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Abstract: Topological separation is investigated in the case of an uncertain time-invariant
matrix interconnected with an implicit linear transformation. A quadratic separator inde-
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stability analysis are exposed. All results are formulated as linear matrix inequalities
(LMIs). Copyright c© 2005 IFAC.
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1. INTRODUCTION

Well-posedness of feedback systems provides a fertile
framework for stability analysis of non-linear and
uncertain systems. An associated fundamental concept
is topological separation (Safonov, 1980). It states that
internal signals of a multivariable feedback connection
of two systemsF andG are unique and bounded under
external disturbances if and only if the graph ofF
is topologically separated from the inverse graph of
G. While finding such topological separator is tricky
in general, for several choices of systemsF and G
there exist, sometimes lossless (Meinsmaet al., 1997),
tractable techniques. Among these, major results for
robust stability analysis are given in (Iwasaki and
Hara, 1998) and references therein.

In this paper we investigate a special case of feedback
connections where the first system is a given implicit
linear transformation,

Ez = Aw ,
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and the second one is a complex valued uncertain
matrix gain,

w = ∇z , ∇ ∈ ∇∇ .

No assumption is made on the set of possible un-
certainties∇∇. The main result proves that well-
posedness of such systems is losslessly assessed by
a quadratic separator (the topological separator is a
quadratic functional ofz andw) independent of the
uncertainty∇. The result is a generalisation of corol-
lary 1 in (Iwasaki and Hara, 1998) to implicit linear
transformations. Closely related results are lemma 4
in (Iwasaki and Shibata, 2001) and the full-block S-
procedure theorem 1 in (Scherer, 1997). In fact they
prove to be different and we choose to give a detailed
proof of our result.

The remaining of the paper is dedicated to corollar-
ies of the main result. Our goal is to illustrate how
previously obtained stability analysis conditions for
descriptor systems are related to topological separa-
tion. First we show that stability ofEẋ = Ax is
equivalent to well-posedness of a feedback connection
of ∇ = s−11, s−1 ∈ C+ with an implicit linear
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Figure 1. Feedback system

transformation. Quadratic separation with respect to
this uncertainty set proves to be related to the exis-
tence of a quadratic Lyapunov certificate. Extensions
to discrete-time system stability as well as to pole
location analysis are also givenand compared with
(Masubuchiet al., 1997; Hsiung, 1998; Henrionet
al., 2001).

In the last section of the paper, corollaries for robust
stability of descriptor systems are derived. More gen-
eral than the framework by (Lin, 1999) and (Xuet
al., 2001), the contribution considers rationally depen-
dent models where uncertainties enter on both theA
and theE matrices. To our knowledge these results are
totally new. They allow to test stability of systems with
structured uncertainty. More or less conservative tests
are given that involve either constant or parameter-
dependent Lyapunov functions. We believe that the
contribution is original even when compared to similar
results for usual LTI systems such as (Iwasaki and
Shibata, 2001).

Notations:Rm×n and Cm×n are the sets ofm-by-
n real and complex matrices respectively.AT is the
transpose of the matrixA and A∗ is its transpose
conjugate.A⊥ is a full rank matrix whose columns
span the null-space ofA. The columns ofA◦ form
an orthogonal basis ofA∗, i.e.

[
A⊥ A◦

]
is full rank.

1 and 0 are respectively the identity and the zero
matrices of appropriate dimensions. For Hermitian
matrices,A > (≥)B if and only if A − B is positive
(semi) definite.

2. MAIN RESULT

Consider two possibly non-square matricesE andA
and an uncertain matrix∇ with appropriate dimen-
sions that belongs to some set∇∇. We make no as-
sumption on the uncertainty set∇∇.

The feedback system in Figure 1 is said to be well-
posed if for all uncertainties and all bounded input
signals, the internal signalsw and z are unique and
bounded. Since only linear transformations enter the
feedback system,w andz are necessarily unique if we
can prove they are bounded. Well-posedness writes as

∃γ̄ > 0 :
∀(w̄, z̄)
∀∇ ∈ ∇∇ ,

∥∥∥∥(
w
z

)∥∥∥∥ ≤ γ̄

∥∥∥∥(
w̄
z̄

)∥∥∥∥ .

(1)
Note that the equalities in Figure 1 imply

(E − A∇)z = E z̄ +Aw̄ .

Well-posedness of the system states that for all admis-
sible∇ ∈ ∇∇, the null space ofE − A∇ is empty
(E − A∇ is non-singular if square).

Lemma 1.Well-posedness of the system in Figure
1 is equivalent to well-posedness of the feedback
connected systems given by{

w − ŵ = ∇E◦y
EE◦(y − ŷ)−Aw = 0 .

(2)

Proof: Write z and z̄ in the
[
E⊥ E◦

]
basis, i.e.

z = E⊥y1 + E◦y, z̄ = E⊥ŷ1 + E◦ŷ. Then take
ŵ = w̄+∇E⊥y1. Equations of Figure 1 are equivalent
to those in (2). �

Thanks to this technical lemma, well-posedness of the
considered system is equivalently written for a similar
system whereEE◦ is a, possibly non square, full rank
matrix. Now the main result is stated.

Theorem 1.The uncertain feedback system of Figure
1 is well-posed if and only if there exists a Hermitian
matrixΘ = Θ∗ satisfying both conditions[

EE◦ −A
]⊥∗Θ

[
EE◦ −A

]⊥
> 0 (3)[

1 E◦∗∇∗
]
Θ

[
1

∇E◦
]
≤ 0 , ∀∇ ∈ ∇∇ . (4)

If E andA are real matrices, the equivalence still holds
with Θ restricted to be a real matrix.

Proof of sufficiency:Assume (3) holds. It implies the
existence of some positive scalarε such that[

EE◦ −A
]⊥∗ (Θ− ε1)

[
EE◦ −A

]⊥ ≥ 0 .

By definition of
[
EE◦ −A

]⊥
and assuming (4)

holds, one gets for all vectors that satisfy (2)
(

y − ŷ
w

)∗
(Θ− ε1)

(
y − ŷ

w

)
≥ 0(

y
w − ŵ

)∗
Θ

(
y

w − ŵ

)
≤ 0 .

Combining both inequalities, implies a quadratic con-
straint on the vectorX =

(
w∗ y∗ ŵ∗ ŷ∗

)∗
such as

X∗
[

ε1 T1

T ∗1 T2

]
X ≤ 0 .

Take anỹε such thatε > ε̃ > 0 and take a sufficiently
largeγ̃ > 0 such that[

ε̃1 0

0 −γ̃1

]
≤

[
ε1 T1

T ∗1 T2

]
.

Well-posedness condition (1) is then proved for sys-
tem (2) withγ̄ = γ̃/ε̃. Lemma 1 concludes the proof
of sufficiency. �

Proof of necessity:Assume the system in Figure 1
is well-posed and equivalently that (2) is well-posed.
First, note that if inequality (1) holds for̄γ it also holds



for all γ ≥ γ̄. Well-posedness of (2) therefore implies
that, for allγ ≥ γ̄ and for all∇ ∈ ∇∇, the equality
constraint onX

M︷ ︸︸ ︷[
−1 ∇E◦ 1 0

A −EE◦ 0 EE◦
]

X = 0

implies that the quadratic constraint

X∗
[
1 0

0 −γ1

]
X ≤ 0

holds. Due to Finsler’s lemma (Skeltonet al., 1998),
it is equivalent to

M⊥∗
[
1 0

0 −γ1

]
M⊥ ≤ 0 . (5)

DefineN1 andN2 the partitions of
[
EE◦ −A

]⊥
such

that[
EE◦ −A

]⊥ =
[

N1

N2

]
, EE◦N1 −AN2 = 0 ,

R = N∗
1 N1 + N∗

2 N2 andQ = γR − N∗
2 N2. Since

EE◦ is full rank,N2 is also full rank. One can take

M⊥ =


0 N2

1 0

−∇E◦ N2

1 −N1


and the inequality (5) writes[
1− γ1− γE◦∗∇∗∇E◦ γE◦∗∇∗N2 + γN1

γN∗
2∇E◦ + γN∗

1 −Q

]
≤ 0 .

Takeγ sufficiently large such thatQ > 0. Applying
a Schur complement argument on the block−Q, one
gets inequality (4) where

Θ =
[
1− γ1+ γ2N1Q

−1N∗
1 γ2N1Q

−1N∗
2

γ2N2Q
−1N∗

1 −γ1+ γ2N2Q
−1N∗

2

]
.

This matrix is real ifE andA are real matrices. Let us
prove now that (3) also holds.[

EE◦ −A
]⊥∗Θ

[
EE◦ −A

]⊥
= N∗

1 N1 − γR + γ2R(γR−N∗
2 N2)−1R

Apply a first time the matrix inversion lemma to(γR−
N∗

2 N2)−1 to get

= N∗
1 N1 + N∗

2 (1−N2(γR)−1N∗
2 )−1N2

and a second time to(1 − N2(γR)−1N∗
2 )−1 to con-

clude

= N∗
1 N1 + N∗

2 (1+ N2(γR−N∗
2 N2)−1N∗

2 )N2

= R + N∗
2 N2Q

−1N∗
2 N2 > 0 .

Both inequalities (3) and (4) hold for anyγ sufficiently
large to ensureQ > 0. �

3. STABILITY OF DESCRIPTOR SYSTEMS

3.1 Continuous-time descriptor systems

A linear descriptor system characterised by the state-
space equation

Eẋ = Ax (6)

fits the feedback system framework of Figure 1 if one
considers

z = ẋ , w = x , E = E , A = A
∇ = s−1

1 , s−1 ∈ C
+ .

A quadratic separator for this set of uncertainties can
be chosen as

Θ =
[

0 −E◦T P
−PE◦ 0

]
, E◦T PE◦ > 0 .

Based on results of (Meinsmaet al., 1997), the choice
of such a structure for the separator may be proved to
be non conservative.

Corollary 1. The descriptor system (6) is admissi-
ble, i.e. regular, stable and impulse free (Masubuchiet
al., 1997), if and only if the following LMI conditions
hold

E◦T PE◦ > 0[
EE◦ −A

]⊥T
[

0 E◦T P
PE◦ 0

] [
EE◦ −A

]⊥
< 0 .

Proof of necessity: One way to prove necessity of
corollary 1 is to show how this result is related to the
LMI conditions of (Masubuchiet al., 1997)

ET XT = XE ≥ 0 , AT XT + XA < 0 . (7)

For a stable descriptor system there exist two non
singular matricesV andU such that

V EU =
[
1 0

0 0

]
, V AU =

[
A1 0

0 1

]
.

Based on this factorisation take

E◦ = U

[
1

0

]
,

[
EE◦ −A

]⊥ =
[

A1

E◦

]
.

Replace these in (7) and pre and post-multiply the
formula by E◦T and E◦ respectively. The result is
exactly the conditions of corollary 1 withP =
U−T V −T XT . �

Remark that conditions of corollary 1 imply to solve
a smaller LMI problem in terms of number of vari-
ables and size of the constraints. This can prove more
efficient for large scale problems. On the other hand,
the constraints (7) may be useful when dealing with
design problems (Masubuchiet al., 1997), it is not yet
the case for the new proposed result.

Remark also that the matrixP in corollary 1 defines
a quadratic Lyapunov functionV (x) = xT Px such
that V (x) > 0 for all x in the image ofE◦, while
V̇ (x) < 0 for all (ẋ, x) in the null space of

[
E −A

]
.

As an example, let us consider as in (Masubuchi and
Shimemura, 1997) the scalar ’switch’ system[

1
0

]
ẋ =

[
1
δ

]
x

If δ 6= 0 the system is ’turned off’ and resumes to
x(t) = 0, it is stable. Otherwise the system is unstable,
ẋ = x.



Assumeδ 6= 0 thenE◦ = 1 and[
EE◦ −A

]⊥ =
[

1 −1
0 −δ

]⊥
is empty. The LMI conditions of corollary 1 are sum-
marized by the existence of a scalarp > 0. Take for
examplep = 1, the stability is proved. Now what
happens whenδ = 0. In that case[

EE◦ −A
]⊥ =

[
1 −1
0 0

]⊥
=

[
0
1

]
and the LMI conditions are

p > 0 , 0 < 0 .

The last one cannot be fulfilled, the system is unstable.

3.2 Discrete-time descriptor systems and pole location

The discrete-time case is very much similar to the
continuous-time case. The state-space representation
Exk+1 = Axk is identically modelled as a feedback
system in Figure 1. The unique difference is the un-
certainty set

∇ = s−1
1 , |s−1| ≤ 1 .

Non-conservative separators can be parameterised as

Θ =
[
−E◦T PE◦ 0

0 P

]
, E◦T PE◦ > 0 .

Applying theorem 1, condition (3) with this choice
of separator is a necessary and sufficient LMI con-
dition for the stability of the discrete-time descrip-
tor system. The result is related to the generalised
discrete Lyapunov inequality of (Hsiung, 1998) that
writes ET XE > AT XA, ET XE ≥ 0, by taking
P = U−T V −T XV −1U−1.

The procedure can be extended to pole location anal-
ysis. For example, take regions of the complex plane
described by a scalar quadratic inequality:

D = { s ∈ C : d1 + d2s + d∗2s
∗ + d3ss

∗ ≤ 0 } .

Such regions are half-planes, interior of disks or exte-
riors of disks. The poles ofEẋ = Ax (i.e. values such
thatrank(Es−A) drops from its normal value) lie in
D if the feedback system of Figure 1 is well-posed for
all s outside the region. Pole location analysis amounts
to testing well-posedness with respect to the following
uncertainty set:

∇∇ =
{

s−1
1 :

d1s
−1s−∗ + d2s

−∗

+ d∗2s
−1 + d3 ≥ 0

}
.

Necessary and sufficient LMI condition for pole lo-
cation analysis are then obtained applying theorem 1
with the following separator:

Θ =
[

d3E
◦T PE◦ d∗2E

◦T P
d2PE◦ d1P

]
, E◦T PE◦ > 0 .

For many other regions (as well as for unions of re-
gions) separators can be chosen following the method-
ology in (Henrionet al., 2001). For intersections of re-
gions, the procedure consists in proving pole location
in each region independently.

3.3 Polynomial systems

If you consider a matrix differential equation of degree
d defined by

d∑
i=0

Aix
(i) = 0 , x ∈ R

n ,

stability is then equivalent to well-posedness of the
system in Figure 1 with

E =


Ad 0 · · · 0

0 −1 0

...
...

0 0 −1



A = −


Ad−1 · · · A1 A0

1 0 0

...
...

0 1 0


,

∇ = s−1
1dn

s−1 ∈ C
+ .

In the caseAd is full rank, stability and pole location
LMI conditions obtained when applying theorem 1 to
this system are exactly the same as the one proposed
in (Henrionet al., 2001).

4. ROBUST STABILITY OF DESCRIPTOR
SYSTEMS

Consider the following uncertain descriptor system

(EA + (B∆− EB)(ED −D∆)−1EC)ẋ
= (A + (B∆− EB)(ED −D∆)−1C)x

(8)
where the state-space model matrices are rational
functions of the uncertain parameters∆ that are as-
sumed to belong to a set�. This model matches the
framework of Figure 1 if one considers

E︷ ︸︸ ︷[
EA EB

EC ED

](
ẋ
z∆

)
=

A︷ ︸︸ ︷[
A B
C D

](
x

w∆

)
(9)

along with the set:

∇∇ =
{ [

s−1
1n 0

0 ∆

]
: s−1 ∈ C

+ , ∆ ∈ �

}
.

4.1 Unstructured uncertainty

Assume the uncertainties are non-structured norm-
bounded:∆T ∆ ≤ 1. A non conservative choice of
quadratic separators for∇∇ is described by

E◦T1 PE◦1 ≥ 0 , τ > 0 ,

Θ =

−τE◦T2 E◦2 −E◦T1 P 0

−PE◦1 0 0

0 0 τ1


whereE◦1 andE◦2 are the relevant row partitions ofE◦.
Applying theorem 1 with this choice of separator, we
get a necessary and sufficient LMI condition for robust
stability of the uncertain descriptor system.



4.2 Structured uncertainty

Consider now the structured uncertainty such that
∆ = δ1m with δ real and norm-bounded,|δ| ≤ δ̄.
Parametric uncertainty is assumed:δ is an unknown
constant scalar. Based on mixed P-separators and
vertex-separators (Iwasaki and Hara, 1998), define the
following structured separator

Θ =

 E◦T2 Θ1E◦2 −E◦T1 P E◦T2 Θ2

−PE◦1 0 0

ΘT
2 E◦2 0 Θ3

 (10)

constrained by the LMIs

E◦T1 PE◦1 ≥ 0 , E◦T2 Θ3E◦2 ≥ 0

E◦T2 (Θ1 + δ̄Θ2 + δ̄ΘT
2 + δ̄2Θ3)E◦2 ≤ 0

E◦T2 (Θ1 − δ̄Θ2 − δ̄ΘT
2 + δ̄2Θ3)E◦2 ≤ 0 .

(11)

Corollary 2. ForE andA defined in (9), if there exist
a matrixP ∈ Rn and matricesΘi=1,2,3 ∈ Rm that
satisfy (3), (10) and (11), then the uncertain system
(8) is stable for all∆ = δ1, |δ| ≤ δ̄.

Consider the following simple example

E =


1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

 , A =


−1 0 1 0
0 −1 0 1
1 0 0.1 0
0 1 0 0.1

 .

This uncertain descriptor system also writes as[
1 2δa

2δa 1

]
ẋ = (δa − 1)x , δa =

δ

1− 0.1δ
.

It is quite simple to see that for|δ| < 1
2.1 , E(δ) is non

singular andE(δ)−1A(δ) is stable. Forδ = 1
2.1 E(δ)

is no longer invertible but the system is driven by

ẋ1 + ẋ2 = −1
4
(x1 + x2) , x1 − x2 = 0 ,

it is asymptotically stable. For any value ofδ > 1
2.1 ,

E(δ) is non singular butE(δ)−1A(δ) is unstable.

All this analytical analysis can be done here because
the example is most simple. For a real problem it
would be more involved. But in all cases the LMI
results of corollary 2 can be tested very efficiently
for example using YALMIP (L̈ofberg, 2004). For the
given example we took the limit bound onδ̄ = 1

2.1 and
the LMIs were found feasible. For any larger value of
δ̄ the LMIs are of course infeasible. Corollary 2 proves
to be non conservative for this example. This may not
be the case for all systems and there is a need for less
conservative methods.

Notice that the system (8) equivalently writes as

zT =
(
ẍT ẋT zT

∆ żT
∆

)
wT =

(
ẋT xT wT

∆ ẇT
∆

)

E︷ ︸︸ ︷
0 1 0 0

0 EA EB 0

0 EC ED 0

EA 0 0 EB

EC 0 0 ED

 z =

A︷ ︸︸ ︷
1 0 0 0

0 A B 0

0 C D 0

A 0 0 B
C 0 0 D

w (12)

with a feedback operator

∇ =
[

s−1
12n 0

0 δ12m

]
.

An other corollary to theorem 1 is:

Corollary 3. For E andA defined in (12), if there
exist a matrixP ∈ R2n and matricesΘi=1,2,3 ∈
R2m that satisfy (3), (10) and (11), then the uncertain
system (8) is stable for all∆ = δ1, |δ| ≤ δ̄.

Both corollaries 2 and 3 are conservative results for
robust stability analysis with respect to structured
uncertainty. It can be proved (taking relevant sub-
blocks in the LMIs) that conditions of corollary 2
hold if those of corollary 3 hold. Hence corollary 3
is less conservative than corollary 2 at the expense of
increased numerical complexity (about four times as
many variables and twice as large LMIs).

Take the following example

E =


0 0 8 0 0 0
0 0 0 0 4 8
0 0 10 9 0 0
10 0 0 0 0 0
0 3 0 0 0 5
3 1 0 0 3 0



A =


0 3 −16 0 0 0
0 9 2 0 −8 −16
0 0 −19 −17 0 0
−20 0 0 1 4 0
0 1 0 2 0 −10
−6 3 0 7 −6 0

 .

Testing the LMIs of corollary 2 for various values of
δ̄ shows that the method allows to prove the robust
stability up to δ̄ = 0.22. Then for δ̄ = 0.23 the
LMIs are found infeasible. Now performing the same
line search with the LMIs constructed using corollary
3 leads to the conclusion that : up tōδ = 0.45 the
system is robustly stable ; for̄δ = 0.46 the LMIs are
found infeasible, we cannot conclude. Corollary 3 is
significantly less conservative for this example.

In case of usual LTI systems (EA = 1, EB = 0,
EC = 0, ED = 1), close results were obtained by
(Iwasaki and Shibata, 2001). For example, our corol-
lary 3 is similar to their theorem 5. Both results read
as analysis conditions where stability is proved with
a parameter-dependent Lyapunov functionV∆(x) =
xT P (∆)x. But the choice ofP∆ is different. In corol-
lary 3 stability of ẋ = A(∆)x = (A + B∆(1 −
D∆)−1C)x is assessed by



P∆ =
[

A(∆)
1

]T

P

[
A(∆)
1

]
while in (Iwasaki and Shibata, 2001) the parameter-
dependent Lyapunov matrix is such that

P∆ =
[

∆(1−D∆)−1C
1

]T

P

[
∆(1−D∆)−1C

1

]
.

We can note that this last type of Lyapunov matrix
includes the former, but since the exposed methods are
only sufficient, there is no direct implication between
robust stability conditions.

5. CONCLUSION

A novel quadratic separation framework for feedback
connected systems with implicit linear transformation
is described. Directly related results are derived for
descriptor systems both for robust stability and pole
location analysis. Only two special cases of uncer-
tainties were considered but extensions can be ob-
tained for more complex and time-varying structured
uncertainties following results of (Iwasaki and Shi-
bata, 2001; Dettori and Scherer, 1998). Prospective
work will be dedicated to analysing the relative con-
servatism of several independent results when stability
is proved with parameter-dependent Lyapunov certifi-
cates.
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