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Abstract: This paper deals with model predictive control of a distributed para-
meters system which is described by a linear two-dimensional (dependent on two
spatial directions) parabolic partial differential equation. This partial differential
equation is transformed to the discrete state space description using the finite
difference approximation. A model with a large dimension is obtained and has to
be reduced for an advanced control design. The balanced truncation method is
used for the model dimension reduction. For this low dimension model, the range
control approach is applied. Copyright c© 2005 IFAC
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1. INTRODUCTION

There are many industrial processes which have
distributed parameters behaviour. Consequently,
these processes cannot be modelled by lumped
inputs and/or lumped outputs models for correct
representation.

This paper deals with two-dimensional dynamic
processes (systems with parameters dependent on
two spatial directions) which can be described
by lumped inputs and distributed output mo-
dels. These models can be mathematically de-
scribed by partial differential equations (PDE)
(Long, C. A., 1999). Unlike ordinary differential
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equations, the PDEs contain, in addition, deri-
vatives with respect to spatial directions. Con-
sequently, the partial differential equations lead
to more accurate models but their complexity is
larger.

The dynamic behaviour of the distributed para-
meters system, which is described by the PDE,
can be approximately described by a finite-
dimensional model, for example, by using the fi-
nite difference method (Babuška, I. et al., 1966).
Then the ordinary differential equation model
with large dimension is obtained and can be used
for a finite-dimensional controller design. Unfor-
tunately, for online solving of an optimization
problem, e.g. the model predictive control appro-
ach, the large model dimension introduces a pro-
blem for the control design. Therefore a model
reduction method has to be used.



Variables of every real process have certain li-
mits given by laws of physics. Unlike the clas-
sical control law, the model predictive control
(MPC) considers explicitly the future implication
of current control action. This approach enables
us to include the constraints on inputs/outputs
to the control algorithm (Maciejowski, J. M.,
2002).

In (Havlena, V. and Findejs, J., 2005), the
range control approach is described for lumped
inputs and lumped outputs systems. The main
idea of the range control concept is to replace
the set point (reference) by low and high limits.
This methodology leads to very stable and robust
control because the manipulated inputs do not
compensate the high-frequency component of the
noise. In this paper, this concept is applied for the
distributed parameters system.

The paper is organized as follows. In section 2,
the distributed parameters model for the finite
controller design is developed. In section 3, the ba-
lanced truncation method is shortly described. In
section 4, the basic idea of model predictive con-
trol with the range control approach is described.
In section 5, this methodology is applied to a heat
transfer process as a demonstration example.

2. DISTRIBUTED PARAMETER PROCESS
DESCRIPTION

In this section, the model of a heat transfer pro-
cess described by a linear two-dimensional para-
bolic PDE (Long, C. A., 1999) is developed for
the finite-dimensional controller design. At first,
the stationary PDE is transformed to a linear
equation system using the finite difference appro-
ximation (Babuška, I. et al., 1966). Then the im-
plicit scheme (Babuška, I. et al., 1966) and this
equation system are used for the transformation of
the evolutionary PDE to a linear dynamic discrete
system.

2.1 Stationary Partial Differential Equation

For the surface thermal conductivity λ [W/K] in-
dependent on the temperature Θ [K] and a surface
heat source f [W/m2], the heat transfer process
in the stationary case can be described by a para-
bolic PDE

−λ

(
∂2Θ(x, y)

∂ x2
+

∂2Θ(x, y)
∂ y2

)
= (1)

= −λ ∆Θ(x, y) = f(x, y),

where ∆ is the Laplace operator. The unknown
temperature Θ must satisfy equation (1) on an
open set Ω =(0, L1)×(0, L2) and boundary condi-
tion on ∂Ω (∂Ω means the boundary of set Ω).

In this paper, the boundary condition which spe-
cifies the temperature gradient on the boundary
∂Ω is described by the following statement

−λ
∂Θ(x, y)

∂ n
= α

(
Θ(x, y)−Θs(x, y)

)
, (2)

where n is unit normal vector, α [W/(mK)] is
an external heat transfer coefficient and Θs is the
surrounding temperature. Note that equation (2)
is known as Newton (or the third kind) boundary
condition (Long, C. A., 1999).
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Figure 1. The mesh on the set Ω

For the transformation of PDE (1) with boundary
condition (2) to the finite dimensional model, the
set Ω is covered by an imaginary mesh so that the
values of mesh points satisfy ΘΘΘi,j = Θ(i δx, j δy)
on the closed set Ω , Fi,j = f(i δx, j δy) on the
open set Ω and Fi,j = ΘΘΘs(i δx, j δy) on the set ∂Ω ,
where δx = L1/N1 and δy = L2/N2 are the grid
sizes of the imaginary mesh and i, j are row and
column indices, respectively (see Figure 1). Mat-
rix ΘΘΘ is the matrix of the temperature values in
the mesh points and matrix F represents the heat
source f and the surrounding temperature Θs.

Using the second order finite difference approxi-
mation (Babuška, I. et al., 1966), the distributed
parameters system, equations (1) and (2), can be
obtained as a linear equation system

Pθθθ = f , (3)

where

θθθ =




ΘΘΘ(:, 0)
ΘΘΘ(:, 1)

...
ΘΘΘ(:, N2)


, f =




F(:, 0)
F(:, 1)

...
F(:, N2)


,

where ΘΘΘ(:, 0) means the zero column of the mat-
rix ΘΘΘ, ΘΘΘ(:, 1) the first column and so on. Note that
the square matrix P contains (N1 + 1)× (N2 + 1)
rows and its structure and derivation can be found
in (Roubal, J. et al., 2004).

2.2 Evolutionary Partial Differential Equation

In the non stationary case, PDE (1) can be written
as

ρ c0
dΘ(x, y, t)

dt
− λ ∆Θ(x, y, t) = f(x, y, t), (4)



where ρ [kg/m2] is the surface density of the
medium and c0 [Ws/kgK] is its thermal capa-
city. In this case, the unknown temperature pro-
file Θ(x, y, t), dependent on time t, must satisfy,
for an initial condition Θ(x, y, t0) = Θinit(x, y),
equation (4) on the open set Ω and boundary con-
dition (2) on ∂Ω for all time horizon t ∈ 〈t0, tend〉.
Using equation (3) and the implicit discretization
scheme (Babuška, I. et al., 1966) with a sampling
period δt, evolutionary PDE (4) with Newton
boundary condition (2) can be approximated as

θθθ(k+1) = Mθθθ(k)+Nf(k), θθθ(k0) = θθθinit, (5)

M=
(
I+

δt

ρ c0
P

)−1

, N=
(
I+

δt

ρ c0
P

)−1

· δt

ρ c0
,

where I is the identity matrix with the corre-
sponding dimension. More details can be found
in (Roubal, J. et al., 2004).

3. MODEL REDUCTION METHOD

The accuracy of model (5) increases with decrea-
sing grid sizes δx and δy. Unfortunately, for the
advanced controller design such as the predictive
controller, a low dimension model is needed. In
this section, one reduction method is shortly de-
scribed.

3.1 Model Reduction by Balanced Truncation

There are infinitely many different state space re-
alizations for a given transfer function. But some
realizations are more useful in control design.
One of these realizations is the balanced reali-
zation which gives balanced Gramians for cont-
rollability Wc and observability Wo (Zhou, K. et
al., 1996). In addition, these Gramians are equal
to the diagonal matrix ΣΣΣ

Wc = Wo = ΣΣΣ = diag (σ1, σ2, . . . , σn).

Note that the decreasingly ordered numbers,

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

are called the Hankel singular values of the sys-
tem.

We suppose σr À σr+1 for some r ∈ 〈1; n).
Then the balanced realization implies that the
states corresponding to the singular values of
σr+1, . . . , σn are less controllable and observa-
ble than the states corresponding to σ1, . . . , σr.
The states corresponding to the singular values
of σr+1, . . . , σn have smaller influence on the in-
put/output behaviour of the system. Therefore,
truncating the ”less controllable and observa-
ble” states will not lose much information about
the system input/output behaviour and the di-
mension of the model can be significantly reduced.

3.2 Reduced Model for the Control Design

The reduced model for control of evolution partial
differential equation (4) with Newton boundary
condition (2) can be written as

x(k+1)=Ax(k) + Bu(k) + Ez(k), x(k0)=x0 ,

y(k)=Cx(k) + Du(k) , (6)

where x is a state of the model, y is its output
(temperature in several points on the set Ω), u is
its input (manipulated variable), z represents the
surrounding temperature profile (measurable dis-
turbance) and A, B, C, D, E are state matrices.

4. MODEL PREDICTIVE CONTROL

4.1 Output Prediction

For model (6), the output prediction for the pre-
diction horizon Tp can be written in a compact
form

ŷk = Vx(k) + Tẑk + Sûk = ỹk + Sûk , (7)

where ỹk = Vx(k) + Tẑk and ŷ, û and ẑ are
the output, inputs and disturbance prediction,
respectively

ŷk=




y(k)
y(k+1)

...
y(k+Tp−1)


, ûk=




u(k)
u(k+1)

...
u(k+Tp−1)


, ẑk=




z(k)
z(k+1)

...
z(k+Tp−1)




and the prediction matrices are

V=




C
CA
...

CATp−1


, S=




D
CB D

CAB CB D
...

. . . . . .
CATp−2B CB D


.

Figure 2. Control variables specification in time
domain – the funnel for a controlled variable
and the manipulated variable with reduced
degrees of freedom and a constant value at
the end of the correction horizon

Note that matrix T is similar to matrix S with
matrix D replaced by zero matrix 0 and matrix B
replaced by matrix E.



4.2 Quadratic Program Problem Formulation

Consider process (7) and constraints on the cont-
rolled variables and their rates of change

ŷL ≤ ŷk ≤ ŷH , ∆ŷL ≤ ∆ŷk ≤ ∆ŷH (8)

and constraints on the manipulated variables and
their rates of change

ûL ≤ ûk ≤ ûH , ∆ûL ≤ ∆ûk ≤ ∆ûH . (9)

The basic idea of the range control approach
(Havlena, V. and Findejs, J., 2005) is to
replace the setpoint for the controlled variable y
by a set range which is defined by the sequence
of low and high limits ŷL and ŷH , see Figure 2.
Then the optimality criterion can be expressed as
a quadratic programming problem

min
u,w

1
2

{
‖ỹk + Sûk − ŵk‖2Qy

+ ‖∆û‖2Qu

}
(10)

subject to ŷL ≤ ŵk ≤ ŷH (11)

and constraints (9).

For the penalization of control increments in cri-
terion (10), the increments of control can be ob-
tained as

∆ûk = ΦûΦûΦûk − ũk , (12)

ΦΦΦ =




I
−I I

. . . . . .
−I I


, ũk =




u(k−1)
0
...
0


,

where I is the identity matrix with the corre-
sponding dimension. Then the optimization cri-
terion (10) can be written as

min
u,w

1
2

∥∥∥∥
[
S −I
ΦΦΦ 0

] [
ûk

ŵk

]
+

[
ỹk

−ũk

]∥∥∥∥
2

[
Qy 0
0 Qu

], (13)

ŷL ≤ ŵk ≤ ŷH , (14)

ûL ≤ ûk ≤ ûH , (15)

∆ûL + ũk ≤ Φûk ≤ ∆ûH + ũk. (16)

To reduce the dimension and computational requi-
rements of the QP problem, the number of inde-
pendent moves of manipulated variables may be
reduced (Havlena, V. and Findejs, J., 2005),
see Figure 2. The receding horizon approach is
implemented. The idea of this strategy is to find
the optimal control sequence on the prediction
horizon Tp. Then for feedback control, only the
first element of the optimal control sequence
is applied to the plant and the optimal pro-
blem is recalculated for a new measured data
(Maciejowski, J. M., 2002).

5. DEMONSTRATION EXAMPLE

Consider a heat transfer process in a furnace
where L1 = L2 = 0.9 m described by equation (4)
with constants λ = 51 W/K, ρ = 2500 kg/m2,
c0 = 1259 Ws/(kg K) and α = 1.14 W/(mK). The
grid sizes are δx = δy = 0.02 m and the sampling
period is δt = 300 s.
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Figure 3. Heat source distribution f(x, y)

The heat source distribution f(x, y) is shown in
Figure 3. We consider that the sample system has
five lumped inputs (manipulated variables) and
the surface temperature is measured in 64 points
which are uniformly distributed over the area Ω .
The inputs can take the values u ∈ 〈0; 5〉.
Figure 4a presents the steady-state temperature
distribution (system state) for the unit step as
inputs signal (see Figure 3) and the surrounding
temperature Θs = 340 K. Figure 4b shows the sys-
tem output y – temperature in 64 measurement
points.

Figure 5a shows the Hankel singular values of our
system. From this figure it follows that the system
contains one singular value which is greater than
100 (red point in Figure 5a), five singular values
which are greater than 10 (red and green points
in Figure 5a), nine singular values which are
greater than 1 (red, green and blue points in
Figure 5a) etc.

In this example, the balanced truncation is used
and the number of states of the reduced order
model is chosen as r = 13. Figure 5b shows time
response of Frobenius norm (Horn, R. A. and
Johnson, Ch. R., 1985) of the model output
error. From figure it follows that the Frobenius
norm reaches a steady state value. Note that the
input signal of the system is unit step. The ba-
lanced truncation of this model for other num-
bers of states are compared in (Roubal, J. et
al., 2004).
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For the reduced order model, the MPC controller
with the range control strategy respecting the con-
straints 0 ≤ u ≤ 5 and |∆u| ≤ 1 is designed. For
the initial condition of temperature distribution as
in Figure 6, the system in closed loop is controlled.
The input time responses and the Frobenius norm
response of control error are shown in Figure 7a.
In Figure 7b, the temperature distribution, the
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Figure 6. The initial temperature distribution

system output with the set range reference, the
control error and the reference temperature pro-
file, respectively, are presented. Note that the sys-
tem is simulated with the measurement noise σe.

During the control simulation, the temperature
on the left side of the area was changed at time
1000 minutes. The temperature was decreased
by 10 K, which is represented the addition of the
material for melting into the furnace.

From Figure 7a it follows that the input constra-
ints are not violated and the Frobenius norm of
the control error reaches a steady state value.
The reference temperature profile is shown in Fi-
gure 7b. Note that the low and high limits of the
set range reference are set to ±2 K of this profile.

Figure 8 presents the simulation results as Fi-
gure 7 but in this case the predictive controller
without the range control concept is used. If we
compare Figures 7 and 8 we will observe the
result which we expected. The input trajectories
in Figure 7 are smoother than in Figure 8 because
the manipulated inputs need not compensate the
high-frequency component of the measurement
noise.
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Figure 7. Range control predictive control approach: (a) The inputs time responses and Frobenius norm
of control error time response; (b) Steady state temperature distribution with its reference
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Figure 8. Classical predictive control approach: (a) The inputs time responses and Frobenius norm
of control error time response; (b) Steady state temperature distribution with its reference

6. CONCLUSION

The state space model of the distributed parame-
ters system which is described by the linear two-
dimensional parabolic partial differential equation
and the model reduction by the balanced trun-
cation method are described.

The range control methodology of the model pre-
dictive control is introduced and is applied to the
distributed parameter model which can describe
a heat transfer process. Because of a large di-
mension of the model, the balanced truncation
reduction method was used.

The predictive controller with the range control
strategy was compared with the classical pre-
dictive control approach. The expected results was
obtained. In the case of the range control approach
the manipulated variables are smoother than in
the classical predictive control approach because
the manipulated variables do not compensate the
high-frequency component of the measurement
noise or inaccuracy of the model at high frequen-
cies. The predictive controller with the range con-
trol strategy leads to more ”calm control”.
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(1966). Numerical Processes in Differential
Equations. London - New York - Sydney,
Interscience Publishers.

Havlena, V. and Findejs, J. (2005). Appli-
cation of Model Predictive Control to Advan-
ced Combustion Control. Control Enginee-
ring Practice 13 (No.6), 671–680.

Horn, R. A. and Johnson, Ch. R. (1985).
Matrix Analysis. Cambridge University Press,
United Kingdom.

Long, C. A. (1999). Essential Heat Transfer.
Longman Group, England.

Maciejowski, J. M. (2002). Predictive Control
with Constraints. Prentice Hall, Harlow, En-
gland.

Roubal, J., Trnka, P.
and Havlena, V. (2004). Simulation of Two-
Dimensional Distributed Parameter Systems.
In: Matlab Conference. Prague, Czech Repub-
lic. 〈http://www.humusoft.cz/matlab04/〉.

Zhou, K., Doyle, J. C. and Glover, K.
(1996). Robust and Optimal Control. Prentice
Hall, New Jersey.


