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Abstract: Topological separation is investigated in the case of an uncertain time-invariant
matrix interconnected with an implicit linear transformation. A quadratic separator inde-
pendent of the uncertainty is shown to prove losslessly the closed-loop well-posedness.
Several applications for descriptor systems are then given. First, some known results for
stability and pole location are demonstrated in a new way. Second, contributions to robust
stability analysis are exposed. All results are formulated as linear matrix inequalities
(LMIs). Copyright© 2005 IFAC
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1. INTRODUCTION and the second one is a complex valued uncertain
matrix gain,

Well-posedness of feedback systems provides a fertile

framework for stability analysis of non-linear and
uncertain systems. An associated fundamental concep
is topological separation (Safonov, 1980). It states that
internal signals of a multivariable feedback connection
of two systemg andG are unique and bounded under
external disturbances if and only if the graph Bf

is topologically separated from the inverse graph of
G. While finding such topological separator is tricky
in general, for several choices of systefisand G
there exist, sometimes lossless (Meinghal,, 1997),
tractable techniques. Among these, major results for
robust stability analysis are given in (lwasaki and
Hara, 1998) and references therein.

w=Vz, VeW.

}\10 assumption is made on the set of possible un-
certainties W. The main result proves that well-
posedness of such systems is losslessly assessed by
a quadratic separator (the topological separator is a
quadratic functional ot and w) independent of the
uncertaintyV. The result is a generalisation of corol-
lary 1 in (Iwasaki and Hara, 1998) to implicit linear
transformations. Closely related results are lemma 4
in (lwasaki and Shibata, 2001) and the full-block S-
procedure theorem 1 in (Scherer, 1997). In fact they
prove to be different and we choose to give a detailed
proof of our result.

In this paper we investigate a special case of feedbackl_he remaining of the paper is dedicated to corollar-
connections where the first system is a given implicit . 9 pap

linear transformation, ies of the main result. Our goal is to illustrate how

previously obtained stability analysis conditions for
Ez=Aw, descriptor systems are related to topological separa-
tion. First we show that stability ofr: Ax is
equivalent to well-posedness of a feedback connection
of V. = s7!1, s7! € C* with an implicit linear
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i — v Well-posedness of the system states that for all admis-
W w-—w=Vv= z sible V € W, the null space of — AV is empty
_ (€ — AV is non-singular if square).
V4
w E(z—2)=Aw

Lemma 1.Well-posedness of the system in Figure
1 is equivalent to well-posedness of the feedback
connected systems given by

transformation. Quadratic separation with respect to w—w=VEy

this uncertainty set proves to be related to the exis- { EE°(y—9) —Aw=0. @)
tence of a quadratic Lyapunov certificate. Extensions

to discrete-time system stability as well as to pole

location analysis are also givenand compared with _ ) . 1 o o
(Masubuchiet al, 1997: Hsiung, 1998; Henriopt  ~'oof: Write z and z in the [€+ &°] basis,i.e.

Figure 1. Feedback system

al., 2001). 2= &y + E%, 2 = £ + £°. Then take
_ ] W = w+VELy,. Equations of Figure 1 are equivalent
In the last section of the paper, corollaries for robust 4 those in ). -

stability of descriptor systems are derived. More gen- ) ]
eral than the framework by (Lin, 1999) and (>t Thanks to this technical lemma, well-posedness of the
al., 2001), the contribution considers rationally depen- considered system is equivalently written for a similar
dent models where uncertainties enter on bothAhe —System wher&&” is a, possibly non square, full rank
and theE matrices. To our knowledge these results are Matrix. Now the main result is stated.

totally new. They allow to test stability of systems with . )
structured uncertainty. More or less conservative testsneorem 1.The uncertain feedback system of Figure
are given that involve either constant or parameter- 1 i Well-posed if f_:lnd_only if there g)_(ists a Hermitian
dependent Lyapunov functions. We believe that the Matrix© = ©* satisfying both conditions

contribution is original even when compared to similar [e&° —A]L* olee —A]l -0 ®)
results for usual LTI systems such as (lwasaki and
Shibata, 2001).

Notations: R™*™ and C"™*™ are the sets ofn-by- . . .
n real and complex matrices respectiveli is the If £ and.A are real matrices, the equivalence still holds
transpose of the matrixl and A* is its transpose  With © restricted to be a real matrix.

conjugate.A* is a full rank matrix whose columns

span the null-space ofl. The columns ofd® form  proof of sufficiency:Assume (3) holds. It implies the

an orthogonal basis of*, i.e. [AJ‘ A° ] is full rank. existence of some positive scalasuch that
1 and 0 are respectively the identity and the zero

o L% ° 1
matrices of appropriate dimensions. For Hermitian [€€° —A] 7T (@ —el)[E€° —A]T >0.
matrices,A > (>)B if and only if A — B is positive
(semi) definite.

[REO*V*]®[V150}§® , YWeEW. (4)

By definition of [££° —A]L and assuming (4)
holds, one gets for all vectors that satisfy (2)

y—19Y\ PN
2. MAIN RESULT E u; >>*((:)( Jl)y(A )w<2.>0

w — W w — W
Consider two possibly non-square matriceand A
and an uncertain matriX’ with appropriate dimen-
sions that belongs to some s&. We make no as-
sumption on the uncertainty s@f. Y [ el Ty

N . . Ty T:
The feedback system in Figure 1 is said to be well- 12 o
posed if for all uncertainties and all bounded input Take anye such thak > € > 0 and take a sufficiently
signals, the internal signats and = are unique and large¥y > 0 such that
bounded. Since only linear transformations enter the a o el T,
feedback systemy andz are necessarily unique if we o | S| s
) 0 —71 7 Ty
can prove they are bounded. Well-posedness writes as - )
Well-posedness condition (1) is then proved for sys-
w < w
z =7 z ’
@

tem (2) withy = 4/&. Lemma 1 concludes the proof
of sufficiency. |
Note that the equalities in Figure 1 imply Proof of necessity:Asgume the system in Figure 1
is well-posed and equivalently that (2) is well-posed.
(E-—AV)z=Ez+ Aw . First, note that if inequality (1) holds ferit also holds

Combining both inequalities, implies a quadratic con-

straint on the vectoX = (w* y*|4* §*)" such as

|x<0.

V(w, 2)

>0 : VW e W




for all v > 7. Well-posedness of (2) therefore implies fits the feedback system framework of Figure 1 if one

that, for ally > 7 and for allV € W, the equality
constraint onX

M
-1 V& |1 O
[A —ge° @550})(_0
implies that the quadratic constraint
.]1 0
X [0 _ﬂ] X <0

holds. Due to Finsler’s lemma (Skelte al., 1998),
it is equivalent to

MN[R 0

Oyﬂ]MLS(D' (5)

DefineN; and N, the partitions of ££° —A ] + such
that
o L Nl
[eg° —A]t = [ N
R = N{N; + N3Ny and@Q = yR — N5 Ns. Since
EE° is full rank, N5 is also full rank. One can take

} , EE°Ny — AN, =0,

0 Ny
I )
M= =& N
1 -N

and the inequality (5) writes
1 — Al —4E°*V*VE® 4E°*V* N, + YN,
YNy VE® +yNi -Q
Take~ sufficiently large such thap > 0. Applying

a Schur complement argument on the bleel, one
gets inequality (4) where

6 {1 —71+7*NiQ7'NY  ¥*NiQ7' Ny }
VNoQTINY A1+ NoQ NS
This matrix is real if€ and.A4 are real matrices. Let us
prove now that (3) also holds.
[e€° —A] O [E€° —A]
= NiN, =R +~*R(yR — N3 N3) 'R
Apply a firsttime the matrix inversion lemmatoR—
N3 Ny)~!to get
= N{ Ny + N3 (1 — No(yR) "' N3)~I N,
and a second time tal — No(yR)"1N3)~! to con-
clude
= N{N; + N3 (1 + No(yR — N3 No) "' N; )N,
=R+ N;NoQ 'NsNy > 0.
Both inequalities (3) and (4) hold for anysufficiently
large to ensur€) > 0. [ ]

5o
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3. STABILITY OF DESCRIPTOR SYSTEMS

3.1 Continuous-time descriptor systems

considers
z=2,w=zx, E=FE , A=A

V=s11, steCt .
A quadratic separator for this set of uncertainties can
be chosen as

0 —E°TP

0= [—PEO 0

Based on results of (Meinsng al,, 1997), the choice

of such a structure for the separator may be proved to
be non conservative.

} , E°TPE°>0.

Corollary 1.  The descriptor system (6) is admissi-
ble,i.e.regular, stable and impulse free (Masubusthi
al., 1997), if and only if the following LMI conditions
hold

E°TPE° >0

ol
0 F P}[EEO ~A

PE° 0 <0.

[BE° _A]J_T|: }J_

Proof of necessity: One way to prove necessity of

corollary 1 is to show how this result is related to the

LMI conditions of (Masubuchet al., 1997)
ETXT=XE>0, ATXT+XA<0. (7)

For a stable descriptor system there exist two non
singular matrice§” andU such that

|10 . A 0
VEU[(D(D] , VAU[(DJl]'
Based on this factorisation take
o 1 o 1 Al
B :UM . [EE° 4] :[E}

Replace these in (7) and pre and post-multiply the
formula by E°T and E° respectively. The result is
exactly the conditions of corollary 1 witlP =
U-Tv-TxT, |

Remark that conditions of corollary 1 imply to solve
a smaller LMI problem in terms of number of vari-
ables and size of the constraints. This can prove more
efficient for large scale problems. On the other hand,
the constraints (7) may be useful when dealing with
design problems (Masubuci al., 1997), it is not yet
the case for the new proposed result.

Remark also that the matriR in corollary 1 defines
a quadratic Lyapunov functiol’ (z) = 2z Px such
that V(z) > 0 for all = in the image ofE°, while
V(z) < 0forall (&, ) in the null space of E —A .

As an example, let us consider as in (Masubuchi and
Shimemura, 1997) the scalar 'switch’ system

<[}

A linear descriptor system characterised by the state-If § # 0 the system is 'turned off’ and resumes to

space equation
Ei = Ax (6)

x(t) = 0, itis stable. Otherwise the system is unstable,
T =2z.



Assumed # 0thenE° = 1 and 3.3 Polynomial systems
1-17"

0]

is empty. The LMI conditions of corollary 1 are sum-

marized by the existence of a scatar> 0. Take for

examplep = 1, the stability is proved. Now what
happens when = 0. In that case

If you consider a matrix differential equation of degree

[EE° —A]" = {
d defined by

d
ZAix(i) =0, z€R",
i=0

stability is then equivalent to well-posedness of the

L . . .
[ EE° ,A}l: Ll) 01] — {ﬂ system in Figure 1 with
" Ag O -+ 0
and the LMI conditions are 0 1 0
p>0, 0<0. E=| . _
The last one cannot be fulfilled, the system is unstable. tD 0 ' 1 V=s "4
Ag—1 -+ A1 Ao 1 4
_ . . . 1 0 0 s relCr.

3.2 Discrete-time descriptor systems and pole location A= —
The discrete-time case is very much similar to the 0 ' 1 @

continuous-time case. The state-space representation . 3 .
Ex41 = Axzy, is identically modelled as a feedback In the cased, is full rank, stability and pole location

system in Figure 1. The unique difference is the un- LMI conditions obtained when applying theorem 1 to
certainty set this system are exactly the same as the one proposed

Vesl1, |sY<1. in (Henrionet al, 2001).

Non-conservative separators can be parameterised as
—E°TPE° 0
o -
Applying theorem 1, condition (3) with this choice
of separator is a necessary and sufficient LMI con-
dition for the stability of the discrete-time descrip-  (E4 + (BA — Eg)(Ep — DA) 'E¢)i
tor system. The result is related to the generalised = (A4 (BA - Ep)(Ep — DA)_lC)x
discrete Lyapunov inequality of (Hsiung, 1998) that (8)
writes ETXE > ATXA, ETXE > 0, by taking  where the state-space model matrices are rational
P=U"Tv-TxXv-1iu-L functions of the uncertain parameteksthat are as-
sumed to belong to a sé&t This model matches the
framework of Figure 1 if one considers

4. ROBUST STABILITY OF DESCRIPTOR

oT o
} , EVPE">0. SYSTEMS

Consider the following uncertain descriptor system

The procedure can be extended to pole location anal
ysis. For example, take regions of the complex plane

described by a scalar quadratic inequality: £ A
— ——
D={seC : d +des+dss*+dsss" <0}. EA Ep t\ |AB z
_ o o E =lcp )
Such regions are half-planes, interior of disks or exte- ¢ =D zA wa

riors of disks. The poles afi = Az (i.e. values such  along with the set:

thatrank(Es — A) drops from its normal value) lie in 1

D if the feedback system of Figure 1 is well-posed for W = { {S Ln g} csteCt, Aen } )
all s outside the region. Pole location analysis amounts 0

to testing well-posedness with respect to the following
uncertainty set:

{ 1 dis s + dys™* }
WY = s 1 x —1 . .

+dys™ +d3 20 Assume the uncertainties are non-structured norm-
Necessary and sufficient LMI condition for pole lo- bounded:ATA < 1. A non conservative choice of
cation analysis are then obtained applying theorem 1quadratic separators f& is described by
with the following separator: ETPE >0, 70,

4.1 Unstructured uncertainty

d3EOTPEO d;EOTP oT o o o o
©= [ dPE°  ap |0 P PE>0. —7ETE5|~ETP 0
, ) 0= P& 0 0
For many other regions (as well as for unions of re- 0 ! 0 1

gions) separators can be chosen following the method- . . .
ology in (Henrioret al, 2001). For intersections of re- wherec? andé; are the relevant row partitions 6f.

gions, the procedure consists in proving pole location APPIying theorem 1 with this choice of separator, we
in each region independently. get a necessary and sufficient LMI condition for robust

stability of the uncertain descriptor system.



4.2 Structured uncertainty £ A

. . 1 0 O 1000
Consider now the structured uncertainty such that 0 E4 Ep 0 0 ABO
A = §1,, with ¢ real and norm-bounded| < . 0 EcEp 0 |2=|0CDO |w (12)
Parametric uncertainty is assumédns an unknown Es 0 0 Ep A0 O B
constant scalar. Based on mixed P-separators and Ec 0 0 Ep CO0O0D
vertex-separators (Iwasaki and Hara, 1998), define the
following structured separator with a feedback operator
-1
£570,£5| £ P £57 0, V- {s o 61@ ]
0=\ —P& 0 0 (10) m
oles 0 O3 An other corollary to theorem 1 is:
constrained by the LMIs Corollary 3. For € and A defined in (12), if there
EfTPEf >0 , gé)T@ggé) >0 exist a matrixP € R?>" and matricesd;—1 23 €

oT _ = . R?™ that satisfy (3), (10) and (11), then the uncertain
£ (01 +002 +60; +0°035)85 <0 (11)  system (8) is stable for alh = 61, |§] < 4.
ET(01 — 60, — 001 1+ 6%03)85 < 0.
_ ) ) _ Both corollaries 2 and 3 are conservative results for
Corollary 2. For€ andA definedin (9), ifthere exist  yopyst stability analysis with respect to structured

a matrix P € R™ and matrices®;=1 23 € R™ that  ncertainty. It can be proved (taking relevant sub-
satisfy (3), (10) and (11), then the uncertain system pjocks in the LMIs) that conditions of corollary 2

(8) s stable for allA = 41, 4] < 4. hold if those of corollary 3 hold. Hence corollary 3
is less conservative than corollary 2 at the expense of
Consider the following simple example increased numerical complexity (about four times as

many variables and twice as large LMIs).

1000 .
o 01100 Take the following example
02110 00[8000
20j01 00[0048
This uncertain descriptor system also writes as E= 0 0]10900
100{0 00O
1 26, . 0 030005
25, 1 |8~ 0a= Lo da=g7555 3100030
It is quite simple to see that fof| < 51+, E(6) is non 0 3|-16 0 0 O
singular ande(6) " A(9) is stable. Fob = 35 E(d) 0 992 0 —-8-16
is no longer invertible but the system is driven by A 0 0[—19 —-17 0 O
1 | =200| 0 1 4 0
.’1'71—1—511‘.2:—1(([]1—}—552) , x1—x2 =0, 0 1] 0 2 0 -10
-6 310 7 —6 0
it is asymptotically stable. For any value &f> 57, Testing the LMIs of corollary 2 for various values of
E(0) is non singular bufz(5) ~* A(4) is unstable. § shows that the method allows to prove the robust

Al this analytical analysis can be done here becauseStability up 00 = 0.22. Then forg = 0.23 the
would be more involved. But in all cases the LMI line search with the LMIs constructed using corollary
results of corollary 2 can be tested very efficiently 3 /€ads to the conclusion that : up do= 0.45 the

for example using YALMIP (bfberg, 2004). For the ~ System is robustly stable ; for= 0.46 the LMIs are

given example we took the limit bound én= 57 and found infeasible, we cannot conclude. Corollary 3 is

the LMIs were found feasible. For any larger value of Significantly less conservative for this example.
§ the LMIs are of coqrseinfea}sible. Corollary2proves In case of usual LTI systemszy = 1, Ep = O,
to be non conservative for this example. Thismay not ., — ¢, g, = 1), close results were obtained by

be the case for all systems and there is a need for |95?Iwasaki and Shibata, 2001). For example, our corol-

conservative methods. lary 3 is similar to their theorem 5. Both results read
Notice that the system (8) equivalently writes as as analysis conditions where stability is proved with
a parameter-dependent Lyapunov functidn(z) =
2= (3T a7 2% %) 2T P(A)z. But the choice ofP, is different. In corol-
w' = (&7 27 wi Wwk) lary 3 stability of i = A(A)x = (A + BA(1 —

DA)~1C)z is assessed by
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while in (lwasaki and Shibata, 2001) the parameter- 780.
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We can note that this last type of Lyapunov matrix \einsma, G., Y. Shrivastava and M. Fu (1997). A dual
includes the former, but since the exposed methods are ¢ mulation of mixed. and on the losslessness of

only sufficient, there is no direct implication between (D, G)-scaling. [EEE Trans. on Automat. Con-
robust stability conditions. trol 42(7), 1032—1036.
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Multivariable Feedback Systentignal Process-
ing, Optimization, and Control. MIT Press.

Scherer, C. (1997). A full block S-procedure with
applications. In:IEEE Conference on Decision
and Control San Diego, CA. pp. 2602—-2607.
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Taylor and Francis series in Systems and Control.
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Letters43, 85-93.

5. CONCLUSION

A novel quadratic separation framework for feedback
connected systems with implicit linear transformation
is described. Directly related results are derived for
descriptor systems both for robust stability and pole
location analysis. Only two special cases of uncer-
tainties were considered but extensions can be ob-
tained for more complex and time-varying structured
uncertainties following results of (Iwasaki and Shi-
bata, 2001; Dettori and Scherer, 1998). Prospective
work will be dedicated to analysing the relative con-
servatism of several independent results when stability
is proved with parameter-dependent Lyapunov certifi-
cates.
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