh
2
1ˆ)( +−= xxf  and it is 

illustrated in Figure 2. The function )(xg  is 
determined as )( θ−xf  in order to model dopamine 
effect. The value of θ is fixed to 0.3 in the following 
except section 4, where its effect on “action 
selection” is considered. 

The subsystem 1Σ  is a discrete-time, non-linear 
dynamical system. The solution of subsystem 1Σ  is 
bounded if 1<λ . The solution of 1Σ  can be written 
as follows: 
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Let { })(maxˆ

5
xF

x
Λ=
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ξ   

Such a ξ  exists because (.)F  is bounded. Then,   
 

( ) ξ⋅++Γ+Γ+Γ≤ −− Ixnx nnn ...)0()( 21  
   (4) 

As long as 1<λ , the second term on the right hand 

side of equation (4) will converge to ξ
λ−1

1  as 

∞→n . Thus the solution of 1Σ  is bounded.  In the 
following, during simulations λ  is taken as 0.5. 
 
Following LaSalle’s invariance theorem (LaSalle, 
1986) it can be shown that the solutions of 1Σ  
converge to an invariant set.  
 
Proposition 1: The solutions of 1Σ  converge to an 
invariant set M  when 1<λ . 

Proof: PxPxxV TT=̂)( , where P is the annihilator of 
Γ  and Λ , i.e., 0=Λ=Γ PP .  
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TT

TT

−

++=−+
   (5) 

( ) ( ) PxPxxFxPPxFx TTTT −Λ+ΓΛ+Γ= )()(  
   (6) 
Since ΓP  and ΛP are zero matrices, 
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5,0))(())1(( ℜ∈∀≤−=−+ xPxPxkxVkxV TT . 

 
As )(xV is bounded since 1<λ  and 

0))(())1(( ≤−+ kxVkxV , 5ℜ∈∀x  the solutions of 

1Σ  converge to an invariant set due to LaSalle’s 
invariance theorem. �  
 
From LaSalle’s invariance theorem (LaSalle 1986), 
the invariant set is contained in the set 

{ }0))(())1((5 =−+ℜ∈= kxVkxVxE . Now, there is 
need to show what the invariant set is composed of. 
A fixed point *x of subsystem 1Σ  satisfies 

)( *** xFxx Λ+Γ= . The set E  contains the fixed 
points since the difference ))(())1(( kxVkxV −+  is 
equal to zero when 

0)()()1( =−Λ+Γ=−+ xxFxkxkx  and by definition 
fixed point satisfies this equality. But set E  contains 
more elements since there are other possible solutions 
of 0))(())1(( =−+ kxVkxV . In the model fixed 
points will correspond to action selection, so it is 
important to determine the regions where the fixed 
points are present.  
 
To find out where the fixed points of subsystem 1Σ  
are, one approach is to find the region where the right 
hand side of equation (1) is a contraction mapping 
(Vidyasagar, 1993). The following proposition states 
that the right hand side of equation (1) is a local 
contraction mapping. Thus a way of figuring out the 
regions where only fixed points exist will be given.  
 

Proposition 2: The mapping 55:(.) ℜ→ℜT , where 
)(ˆ)( xFxxT Λ+Γ=  is a contraction mapping in a 

region R , if .1<Λ+Γ α  
Proof: The mapping (.)T is a contraction if 

yxyTxT −≤− γ)()( , Ryx ∈∀ ,  and .10 << γ  
)()(()()()( yFxFyxyFyxFx −Λ+−Γ≤Λ−Γ−Λ+Γ

As )(xF is a continuous operator, from mean value 
theorem the inequality yxyFxF −≤− α)()(  

holds, where 







=

ℜ∈ dx
xdg

dx
xdf

x

)(,)(maxˆα . Thus, 

( ) yxyTxT −Λ+Γ≤− α)()(  in a region R  

where .1<Λ+Γ α  � 
 
The region R  will be in the saturation regions of 

),(xF since λ=Γ , ),8478.1max( 22 ba +=Λ .  

One case is when 0=λ and 8478.1=Λ . The value 

of α has to be less than 1−Λ , i.e., <α 0.5412 in this 

case and the region R  corresponds to subsets of 5ℜ , 
where components of x  are either less than 0.188 or 
greater than 1.311.  
 

The fifth component of the state vector of system 1Σ  
corresponds to cortex neuron and this component is 
observed since any activity occuring will be as a 
result of activation at cortex. If this component, i.e., p 
is nearly zero, while the system is converging to a 
fixed point, the loop characterized by subsystem 1Σ  is 
regarded as unactivated or inhibited. Thus this fixed 
point is defined as “passive point”. When component 
corresponding to cortex neuron converges to a fixed 
point with a high value, the loop is regarded as being 
active and this fixed point is called as “active point”. 
Even though the behaviour of subsystem 1Σ  is 
classified according to the value of fifth component of 
state vector, the other components also take fixed 
values. Thus the fixed points of the subsystem 1Σ  are 
classified according to the activation of cortex. From 
the simulation results, it is observed that 1Σ  has at 
least one of the two type fixed points, which stay 
almost near the same points even though parameter 
values a, b change. The first one is in the 
neighbourhood of the point 
[ ]T1.01.02.01.01.0 −  and the second one is in 
the neighbourhood of the point 
[ ]T8.18.12.09.09.0 . These points are 
regarded as passive and active points, respectively. 
Not all components satisfy the constraint given by 
proposition 1, but still they are fixed points. This is 
acceptable, since proposition 1 only gives restrictive 
sufficient condition. The simulation results also 
reveal that for different a, b values the subsystem 
converges to different fixed points. For some a, b 
values the subsystem 1Σ  converges either to a passive 
point or to an active point according to the initial 
conditions as exploited in Figure 3. The region Sp in 
Figure 3 includes the parameter values for which 1Σ  
converges to a passive point for any initial condition. 
For the parameter values in region Sa the fixed point 

of 1Σ  is always an active point and the region Sa,p 
includes the parameter values for which 1Σ  has both 
active and passive points. That is the state converges 
to active points for some initial conditions while it 
converges to passive points for other initial 
conditions. These regions are approximately 
determined as follows: 
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Fig. 3. Dependence of solutions on parameters 

Sp 

Sa 

Sa,p 



 

     

87.034.0   : +⋅< abSa                                          (7) 
9.065.0   : +⋅> abS p                                         (8) 

9.065.00.87a0.34   :, +⋅<<+⋅ abS pa            (9) 
                          

3. THE PROPOSED MODEL FOR ACTION 
SELECTION 

 
The subsystem 1Σ , which is composed of five 
neurons, each corresponding to a substructure in BG-
TH-C loop is revealed to be either active or passive. 
Competition between actions can be generated 
considering more than one such subsystem. In this 
case the subsystems are connected crosswise by the 
excitatory connections from the STN neuron of one 
loop to GPi/SNr neuron of the other loop. Such a 
model for two loops is illustrated in Figure 4.    
 
In the section 3.1 two competing actions are 
considered because of the simplicity of analyzing the 
whole system and understanding the underlying 
mechanisms. In the subsection 3.2 more than two 
loops are combined to exploit selection between more 
actions. 

 
3.1 Action Selection Between Two Actions 

 
To model the “action selection” between two 
competing actions, two of subsystems 1Σ  are 
connected as in equation (10):    
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Here, 55×ℜ∈Π and its elements are zero except the 
one on third row second column, which is denoted by 
c. This parameter c is the weight of the binding 
connection between loops.  
 
A compact form of this system is stated as follows: 
 

))(()()1( kxFkxkx ΠΠΠΠΠ Λ+Γ=+        ( 2Σ ) 
 
As the system 2Σ  is autonomous, the only way to 
present an input is by means of initial conditions. So 
the actions to be selected are introduced to the system 
as initial conditions. Only the components of initial 
conditions corresponding to cortex, i.e., p, are 
different than zero. Selecting initial condition this 
way is also in agreement with what Hirsch stated, 
“The initial values of the non-input units are generally 

reset to the same conventional value (usually zero) 
each time the net is run” (Hirsh, 1989).   
 
Similar to 1Σ , it is possible to show that the solutions 
are bounded, the system is stable in the sense of 
LaSalle and there exists fixed points of the system 

2Σ .  
 
Proposition 3: The solutions of the system 2Σ  
converge to an invariant set ΠM when 1<λ . 

 
The Liapunov function for the system 2Σ  is given by 
equation (11) 
 

xPPxxV TT
ΠΠΠ =̂)(          (11) 

 

where,        







=Π PP

PP
P ˆ  .                                 

 

Proposition 4:  The mapping 1010:(.) ℜ→ℜΠT , 
where )(ˆ)( xFxxT ΠΠΠ Λ+Γ= is a contraction 
mapping in a region R , if .1<Λ+Γ ΠΠ α  
 

As )2,8478.1max( 222 bccba +++=Λ Π , again 
the fixed points are in the saturation regions.   
 
Combining two loops the maximum number of the 
fixed points increases from 2 to 4 as exploited in 
Figure 5a. These fixed points are denoted by x*1, x*2, 
x*3 and x*4, and each correspond to a different 
behaviour of the system as follows: 
x*1 :  both of the subsystems are passive 
x*2 :  only the first subsystem is active  
x*3 :  only the second subsystem is active 
x*4 :  both of the subsystems are active 
The domains of attraction of these fixed points are 

named A for x*1, B for x*2, C for x*3 and D for x*4 
and for parameter value a=1.5, b=1, c=0.8 they are 
illustrated in Figure 5a. For different initial conditions 
the system 2Σ  converges to different fixed points. For 
example, if the initial condition is p1 = 0.5, p2 = 1, it 
converges to x*3. Thus the second action is selected. 
If the initial state of the system is in region A or D, 
the system cannot discriminate actions. In the first 
case none of the actions and in the second case both 
actions are generated. If there exist all of these 
regions A, B, C and D like in Figure 5a, the system 
cannot be considered as a good discriminator. 

Fig. 4. Connected C- BG-TH-C loops 
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Fig. 5. (a) Domains of attraction for a=1.5, b=1, c=0.8 
     (b) Domains of attraction for a=1.5, b=1, c=0.9 
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However existence of the region D gives an idea 
about how to construct a soft discriminator, which 
can select more than one action if necessary. This 
would correspond to case when actions to be selected 
have great values of initial conditions that are close. 
      
For some proper values of a, b and c the system 
behaves like a strict discriminating network because 
the region D vanishes. This case is shown in Figure 
5b.  
 
To understand how the region D vanishes, consider 
the solutions of 2Σ  with the initial conditions 

)0()0( 21 pp = , which are included either in A or D. 
Because all the other neurons are initially reset to 
zero, )0()0( 21 pp =  implies )0()0( 21 xx = . In this 
case the system 2Σ  behaves like the system '

2Σ  
below: 
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The system '

2Σ  consists of two disconnected 
subsystems '

1Σ : 
 

 ))(()()1( kxFkxkx Λ′+Γ=+          ( '
1Σ ) 

 
where Π+Λ=Λ′ ˆ . It is enough to analyze '

1Σ  in 
order to understand how the system 2Σ  behaves for 
the initial values )0()0( 21 xx = . To analyze the system 

'
1Σ  is easy now, because the subsystem 1Σ  has been 

already analyzed and the systems 1Σ  and '
1Σ  differs 

only in one parameter which is on third row second 
column of Λ and Λ′ . In Λ it is b and in Λ′  it is b+c. 
All the other components of Λ  and Λ′  are same. 
Thus, the inequalities (7-9) can be used for system '

1Σ  
by substituting b+c for b: 
 

87.034.0:' +⋅<+ acbSa                                    (12) 

9.065.0: +⋅>+′ acbS p                                     (13) 

9.065.00.87a0.34:S pa, +⋅<+<+⋅′ acb          (14) 
 

The system '
1Σ  converges to active point, passive 

point and either to passive or to active point, for cases 
given by Equations (12), (13), (14), respectively. 
 
If the inequality (12) is satisfied, '

1Σ  converges to an 
active point for all initial conditions. Thus '

2Σ  
converges to such a point where 1x  and 2x  are both 
active. In this case both actions are selected. This 
means all the points with )0()0( 21 xx =  are included in 
the region D, so the region A does not exist and the 
stable fixed point that corresponds to the region 
where no selection is possible is x*4. Similarly, if the 
parameters satisfy the inequality (13) the region D 
does not exist as for a=1.5, b=1, c=0.9 and this is 
shown in Figure 5b. If they satisfy the inequality (14) 

both regions A and D exist as for a=1.5, b=1, c=0.8 
which is shown in Figure 5a.   
 

3.2 Action Selection Between More Than Two   
Actions 

 
To model the “action selection” between n competing 
actions, n subsystems 1Σ  are connected: 
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In system nΣ , without losing generality, the first A  
subsystems correspond to selected actions, so nΣ is 

supposed to select A  actions from n actions. To fulfil 
this aim nΣ  should have stable fixed points x* where  

A  winning subsystems will have active points, while 
the losing ones will have passive points. Thus the 
stable fixed points x* are composed of active and 
passive fixed points of 1Σ . If there exist such stable 
fixed points, nΣ  will necessarily converge to these 

points for some initial values which have A  number 
of components p with same values and others zero. 
From simulation results, it is observed that the 
winning A  subsystems p components corresponding 
to cortex have great values while others are nearly 
zero. Thus the behavior of winning subsystems can be 
analysed similar to '

2Σ . Only these A  winning 
subsystems are considered and they are expressed as 
follows: 
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As the effect of )( A−n losing subsystems on these 
negligible, they are not considered.  
The system '

AΣ  consists of A  disconnected 
subsystems '

1Σ  where Π⋅−+Λ=Λ′ )1(ˆ A . Thus 
inequalities (7-9) can be used again but in this case 
substituting cb )1( −+ A  for b : 
 

87.034.0)1(:'
 +⋅<⋅−+ acbSa AA                        (15)  

9.065.0)1(:'
 +⋅>⋅−+ acbS p AA                        (16) 

9.065.0)1(0.87a0.34:'
 +⋅<⋅−+<+⋅ acbSa,p AA           (17) 

Due to the approximation done above, these 
inequalities hold approximately. As an example five 
competing actions are considered and the expectation 



 

     

is that, for different initial conditions, up to three 
actions would be selected.  Then the discriminator is 

5Σ  and the parameters should be chosen to satisfy the 
inequalities below where A  is taken 4 and 3, in 
inequalities (18) and (19): 
 

9.065.0)14( +⋅>⋅−+ acb                          (18) 
9.065.0)13(0.87a0.34 +⋅<⋅−+<+⋅ acb     (19) 

 

The parameter values a=1.5, b=1, c=0.35 satisfy the 
above inequalities. For different initial conditions, 5Σ  
selects one, two, three or none of five competing 
actions. The case corresponding to selecting three 
actions is illustrated in Figure 6a. Because a, b and c 
satisfy the inequality (18), 5Σ  never selects four of 
five actions, even if for four of five actions great 
values of initial conditions are taken (Figure 6b).    

 
4. THE EFFECT OF DOPAMINE ON ACTION 

SELECTION 
 

In the preceding sections, the effect of parameters a, 
b, c which correspond to interconnection weights in 
C-BG-TH-C loop, on “action selection” has been 
investigated. In this section, the similar effect of θ  on 
action selection will be illustrated just by figures. 
From neurobiogical point of view θ parameter 
corresponds to dopamine discharge. Change in this 
parameter effects the domains of attraction like the 
parameters a, b, c. Thus in Figure 7, the figure related 
with θ=0.3 corresponds to a good discriminator. 
Whereas the figures of θ=0.2 and θ=0.8  exploit that 
for these parameter values the system is not a good 
discriminator as there are either two regions where 
discrimination is not possible or no region where 
discrimination is possible.  
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Fig. 7. Domains of attraction for different values of θ 
 
 

5. CONCLUSION 
 
A non-linear discrete time system is proposed as a 
model of C-BG-TH-C loop. The proposed   model is 
not only capable in explaining the “action selection” 
function of C-BG-TH-C loop but also exploits 
dysfunction of “action selection” as interconnection 
weights and dopamine discharge changes. In order to 
show that the non-linear, discrete time system has 
stable fixed points proposition 1 is given which is 
based on LaSalle’s invariance principle. To find out 
the place of fixed points, proposition 2, which is 
based on Banach fixed-point theorem, is stated. The 
fixed points of the non-linear system change as 
parameters change and how these fixed points can be 
interpreted for “action selection” function is 
explained using the attraction domains of the fixed 
points. As for “action selection”, a system is obtained 
by interconnecting the proposed model and 
propositions similar to proposition 1 and 2 are given. 
Parameter values for proper “action selection” are 
given for two and more competing actions.      
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(a)                                           (b) 

Fig. 6. Solutions of 5Σ  for  
(a):    p1(0)=0.1, p2(0)=2, p3(0)=0.3, p4(0)=1.5, p5(0)=1.8  
(b):    p1(0)=0.1, p2(0)=4, p3(0)=4.3, p4(0)=4.5, p5(0)=4.8  


