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Abstract: For continuous probability density functions (PDFs) approximated by
the B-spline basis functions, the relationships between the B-spline weights,
the entropy and the mean have been analyzed in detail. It shows the different
characteristics of the entropy with and without mean constraint. A minimum
entropy controller subjected to mean constraint is developed by taking the
performance function as a Lyapunov function and ensuring the negativeness of
its first-order derivative. Simulation examples are included to validate the analysis
results and evaluate the closed-loop control performance. Copyright c©2005IFAC
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1. INTRODUCTION

Under the assumption that the random variables
in the system are subjected to Gaussian processes,
research on the control of stochastic systems has
been focused on the mean and variance control
(Astrom, 1970; Astrom and Wittenmark, 1988;
Goodwin and Sin, 1984). In practice, however,
many non-Gaussian stochastic systems should be
considered and some of them require the control
of the output probability density function (PDF)
or the minimization of the output uncertainties
(Wang, 2000). This leads to the use of some new
performances, such as the entropy or other high
order moment functions (Wang, 2002; Yue and
Wang, 2003).

For Gaussian-type of stochastic systems, the
equivalence of the entropy control and the vari-
ance control has already been proved, which shows
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that the minimum variance control is a special
case of the minimum entropy control (Wang, 2002;
Yue and Wang, 2003). However, the entropy is
more general in terms of representing the system
uncertainties (randomness) because it measures
the dispersion of the probability distribution. This
explains why the entropy control is important
for non-Gaussian systems. The commonly used
Shannon’s entropy is defined as follows.

Definition 1. For a continuous random variable y
with probability density function γ(y), the Shan-
non’s entropy of y is defined by

H(y) = − ∫ +∞
−∞ γ(y)ln(γ(y))dy

It can be seen that the entropy formulation is
based on the description of probability density
function. In this paper, the output PDF is mod-
elled by the B-spline neural network for the reason
that it has been proved to be a mature modelling
technique in PDF shaping (Wang, 2000). The aim
of the controller design is to minimize the output



entropy and maintain its mean value at the same
time. The mean constraint is embedded to make
sure that the output PDF is located in the re-
quired place. In order to realize such a design, the
relationship between the B-spline weights and the
entropy subjected to the mean constraint should
be investigated carefully. This motivates the work
in this paper.

2. B-SPLINE PDF APPROXIMATION

The B-spline basis functions (Girosi and Pog-
gio, 1990) are commonly adopted to approxi-
mate the bounded PDF (Wang, 2000). In the
one dimensional case, the B-spline basis func-
tions are defined in an interval [a, b] ∈ R with
Y = (y1, ...,yn+1)T being a node vector sat-
isfying a = y1 < ... < yn+1 = b. A set
of normalized B-spline basis functions of order
l (l > 1 is a positive integer), denoted by
φi,l(i = 1, ..., n), can be represented as φi,l(y) =

y−yi

yi+l−1−yi
φi,l−1(y) + yi+l−y

yi+l−yi+1
φi+1,l−1(y), where

φi,1(y) =
{

1 , if y ∈ [yi, yi+1]
0 , otherwise

. A univariate

B-spline basis function of order l, denoted by
Bi(y) = l

yi+l−yi
φi,l(y), has the following integral

characteristics
b∫

a

Bi(y)dy = 1 (1)

Suppose a PDF γ(y) is continuous with respect
to y for all y ∈ [a, b], there exists the following
B-spline approximation of the PDF

γ(y) =
n∑

i=1

ωiBi(y) (2)

with the approximation error being ignored for
simplicity. Here n is the number of the basis
functions selected for approximation, Bi(y) and
ωi(ωi ≥ 0) are the basis functions and the cor-
responding weights. With the PDF constraint∫ b

a
γ(y)dy = 1, it can be obtained from equations

(1) and (2) that
n∑

i=1

ωi = 1 (3)

The entropy of y can then be represented as

H(y) = −
b∫

a

(
n∑

i=1

ωiBi(y)

)
ln

(
n∑

i=1

ωiBi(y)

)
dy(4)

When the basis functions are chosen, the PDF and
the entropy can also be denoted as γ(ω1, · · · , ωn)
and H(ω1, · · · , ωn), respectively.

When using the B-spline PDF model, the most
common case is that all the basis functions are
chosen to have the same shape but located at
different places within the effective PDF interval.
In order to clarify the main results of this work,
all the following discussions will be based on this
assumption and the basis functions are labelled
with i = 1 to i = n according to their positions
from left to right on the effective PDF interval. In
this case, when defining

xi =

b∫

a

yBi(y)dy (5)

there will be x1 < x2 < · · · < xn (xi is
fixed because Bi(y) is fixed). The mean of y is
represented as

µ =
n∑

i=1

ωixi (6)

It is obvious that x1 ≤ µ ≤ xn. As such, the
PDF, the entropy, the mean and the natural PDF
constraint can all be expressed as functions of the
B-spline weights.

3. B-SPLINE WEIGHTS AND ENTROPY
WITH MEAN CONSTRAINT

Two definitions are introduced to establish the
relationship between the B-spline weights and the
entropy.

Definition 2. Effective B-spline basis function: A
B-spline basis function is called an effective
B-spline basis function when its corresponding
weight is not zero. Otherwise it is referred as
ineffective for the PDF approximation.

Definition 3. Effective PDF interval: the mini-
mum interval which covers all the definition in-
tervals of the effective B-spline basis functions.

The following discussions are based on these two
definitions.

Proposition 4. The entropy is a concave function
of the B-spline weights.

Proof: Suppose that {ωi, ωj} (j > i) are the pair
of weights subjected to the change of z. Without
loss of generality, it can be assumed that such a
change leads to ωi → ωi +z and ωj → ωj−z as all
the weights are subjected to the constraint given
by (3). As such, the entropy is related to z by

ϕ(z) = H(y)|z = − ∫ b

a
γ(· · · , ωi+z, · · · , ωj−z, · · ·)



ln(γ(· · · , ωi + z, · · · , ωj − z, · · ·))dy

where −ωi ≤ z ≤ ωj . The first order derivative of
ϕ(z) can be calculated to give

ϕ̇(z) = − ∫ b

a
(Bi(y)−Bj(y))ln(γ(· · · , ωi + z, · · · ,

ωj − z, · · ·))dy

Differentiating ϕ̇(z) with respect to z leads to

ϕ̈(z) = −
b∫

a

(Bi(y)−Bj(y))2

γ(· · · , ωi + z, · · · , ωj − z, · · ·)dy ≤ 0

Therefore, ϕ(z) is a concave function of z. This
result can be extended to the situation when more
than two weights are subjected to change. 2

As ϕ(z) is a concave function of z, the minimum
point(s) can be achieved either on z = −ωi and/or
on z = ωj , which gives the following Corollary.

Corollary 5. When {ωi, ωj} are the pair of weights
subjected to change, at least one of the following
inequalities should hold in any case:

H(..., 0, ..., ωi + ωj , ...)≤H(..., ωi, ..., ωj , ...)(7)

H(..., ωi + ωj , ..., 0, ...)≤H(..., ωi, ..., ωj , ...)(8)

It would be interesting to see the difference be-
tween Corollary 5 and the entropy’s grouping
proposition for discrete distribution (Yuan and
Kesavan, 1998). For a discrete probability system
with states x1 < · · · , < xn and corresponding
probability distribution (p1, · · · , pn), the change
of moving one state to another can always make
the entropy decrease, i.e.,

H(p1, ..., 0, ..., pi + pj , ..., pn)

= H(p1, ..., pi + pj , ..., 0, ..., pn)

≤H(p1, ..., pi, ..., pj , ..., pn). (9)

This is because the entropy of the discrete distri-
bution is only related to the probability distribu-
tion. For a continuous random variable, however,
the entropy depends not only on the basis func-
tions but also on the weights, the shape of the
approximated PDF has a direct impact on the
entropy value. The effect of the PDF shape to the
entropy can be further illustrated by the following
proposition.

Proposition 6. If the effective PDF interval be-
comes narrower, there must exist a reduced num-
ber of weights which makes the entropy to de-
crease.

Proof: When the effective PDF interval is de-
creased, it means that at least one effective basis

function was taken off from the end(s) of the effec-
tive PDF interval. Taking ωn = 0 as an example,
Proposition 6 says that there exist a set of ai

(ai + ωi ≥ 0) such that

H(ω1 + a1, · · · , ωn−1 + an−1, 0) < H(ω1, · · · , ωn)(10)

where
∑n−1

i=1 ai = ωn. For the original PDF
approximation, assume that ωn−1 and ωn are
subjected to change and denote η = ωn−1 +
ωn. From Corollary 5, it can be seen that the
inequality (10) can be proved if the following
inequality

H(ω1, . . . , η, 0) < H(ω1, . . . , 0, η) (11)

is satisfied. Denote

H1 = H(ω1, . . . , η, 0),

H2 = H(ω1, . . . , 0, η),

α =
∫ b

a
ηBi−1(y)ln(ηBi−1(y))dy,

β =
∫ b

a
ηBi(y)ln(ηBi(y))dy,

then H1 and H2 can be represented as

H1 = H(ω1, . . . , 0, 0)− δ1 − δ2 − α

H2 = H(ω1, . . . , 0, 0)− δ1 − β

where δ = δ1 + δ2, δ1 = − ∫ b

a
S1(y)lnS1(y)dy and

δ2 = − ∫ b

a
S2(y)lnS2(y)dy.

As shown in Fig.1, S1 is the overlap area of
ωn−2Bn−2(y) and ηBn(y), S2 is the overlap area
of ωn−2Bn−2(y) and ηBn−1(y) subtracting S1. It
is obvious that δ1 > 0 and δ2 > 0. Also, when the
basis functions have the same shape, α is equal
to β. Therefore, H1 < H2, the inequality (11) is
satisfied. Proposition 6 is thus proved. 2

y

2 2n nBω − −

1nBη − nBη

2S

1S

Fig. 1. Illustration of S1 and S2 for the proof of
Proposition 6.

By applying Proposition 6 and Corollary 5 to
the B-spline PDF model repeatedly, the following
conclusion on minimum entropy can be made.

Corollary 7. The entropy is minimum when there
is only one effective B-spline basis function.

The above propositions and corollaries about the
entropy of continuous distributions show the ex-



istence of minimum entropy under certain condi-
tions. Next, the minimum entropy subjected to
the mean constraint will be discussed.

Theorem 8. Assume that the PDF γ(y) is ap-
proximated by three pre-specified B-spline basis
functions, the following two conditions

(a) the entropy is minimum
(b) the mean is kept unchanged

can be satisfied at the same time by reducing the
number of the effective B-spline basis functions to
be two or one.

Proof: The following two situations can be dis-
cussed separately.

(1) When µ = xi, the PDF can be approximated
by the single basis function Bi(y) with ωi = 1
so as to keep the mean value to be xi. The
minimum entropy is achieved in this case
according to Corollary 7.

(2) When µ 6= xi, from the PDF and mean
constraints (3) and (6), ω1 and ω2 are related
to ω3 linearly as follows

ω1 =
x2 − µ

x2 − x1
+

x3 − x2

x2 − x1
ω3 (12)

ω2 =
µ− x1

x2 − x1
− x3 − x1

x2 − x1
ω3 (13)

As denoted in Section 2, all the weights
should be nonnegative, therefore,

ω3 ∈
[

µ− x2

x3 − x2
,

µ− x1

x3 − x1

]
when µ > x2 (14)

ω3 ∈
[
0,

µ− x1

x3 − x1

]
when µ < x2 (15)

According to Proposition 4, the entropy is a
concave function of ω3. Therefore, when µ <
x2, the minimum entropy will be achieved
either on ω3 = 0 or ω3 = µ−x1

x3−x1
. In the former

case {B1(y), B2(y)} are the effective basis
functions; in the latter case, {B1(y), B3(y)}
are the the effective basis functions.

Similarly, when µ > x2, the minimum
entropy will be achieved either on ω3 =
µ−x2
x3−x2

or ω3 = µ−x1
x3−x1

. It’s easy to see that
{B2(y), B3(y)} are the effective basis func-
tions in the former case and {B1(y), B3(y)}
are the the effective basis functions in the
latter case. 2

Based on Theorem 8, the conditions to realize the
minimum entropy subjected to mean constraint
can be extended to the PDF approximation with
n basis functions.

Theorem 9. For any B-spline PDF approxima-
tion systems consisting of n pre-specified basis
functions, the minimum entropy subjected to the
mean constraint (6) can only be realized when the
PDF is approximated by one or two effective basis
functions.

Proof: Suppose that there are more than two
effective basis functions corresponding to the PDF
of the minimum entropy, for example, they are
ωi > 0, ωj > 0 and ωk > 0. By applying Theorem
8 to the weights (ωi

ω ,
ωj

ω , ωk

ω ) with ω = ωi+ωj+ωk,
the entropy relating to such a set of weights may
be further reduced under the mean constraint.
This is contradictive to the minimum entropy
assumption.

When µ = xi, the PDF of the minimum entropy
is approximated by the single effective B-spline
basis function Bi(y) with ωi = 1.

When xi−1 < µ < xi, the minimum entropy will
be obtained by either the most unbalanced distri-
bution or the distribution of the narrowest effec-
tive PDF interval. The former case corresponds to
the effective basis functions {Bi−1(y), Bn(y)} or
{B1(y), Bi(y)}, the latter PDF is approximated
by {Bi−1(y), Bi(y)}. The minimum entropy is
chosen from the three cases. Accordingly, the two
weights are determined by the PDF and mean
constraints (3) and (6). 2

Theorems 8 and 9 provide the basic criterions for
the design of minimum entropy controller under
the mean constraint.

The univariate B-spline basis functions satisfying
(1) are used through out the above discussions.
However, it is not a necessary condition, other
types of B-spline basis functions can also be used
by replacing ωi with ωi/

∫ b

a
Bi(y)dy. Moreover, for

the major results presented so far, the assumption
that all the basis functions should have the same
shape is not a necessary condition either. This
assumption is made only to simplify the presenta-
tion. As such, most of the results can be applied
to more general B-spline PDF models.

4. MINIMUM ENTROPY CONTROL
SUBJECTED TO MEAN CONSTRAINT

Consider the following state-space B-spline dy-
namic model (Wang, 2000)

{
V̇ = AV + Bu
γ(y,u) = C(y)V + L(y)

where γ(y,u) is the output PDF of the system
approximated by n univariate B-spline basis func-
tions; A ∈ R(n−1)×(n−1) and B ∈ R(n−1)×m are
the parameter matrices; V ∈ R(n−1)×1 is the



weights vector; u ∈ Rm is the control input;
L(y) ∈ R1×1 and C(y) ∈ R1×(n−1) are decided
by the basis functions.

Many control algorithms have been developed for
the shaping of the output PDF (Wang, 1999, 2000;
Wang, et al., 2001). When the target PDF is not
available, the controller design can be made to
minimize the output entropy so as to reduce the
output randomness. However, without locating
the output PDF properly, the minimization of
the entropy does not make sense in practice. As
such, it is important to specify a mean constraint
for the system output when solving the minimum
entropy problem. In this context, the performance
function is selected as follows

J = (µ− µg)2 + uT Qu

−
b∫

a

γ(y,u)ln(γ(y,u))dy (16)

in which the first term characterizes the difference
between the output mean µ and the target mean
µg; the second term represents a constraint on
the control input with Q = QT > 0 being a
pre-specified weighting matrix; The last term is
the Shannon’s entropy of the system output. By
minimizing this performance function, the closed-
loop system can be illustrated by Fig 2, where
the outer loop realizes the mean tracking and the
inner loop is the minimum entropy controller.� � � � � � � � � �� � � � 	 
 �

� 	 � �
 � � � � � � � � �
� � � � � � �� � � � � � � �
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Fig. 2. The closed-loop entropy and mean control
system

At this stage, the aim of the controller design is to
find a u such that J = min. This can be achieved
by selecting a u so that the performance function
J decreases monotonically, leading to dJ

dt < 0.
The idea is similar to the approach used in (Wang
et al., 2001) where the performance function was
taken as a Lyapunov function for the closed-loop
system. For this purpose, the first order derivative
of J can be calculated to give

dJ

dt
=−

b∫

a

∂γ(y,u)
∂V

V̇(ln(γ(y,u)) + 1)dy

+
∂(µ− µg)2

∂V
V̇ + uT Qu̇ < 0 (17)

From the above equation the control u can be
obtained to read,

u̇ = (uT Q)−1(−λ |µ− µg| − ∂(µ− µg)2

∂V
V̇

+

b∫

a

∂γ(y,u)
∂V

V̇(ln(γ(y,u)) + 1)dy (18)

where λ > 0. Because dJ
dt < 0, the closed-loop

stability is naturally guaranteed.

5. SIMULATION ANALYSIS

The following B-spline basic functions are used for
the PDF approximation:

B1(y) = 1
2y2I1 + (−y2 + 3y − 3

2 )I2 + 1
2 (y − 3)2I3

B2(y) = 1
2 (y − 1)2I2 + (−y2 + 5y − 11

2 )I3

+ 1
2 (y − 4)2I4

B3(y) = 1
2 (y − 2)2I3 + (−y2 + 7y − 23

2 )I4

+ 1
2 (y − 5)2I5

where Ii =
{

1 , y ∈ [i− 1, i]
0 , otherwise

i = 1, · · · , 5. It

can be seen from (5) that x1 = 1.5, x2 = 2.5 and
x3 = 3.5.

When ω2 is fixed to be ω2 = −0.1294, changing ω1

with ω1 ∈ [0.2147, 0.9147] and ω3 correspondingly,
the entropy change is shown in Fig. 3. It is a
concave curve of ω1.

Fig. 4 shows the PDFs with two local minimum
entropies when all the three weights are adjustable
and the mean is fixed to be 1.8. The solid line cor-
responds to the weights [0.9147,−0.1294, 0.2147]
with H = 1.0554. The dashed line corresponds
to the weights [0.7, 0.3, 0] with H = 1.0136. From
Theorem 9, it can be found that the minimum
entropy is obtained when the effective B-spline ba-
sis functions are B1(y) and B2(y). The simulation
results support Theorem 8.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.05

1.15

1.25

1.35

ω
1

H(
y)

Fig. 3. The entropy vs. weights under mean con-
straint

Now consider the dynamic simulation. The ini-
tial condition of the three weights is given to be
[0.3000, 0.2000, 0.5000]. The dynamical model is
as follows:

V̇ =
(

0 1
−0.8 −2.5

)
V +

(
0
1

)
u
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Fig. 4. PDFs of two local minimum entropy sub-
jected to mean=1.8

Assume that ω1 and ω2 are the independent
weights, then the initial condition of the weights
vector is V = [0.3 0.2]T . The mean value is set
to be 1.5. From Theorem 8, it is known that the
minimum entropy will be obtained when ω1 is the
only effective B-spline basis function. H is calcu-
lated to be 0.7193 in this example. The controller
is designed by (18). Figs. 5-7 demonstarte the
simulation results.
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Fig. 5. The response of the entropy
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Fig. 6. The response of the mean
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Fig. 7. The 3D plot of the PDF development

It can be seen that the entropy converges to the
minimum value and the mean converges to the
expected value. In Fig. 7, the related 3D plot
is given illustrating the output PDF evolution
during the control process.

6. CONCLUSIONS

This paper presents several characteristics about
the entropy of continuous PDF which is approx-
imated by the B-spline basis functions. It’s the
first time that the relationship between the B-
spline weights and the entropy be investigated
for this type of stochastic control systems. In
comparison with the discrete probability system
whose entropy is only a function of the probability
distribution, the entropy of the continuous PDF
system is related to the basis functions, the corre-
sponding weights and the effective PDF interval.
The study shows the situations under which the
minimum entropy can be obtained while keeping
the mean constraint. It leads to a new controller
design by taking the entropy and the output mean
as separate terms in the selected performance
function.
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