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Abstract: In this paper a new design method of a self-tuning I-PD controller is
proposed. The I-PD controller is designed based on a generalized predictive control
(GPC) law. By using a conventional design method of the I-PD controller based
on the GPC law, it is impossible to introduce future reference trajectory into the
I-PD controller. The future reference trajectory of the GPC approaches a set-
point value gradually from a present output, that is one of the features of the
GPC. The proposed method can introduce the advantage of the GPC into the I-
PD controller exactly because the proposed method expresses the future reference
trajectory suitably when the set-point value is given as a step type signal.
This paper shows that the structure of a PID controller based on the GPC law
becomes an I-PD type by using the proposed method and that a design parameter
of the GPC which adjusts the future reference trajectory influences only an integral
time of the I-PD controller.
In order to illustrate the effectiveness of the newly proposed method, numerical
examples are shown. Copyright c©2005 IFAC
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1. INTRODUCTION

This paper proposes a tuning method of propor-
tional, integral and derivative (PID) parameters
in an I-PD controller automatically. In this paper
the PID parameters are decided by comparing the
I-PD controller with a generalized predictive con-
trol (GPC) law (Clarke et al., 1987; Camacho and
Bordons, 1999). Using the relation of the GPC law
to the I-PD controller many design methods have
been already proposed. Ohshima et al. (Ohshima
et al., 1991) and Yamamoto et al. (Yamamoto
et al., 1994) showed that the control structure
of the GPC includes the I-PD because the I-PD

controller is equal to the GPC law on special con-
ditions. Asano et al. (Asano et al., 1998) proposed
a design method of approximating the GPC law
by the I-PD controller. Miller et al. designed the
I-PD controller based on the GPC law includ-
ing a steady state prediction which can reduce
computation load for a long prediction (Miller et

al., 1995; Miller et al., 1996; Miller et al., 1999).
Moradi et al. proposed a new reference trajectory
different from that of the original GPC, and a PID
controller was designed using the relation of the
modified GPC (Moradi et al., 2001).



In this study it is assumed that a controlled plant
can be expressed as first-order lag plus dead-time
or second-order lag plus dead-time. Because of a
proposed control structure, the former is an I-P
control and the latter is an I-PD control. Most
chemical processes can be expressed as first-order
lag or second-order lag plus dead-time. Therefore,
it is possible to obtain good control performance
under the condition.

To design the I-PD controller based on the GPC
law, coefficient polynomials of output, control in-
put and reference input in the GPC law need to be
replaced with components in the I-PD controller.
In this case, there is a problem about the order of
the I-PD controller. The orders of the coefficient
polynomials of the output, control input and ref-
erence input which constitute the I-PD controller
are 2, 0 and 0 respectively. However, since the
coefficient polynomials of the GPC law are higher
than those of the I-PD controller generally, it is
difficult to approximate the GPC law by the I-
PD controller. The problem about the coefficient
polynomial of the output is solvable by assuming
that the order of controlled plant is 2 or less,
and by replacing the coefficient polynomials of the
control and reference inputs respectively by the
steady state gains (Asano et al., 1998). However,
because the I-PD controller is designed using the
steady state gains, the designed I-PD controller
is inferior to the original GPC law. Thus, it is
necessary to obtain better approximation about
the coefficient polynomials of the control and ref-
erence inputs. In order to improve approximation
about the coefficient of the control input, Asano
and Yamamoto proposed the design method of
using a time-varying proportional gain (Asano
and Yamamoto, 2001). However, about the co-
efficient of the reference input, an improvement
method is not yet proposed. The order of the
coefficient polynomial of the reference input in
the GPC law depends on a predictive horizon
which is one of the design parameters of the GPC.
If the constraint that the maximum predictive
horizon is set by the minimum predictive horizon
+ 2 or less is assumed and if the I-PD or a PID
controller is constructed in two-degree-of-freedom
system, the GPC law is approximated by the I-PD
or the PID controller correctly. However since it
restricts control performance, it is not acceptable
to add the constraint to the predictive horizon of
the GPC. Hence, conventional methods designed
the I-PD controller based on the GPC law by
approximating the coefficient polynomial of the
reference input by a steady state gain (Asano et

al., 1998; Asano and Yamamoto, 2001; Miller et

al., 1995; Miller et al., 1996; Miller et al., 1999).

Reference trajectory of the GPC, which ap-
proaches a set-point value gradually from a
present output, is effective in reducing overshoot.

The reference trajectory can be adjusted by the
designable parameter “α”. In this paper it is dis-
cussed how this parameter α is introduced into
the I-PD controller. By the conventional design
methods of the I-PD controller based on the GPC
law (Asano et al., 1998; Asano and Yamamoto,
2001; Miller et al., 1995; Miller et al., 1996; Miller
et al., 1999), it is impossible to make use of this
advantage since the future reference trajectory is
replaced by a constant set-point value and the
coefficient polynomial of the reference input is
approximated by the steady state gain. For the
reasons stated above, in the conventional methods
the I-PD or I-P controller is used instead of the
PID controller and α is fixed as 0. On the other
hand in the proposed method, it is made clear
that the PID based on the GPC becomes the I-
PD type essentially even if the design parameter
α is more than 0, and that α influences only an
integral time of the I-PD controller.

Finally, to illustrate the effectiveness of the pro-
posed method, numerical simulations are shown.
From these simulation results, it is seen that the
increase of α makes the integral time increase in
monotone and that the increase of integral time
makes the overshoot decrease in monotone.

2. PLANT MODEL AND I-PD CONTROLLER

Consider the following discrete-time model

A[z−1]y[k] =B[z−1]u[k − 1] +
ξ[k]

∆
(1)

A[z−1] = 1 + a1z
−1 + a2z

−2 (2)

B[z−1] = b0 + b1z
−1 + · · · + bmz

−m (3)

∆ = 1 − z−1 (4)

where y[k], u[k] and ξ[k] are the output, control
input and disturbance, respectively. z−1 denotes
the backward shift operator. When a dead-time is
the positive integer, the leading elements of the
polynomial B[z−1] are 0 (Clarke et al., 1987).
Generally a process control system is of high-
order. Because it is hard to identify higher-order
elements correctly and the system can be repre-
sented and approximated by second-order lag plus
dead-time, it is acceptable that the system (1)
is of order less than 2 (Yamamoto et al., 1999).
In that case it is also hard to identify the dead-
time correctly. By using the high-order polynomial
B[z−1], an unknown dead-time is represented in
(1) (Yamamoto et al., 1999).

The structure of the I-PD controller is given by

∆u[k] = kc

Ts

TI

(r−y[k]) − kc

(

∆ +
TD

Ts

∆2

)

y[k](5)

=C[1]r − C[z−1]y[k] (6)



C[z−1] = kc

(

∆ +
Ts

TI

+
TD

Ts

∆2

)

(7)

where kc, TI and TD are the proportional gain,
integral time and derivative time, respectively.
The sampling interval is denoted as Ts and r is
the step type set-point value. The purpose of this
study is to tune the PID parameters automatically
in order to make the output follow the set-point
r.

3. DERIVATION OF THE GENERALIZED
PREDICTIVE CONTROL LAW

The GPC law is derived by minimizing the follow-
ing performance index (Clarke et al., 1987)

J =E





N2
∑

j=N1

{y[k + j] − w[k + j]}2

+

Nu
∑

j=1

λj{∆u[k + j − 1]}2



 (8)

where, N1, N2, Nu and λj are the minimum
predictive horizon, maximum predictive horizon,
control horizon and weighting parameter toward
deviation of the control input, respectively. Al-
though the conventional design methods of the
I-PD controller based on the GPC law (Asano et

al., 1998; Miller et al., 1999; Sato et al., 2005) uses
w[k] in place of w[k + j] in (8), in this paper the
following future reference input w[k + j] is used
in order to obtain control performance as good as
the GPC

w[k] = y[k] (9)

w[k + j] = (1 − α)r + αw[k + j − 1] (10)

0 ≤ α < 1. (11)

(9)∼(11) makes it possible that the reference
trajectory is adjusted with the design parameter
α in the same way as the original GPC (Clarke et

al., 1987).

To derive the GPC law, the polynomials Fj [z
−1],

Rj [z
−1] and Sj [z

−1] are calculated by using the
following Diophantine equation

1 = ∆A[z−1]Ej [z
−1] + z−jFj [z

−1] (12)

Ej [z
−1] = 1 + e1z

−1 + · · · + ej−1z
−(j−1) (13)

Fj [z
−1] = fj,0 + fj,1z

−1 + fj,2z
−2 (14)

Ej [z
−1]B[z−1] = Rj [z

−1] + z−jSj [z
−1] (15)

Rj [z
−1] = r0 + r1z

−1 + · · · + rj−1z
−(j−1) (16)

Sj [z
−1] = sj,0 + sj,1z

−1

+ · · · + sj,m−1z
−(m−1). (17)

Because the GPC uses only the first element of
control input series, the GPC law is given by

∆u[k] =
P [z−1]

G[z−1]
w[k +N2] −

F [z−1]

G[z−1]
y[k] (18)

where the coefficient polynomials of the control
law are given by the following

P [z−1] = pN2
+ pN2−1z

−1

+ · · · + pN1
z−(N2−N1) (19)

[pN1
· · · pN2

] = [1 0 · · · 0](RTR+ Λ)−1R (20)

Λ = diag{λ1, · · · , λNu
} (21)

R =

















rN1−1 · · · r0 0
...

. . .

rNu−1 r0
...

...
rN2−1 · · · · · · · · · rN2−Nu

















(22)

G[z−1] = 1 + z−1S[z−1] (23)

S[z−1] = pN1
SN1

[z−1] + · · · + pN2
SN2

[z−1] (24)

F [z−1] = pN1
FN1

[z−1] + · · · + pN2
FN2

[z−1] (25)

= f0 + f1z
−1 + f2z

−2. (26)

4. DESIGN METHOD OF THE I-PD
CONTROLLER BASED ON THE GPC LAW

By using the design parameter α which can adjust
a rise-time of the output and is one of the features
of the GPC, to design the I-PD controller based
on the GPC law, the reference input w[k + j] is
rewritten by the following equation using (9) and
(10)

w[k + j] = αjy[k] + (1 − αj)r. (27)

It is shown that the future reference input is
decided by the set-point value and the present
output. The use of (27) gives the following

P [z−1]w[k +N2] = prr + pyy[k] (28)

pr =

N2
∑

j=N1

(1 − αj)pj (29)

py =

N2
∑

j=N1

αjpj (30)

then using the above equations the GPC law (18)
is rewritten by the following equation

∆u[k] =
pr

G[z−1]
r −

Fp[z
−1]

G[z−1]
y[k] (31)

where the polynomial Fp[z
−1] is given by

Fp[z
−1] = f0 − py + f1z

−1 + f2z
−2. (32)



In the GPC law (31) the steady state gain of the
polynomial G[z−1] is defined as ν

ν = G[1]. (33)

and G[z−1] is replaced with ν (Asano et al., 1998).
Then comparing (6) with (31), the PID parame-
ters are obtained. The proposed I-PD controller is
designed so that the following equation is satisfied

C[z−1] =
Fp[z

−1]

ν
. (34)

It follows from (34) that the PID parameters are
calculated by the following

kc =−
1

ν
(f1 + 2f2) (35)

TI =−
f1 + 2f2

f0 − py + f1 + f2
Ts (36)

TD =−
f2

f1 + 2f2
Ts. (37)

It is seen from (36) that the design parameter
α of the GPC influences the integral time only.
Furthermore the following equation is satisfied

pr = Fp[1]. (38)

Hence the output can follow the set-point value
without steady state error. Because pr which is
the coefficient of the set-point value is a constant,
when the PID parameters are designed as (35) ∼
(37), the I-PD controller can be designed based
on the GPC law, without approximation about
the coefficient polynomial of the set-point value
r.

If the coefficients of A[z−1] and B[z−1] are known,
the PID parameters can be calculated through
(35) ∼ (37). Since in this paper the coefficients are
assumed to be unknown, the following recursive
least squares identification law (Goodwin and
Sin, 1984) is used to obtain the estimated values
of the unknown coefficients of A[z−1] and B[z−1]

θ̂[k] = θ̂[k − 1] (39)

+
Γ[k − 1]ψ[k − 1]

1 + ψT [k − 1]Γ[k − 1]ψ[k − 1]
ε[k]

Γ[k] = Γ[k − 1] (40)

+
λΓ[k − 1]ψ[k − 1]ψT [k − 1]Γ[k − 1]

1 + λψT [k − 1]Γ[k − 1]ψ[k − 1]

ε[k] = ∆y[k] − θ̂[k − 1]ψ[k − 1] (41)

θ̂[k] = [â1[k], â2[k], b̂0[k], b̂1[k], · · · , b̂m[k]] (42)

ψ[k−1] = [−∆y[k − 1],−∆y[k − 2],∆u[k − 1],

∆u[k − 2], · · · ,∆u[k −m− 1]] (43)

Γ[0] = αΓI, (0 < αΓ <∞) (44)

where λ denotes the forgetting factor (0 < λ < 2)
and Γ[k] is the estimated covariance matrix.

5. NUMERICAL EXAMPLES

To show the effectiveness of the proposed method,
numerical examples are conducted. In this section,
two numerical examples are shown. The one is to
confirm the advantage of introducing the design
parameter α used in the GPC into the design
of the I-PD controller. The other is to show the
proposed self-tuning I-PD controller works well in
the case that plant parameters are unknown.

5.1 Effect of introducing the design parameter

“α”

A controlled plant is given by the following trans-
fer function

G(s) =
1

s2 + 1.6s+ 1
e−s. (45)

Using the sampling interval Ts = 1[s] the
continuous-time system (45) is transformed into
the following discrete-time system

(1 − 0.74z−1 + 0.20z−2)y[k]

= z−1(0.29 + 0.17z−1)u[k − 1]. (46)

The length of simulation is 50 steps. The design
parameters of the GPC: N1 = 1, N2 = 5, Nu = 2
and λj = 1 (j = 1, 2). To confirm the influence of
introducing the design parameter α, α is set from
0 to 1.0, in 0.1 increments. The proportional gain
kc and the derivative time TD are independently
designed to the choice of α, thus kc = 0.22 and
TD = 0.56 are obtained.

The output results are shown in Fig. 1. Because
the proposed method with α = 0 is equivalent
to the conventional one, the output response by
using α = 0 is also the result by the conventional
method. In the case of α = 0, 0.1, 0.2, the output
responses overlap since the integral times shown in
Fig. 2 are almost the same. Fig. 1 and Fig. 2 show
that the larger α is, the smaller the overshoot of
the output is. Because α = 1 makes it impossible
for the output to follow the reference input, the
range of the integral time is obtained as 0.169 ≤
TI < 0.218 in the simulation conditions. Since the
conventional method fixes α as 0, the overshoot
emerges. On the other hand since the proposed
method designs the I-PD controller using the
adjustable α, the overshoot is decreased.

The integral times corresponding to the value of
each α are shown in Fig. 2. It is shown that the
larger the value of α is, the larger the integral time
is. We see from the results that the increase of α
increases the integral time and adjusts the output
response.
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Fig. 1. Output result by using the proposed I-
PD controller in the case of known plant
parameters
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Fig. 2. Relationship between the design parameter
α and the integral time

5.2 Self-Tuning Case

In this subsection, consider the following plant,
the parameters of which are unknown

(1 − 0.74z−1 + 0.20z−2)y[k]

= z−1(0.29 + 0.17z−1)u[k − 1] +
ξ[k]

∆
. (47)

As for (47), the integrated noise is added to (46).

Simulations are conducted under the conditions:
simulation length is 200 steps, variance of random
disturbance ξ[k] is 10−6, the the set-point value is
a rectangular wave with amplitude 1.0 and period
of 50 steps and the recursive least square identifi-
cation law having reset with the forgetting factor
0.99 is used. The initial value of the estimated
covariance matrix is 103I and the initial values of
the identified coefficients are the nominal values
which are multiplied true values of (47) by 0.5.
The design parameters of the GPC: α = 0.6 and
the others are the same as 5.1.

The output, control input, identified polynomials
A[z−1] and B[z−1] and obtained PID parameters
are shown in Fig. 3 ∼ Fig. 7. It is seen that good
control performance is obtained in the case of
which the plant parameters are also unknown.
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Fig. 3. Output result by using the proposed self-
tuning I-PD controller
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Fig. 4. Input result by using the proposed self-
tuning I-PD controller
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Fig. 5. Identified parameters of the polynomial
A[z−1]

6. CONCLUSION

Conventional methods (Asano et al., 1998; Asano
and Yamamoto, 2001; Miller et al., 1995; Miller
et al., 1996; Miller et al., 1999) designed I-PD
controllers based on a GPC law by replacing a
coefficient polynomial of a reference input in the
GPC law with the steady state gain of that. On
the other hand because the proposed method uses
reference trajectory which approaches a set-point
value gradually from a present output, the I-PD
controller can be designed based on the GPC
law without approximation about the coefficient
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Fig. 6. Identified parameters of the polynomial
B[z−1]
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Fig. 7. Obtained PID parameters

polynomial of the reference input. We also have
shown that the design parameter α of the GPC
has an influence on only an integral time of the
proposed I-PD controller and that a PID based
on the GPC becomes the I-PD type essentially.

The proposed method approximates a coefficient
polynomial of a control input in the GPC law by
the steady state gain (Asano et al., 1998). The
future study will be apply Asano and Yamamoto’s
method (Asano and Yamamoto, 2001) for obtain-
ing better approximation.
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