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Abstract: This paper discusses the compensation of the transmission delay in a networked 
state feedback control system (NCS), which possess a randomly varying transmission 
delay and uncertain process parameters.  The compensation is implemented by using a 
buffer in the actuator node and a state estimator in the controller node. A Linear Matrix 
Inequality (LMI) based sufficient condition for the stability of the NCS under the 
designed compensation is proposed. The simulation results illustrate the efficiency of our 
compensation method. Copyright © 2005 IFAC 
 
Keywords: delay compensation, network, time delay, stability analysis, uncertain linear 
system. 

 
 
 
 

 
1. INTRODUCTION 

 
As the development of network technologies, more 
and more communication networks are used in 
industrial control. Applications of NCSs include 
internet-based process control (Yang et al., 2002, 
2003; Overstreet and Tzes, 1999), internet-based 
robotics (Oboe and Fiorini, 1998), field-bus based 
NCS and Ethernet based NCS (Lian, 2001) etc. The 
advantages of NCSs are reducing cost of cabling, 
ease system diagnosis and maintenance, increasing 
modularity and flexibility in system design.  
 
However, the network transmission delays degrade 
the system dynamic performance and affect the 
stability of NCSs. The network transmission delay is 
time varying and stochastic. There are two ways to 
overcome the transmission delay. One is to improve 
the quality of network transmission by optimising 
communication protocols and adopting hardware 
devices with high performance so that the network- 
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induced delays can be ignored. The other is to 
counteract the effect of network-induced delays on 
the system by using control theoretical approaches 
such as time-delay compensation, stochastic optimal 
control, predictive control, and robust control etc. 
 
Rich literatures have been published on the NCSs. 
Zhang et al. (2001) analysed the stability of NCSs, 
and achieved some important results based on the 
assumption that transmission delay is less than a 
sampling period and the data are transmitted in a 
single packet. Walsh et al (2002) considered a NCS 
in which the network is inserted between continuous 
plant and continuous controller, and introduced the 
notion of Maximal Allowable Transfer Interval 
(MATI), which is the maximum time interval 
between transfers of data from sensors to a 
controller. Their goal is to find the MATI that 
guarantees the stability of NCSs. Montestruque and 
Antsaklis (2003) focused on reducing the network 
usage by using the knowledge of the plant dynamics. 
Necessary and sufficient conditions for stability of 



     

NCSs with a state feedback and an output feedback 
were derived respectively. Luck and Ray (1990) 
modelled the network-induced delays as a constant 
by building buffers in the controller node and the 
actuator node respectively. The disadvantage of this 
method is prolonging the network-induced delay.  
 
This paper is organized as follows. In Section 2, a 
model of NCSs is given with several assumptions. A 
transmission delay compensation method is proposed 
in Section 3. The stability analysis for NCSs is 
addressed in Section 4. Section 5 illustrates the 
simulation results, which demonstrate the accuracy 
of the proposed method. Section 6 is the conclusions. 
The appendix gives the detailed proof for the 
stability theorem.  
 
 

2. MODELLING OF THE NCS 
 
Consider a class of ordinary NCS as shown in Fig. 1. 
It consists of a plant described in an uncertain 
discrete linear model. 
  





=
∆++∆+=+

)()(
)()()()()1(

kCXkY
kUBBkXAAkX      (1) 

 
and a discrete controller  
  

L,2,1),()( =−= kkKXkU ,           (2) 
 
where 1nRX ∈  is the state vector; 2n

k RU ∈  is the 

control input vector; 11 nnRA ×∈  and 21 nnRB ×∈  are 
known constant real matrices; BandA ∆∆  are 
matrix-valued functions of appropriate dimension 
representing time-varying parameter uncertainties in 
the plant model. The parameter uncertainties 
considered are assumed to be norm bounded and 
satisfy 
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where 21,, EED  are known real matrixes of 
appropriate dimension that represent the structure of 
uncertainties, and 21)( ssRkF ×∈ is unknown matrix 
function and satisfies 
 

IkFkF T ≤)()(                                 (4) 
 
in which I  is the identity matrix with an appropriate 
dimension. 
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Fig.1. Networked control system  

 
There are two transmission delays involved, one 

is the sensor-to-controller delay denoted as τsc, and 
another is the controller-to-actuator delay denoted as 
τca. The total transmission delay τ equals τsc+τca. The 
following assumptions are made for the NCS: 
 
• The total transmission delay τ is bounded and 

stochastically varying, i.e. 0< τ ≤ mT, where m 
is an integer and T is the sampling interval. 

• The sensor data and the control signals are 
transmitted in two single packets respectively. 

• The controller is working in the event-driven 
mode, i.e. the control signal is calculated as soon 
as the sensors data arrive. 

• The sensors are working in the clock-driven 
mode, i.e. the plant outputs are taken and sent 
from the sensors periodically with the interval T. 

• The actuators are working in both the clock-
driven and event modes, i.e. the actuators receive 
the control signals on network event, and refresh 
the control signals to the process only at the 
sampling time. 

 
The actuators may receive zero, one, or more than 
one (up to m) control signals from the controller 
during a single sampling period of time. If the 
actuators receive no control signal during any 
sampling interval ),[ 1+kk tt , the current control 
signal ku  will continue acting on the plant during the 

next sampling interval ),[ 21 ++ kk tt . If the actuators 
receive more than one control signal during any 
sampling interval ),[ 1+kk tt , only the most recent 
control signal is kept and the actuators will discard 
the others.  
 
Concerning the random transmission time delay, the 
state feedback controller shown in the equation (2) 
can be re-presented as follows 
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kr  represents the random network transmission 
delay of the NCS, { }mTTTrk L,2,=℘∈ . 
 
A further rational assumption is made as follows: 
 
Let { }0, >krk  be a Markov chain with the state 
space { }mTTT L,2,=℘ and the transition 
probabilities are 
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3. TRANSMISSION DELAY COMPENSATION 
 
Fig. 2 illustrates the principle of the transmission 
delay compensation for the NCS. A process model is 
located in the controller node in order to predict the 
performance of the plant. A buffer is located in the 
actuator node in order to compensate the 
transmission time delay. 
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Fig. 2. Transmission delay compensation in the NCS 
 

If the latest plant state received by the controller 
node is )(kX , the controller will predict the next m  
plant states based on this measured plant state 

)(kX : )1(ˆ +kX , )2(ˆ +kX , to )(ˆ mkX + , calculate 
the future m control signals: )(),1( mkUkU ++ L  
and then transmit them to the actuator node together 
with the time stamp received from the sensor node. 
The prediction of the plant states and the future 
control actions based on the measured plant state 

)(kX  are as follows:  
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Similarly, the prediction of the plant states and the 
future control actions based on the latest available 
plant states received by the controller node 

)1(,),1( +−− mkXkX L  can be easily 
obtained.  

 
Denote [ ]miX ik ,,2,1,ˆ

|1 L∈+  as the prediction of the 
plant state at the instant 1+k  based on the measured 
state ikX −+1 , and [ ]miU ik ,,2,1,|1 L∈+  as the future 
control action at the instant 1+k , which is obtained 
based on the prediction of the plant state ikX |1

ˆ
+ . The 

future control actions at the instant k+1 based on the 
latest available plant states 

)1(,),1(),( +−− mkXkXkX L can be described 
as follows: 
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All the control actions and the estimations of the 
state shown in the equations 8 and 9 are at the instant 
k+1 only, but based on the latest available measured 
states received from the sensor node at the instant k, 
k-1, …or k-m+1 respectively. The actual control 
action applied into the plant at the instant k+1, i.e. 
the compensated control action 1+kU  depends on the 
actual total transmission delay kr .  
 
Once the control signal is received by the actuator 
node the total transmission delay kr  will be 
calculated by comparing the current time stamp and 
the latest time stamp received from the sensor node.  
The control actions available for the plant will be 

)()2()1( kkk rmkUrkUrkU −+−+−+ L , 
which are saved in the buffer at the actuator node. 
The actuator node will choose U(k+1)  from the 
buffer as the control signal acting on the plant at the 
instant k+1. In the next sampling interval, if no any 
control signal is received from the control node, 
U(k+2) will be used for the plant. If more than one 
control signal packets are received the latest packet 
will be saved in the buffer and used for the plant. 
 
Being similar with the uncompensated control action 
shown in the equation (5) the compensated control 
action shown in the equation (8) can be formulised 
as follows: 
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1+kU  is the control action acting on the plant at the 
instant 1+k . 
 
 

4. STABILITY ANALYSIS 
 

Define ikkik XXe |11|1
ˆ

+++ −=  as the state error 
between the real plant state at the instant k+1 and the 
state estimation for the instant k+1 based on the real 
state at the instant ik −+1 . Combining the equations 
1, 8, 9 and 10 the state errors at the instant k+1 based 
on the real state at the instant miik ,,2,1,1 L=−+  
can be given as follows: 
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The plant state and these predictive state errors form 
a new extended state vector )(kZ : 
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Therefore, the dynamics of the NCS with the time-
delay compensation can be described by 
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where, 
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With the assumption shown in the equations 3 and 4, 

)( krand ∆Γ∆Λ  can be expressed as: 
 

)](ˆˆ)[(ˆˆ)]([ 21 kk rEEkFDr =∆Γ∆Λ         (15) 
     
where 

],,[ˆ
148476
L

+

=
m

DDDdiagD  
 

],,[ˆ
148476
L

+

=
m

FFFdiagF  



















=

001

001
001

1̂

K

MMMM

L

L

E

E
E

E  

 



















−−−

−−−
−−−

=

22

22

22

2

)1()(2

)1()(2
)1()(2

)(ˆ

ErEmrE

ErEmrE
ErEmrE

rE

kk

kk

kk

k

δδ

δδ
δδ

K

MMMM

L

L

 

    
and 
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The following sufficient stability condition is 
achieved for the NCS with the predictive 
compensation. 

 
Theorem: The NCS shown in the equations 1 to 4 
with the time-delay compensation described by the 
equation 13 or by the equations 8, 9, and 10 is robust 
stochastically stable if there exist miPi L,1,0 => , a 
matrix L described by the equation 14 and a scalar 

mii L,1,0 =>ε  satisfying the following m  linear 
matrix inequalities: 
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ijPr  is the corresponding element of the state 
transition matrix of the Markov process rk, as shown 
in the equation 6. The proof of the theorem is given 
in the appendix. 
 
 

5. SIMULATION RESULTS 
 

Consider a simple discrete plant described in the 
equations 1 to 4 with the sampling interval 

5.0=T second and the following parameters. 
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The network transmission delay is 

{ }TTTrk 3,2,=℘∈ , and the state transition matrix is  
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The state feedback controller is kk KXU −= , where 

[ ]38.33.10=K  was designed in advance without 
considering the presence of the network.  
 
According to the stability theorem in the section 4, 
the NCS with the time-delay compensation is stable 
for the state feedback matrix [ ]38.33.10=K  by 
using the LMI toolbox in the MatLab. The responses 
of the states 21 , xx , and the output Y under the 
square wave setpoint change are shown in Figs. 3, 4, 
and 5 respectively. The system was initially at a 
steady state, i.e. .0)0(;0)0(;0)0( 21 === Yxx  
The setpoint shown in Fig. 5 is changed from 0 to 1.0 
at the instant 0=k , and then back from 1.0 to 0 at 
the instant 100=k . In Figs. 3 and 4 the solid and 
dash lines represent the responses of the two state 
variables without and with the transmission delay 
compensation respectively. It is obvious that the 
responses with the transmission delay compensation 
are quicker in approaching to the new steady states 
and have much less overshoot. Fig. 5 illustrates the 
same conclusion achieved in the output response. 
The square wave setpoint is shown in Fig. 5 as a 
reference. The output with the transmission delay 
compensation has much less overshot and 
approaches to the setpoint much quicker than the one 

without the compensation. The comparison 
concludes that the transmission delay compensation 
method introduced in this paper can improve the 
system performance. 
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Fig. 3. State 1x  response 
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Fig. 4. State 2x response 
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Fig. 5. Output response 
 
 

6. CONCLUSIONS 
 
This paper discusses the NCS with a stochastic 
transmission delay and uncertain process parameters. 
The stochastic transmission delay is assumed to be a 
Markov chain and be integer times of the sampling 
interval. The uncertain parameters are assumed to be 



     

norm bounded. A binary variable is introduced to 
represent the control action with a random 
transmission delay. A state feedback controller is 
firstly designed without considering the involvement 
of the network transmission delay. A buffer is then 
located in the actuator node to save the future control 
actions sent from the controller node. The control 
action actually applied to the plant at the instant k+1 
is chosen from the buffer based on the total 
transmission delay. The buffer is designed to 
compensate the influence of the transmission delay.  
An LMI-based sufficient condition for the stability of 
the NCS with the above compensation is derived in 
this paper. The simulation results also illustrate the 
potential of the transmission delay compensation 
method. 

 
There are still a number of problems to be addressed. 
Firstly, the stability theorem proposed here is only a 
sufficient condition. A necessary condition is under 
investigation. The state feedback controller is used in 
this paper for the NCS. If the plant states are un-
measurable a output feedback controller for the NCS 
should be investigated.  
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APPENDIX 

 
Lemma (see Branicky et al., 2000): Let 

EtFDZ ),(,,  be matrices with appropriate 
dimensions. Suppose Z  is symmetric and 

ItFtF T ≤)()( , then 

0)()( <++ TTT DtFEEtDFZ  
if and only if there exists scalar 0>ε  satisfying 

01
<++ EEDDZ TT

ε
ε            (A.1) 

Proof of the theorem:  
Combining the equations 13 and 15, and taking the 
piecewise quadratic stochastic Lyapunov function: 
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,,1],PrPr[ 1 miIIW imii LL == where ijPr  is the 
corresponding element of the state transition matrix 
of the Markov process kr . Thus, we have 

T
iii GWWS = . 

The mean square stable theory of stochastic systems 
gives (Cao and Lam, 1999): 
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Obviously, if (A.3) <0, the discrete uncertain system 
is robust stochastically stable. Using the Schur 
complement the inequality (A.3)<0 can be 
represented as follows: 
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According to the Lemma (A.1) and the assumption 
(16) the inequality (A.4) is true, if and only if there 
exits a scalar 0>iε  satisfying the equation (17). The 
theorem is proved. 


