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Abstract:
We provide fast and on-line methods for failure detection and isolation of
uncertain nonlinear systems which are operating in closed-loop. They are based
on accurate values of the derivatives of a time-signal, which are obtained via new
algebraic estimation techniques. The applicability and efficiency of our approach
are illustrated by numerical simulations for a most popular case-study, namely the
three-tank system.Copyright c© 2005 IFAC
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1. INTRODUCTION

Failure detection and isolation (FDI) has under-
gone considerable development in recent years
leading to a wide variety of model-based ap-
proaches (Frank, 1990; Staroswiecki and Comtet-
Varga, 2001). According to the deviation be-
tween measurements (inputs and the output vari-
ables) and corresponding model-based computa-
tions, fault indicators or residues are generated.
One of the most attractive methodologies devel-
oped so far, for failure detection, is known as
the Fundamental Problem of Residual Genera-
tion (FPRG) introduced in (Jones, 1973; Will-

sky, 1976) and more recently treated in (White
and Speyer, 1987; Massoumnia, 1989). The main
idea is to make each generated residual sensi-
tive only to a single fault thus ensuring fault
isolation in the case of multiple faults. Other
approaches are based on nonlinear models and
were developed to extend the domain of FDI
applications as in (Chen, 1999; De Persis and
Isidori, 2001; Gertler, 1998; Join, 2002; Join et
al., 2003).
Based on our previously developed results (Fliess
et al., 2004b; Fliess et al., 2005a) for on-line
fault detection and isolation, we propose in this



communication a new method for on-line FDI in
the context of a specific nonlinear multivariable
system. We undertake, as a case study, the well
known three-tank system, subject to actuator and
sensor failures, with poorly known physical pa-
rameters. Although the process may not repre-
sent a full production-type industrial plant, it ex-
hibits characteristics which are common in real life
(nonlinearities, multiple inputs, multiple outputs,
noisy measurements, etc).
Several fault diagnosis methods have been pro-
posed for systems linearized around an operat-
ing equilibrium point (see, for instance, (Koenig
et al., 1997; Akhenak et al., 2003; Zhou and
Frank, 1999; Theilliol et al., 2002)). Some of these
techniques have also been extended to the case
of nonlinear systems. In (Shields and Du, 2000)
nonlinear observers are synthesized to detect tank
leakage. In (Koscielny, 1999) a method is pro-
posed for fault diagnosis using techniques stem-
ming from fuzzy sets. In (Zolghadri et al., 1996) an
alternative is developed to detect leaks in uncer-
tain tank systems. Experimental results on sensor
fault tolerant control have been reported in (Zhou
et al., 2000).
In this paper, fault indicators or residues are syn-
thesized which are robust with respect to un-
certain parameters in the controlled plant and
which effectively act while the system is operating
in closed loop conditions. Our techniques involve
the efficient computation of time derivatives of
measured system inputs and outputs 1 . Under
a reasonable hypothesis of delayed failures, we
use algebraic based methods to online identify
the unknown constant system parameters. The
gathered knowledge of the parameters allow us to
implement our residue generation techniques for
on-line fault detection and isolation. Note that,
in this nonlinear uncertain context, the problem
of combined fault detection and isolation has re-
ceived, to the best of our knowledge, no attention.
Our paper is organized as follows: The problem
statement is presented in section 2. The basics
of our approach are given in section 3. Section
4 is devoted to the concrete case-study of the
three-tank-system with an unknown parameter.
We provide some convincing computer simulation
results for failure residual generation which are
characterized by the following facts:

• isolation of actuator faults,
• fast performance in on-line closed loop oper-

ation,
• insensitivity to parameter uncertainties and

other classical perturbations,
• robustness with respect to additive measure-

ment and plant noises.

1 Compare with (Diop and Martinez-Guerra, 2001).

Some directions for future work are listed in the
conclusions of the article.

2. PROBLEM STATEMENT

Consider a system of the form
{

ẋ = f(t, x, u, Θ, w)

y = h(t, x, u, Θ, w) + π

where

• the vector-valued functions f and h may be
nonlinear;

• x = (x1, . . . , xn), u = (u1, . . . , um) and y =
(y1, . . . , yp) denote respectively the state,
control and output variables;

• Θ is a finite set of unknown parameters;
• w is a finite set of fault variables;
• π is a finite set of perturbations variables,

which are assumed here to be high frequency
noises.

The fundamental problem of fault detection and
isolation lies in the generation of indication sig-
nals, usually called residuals, which point to the
sudden appearance of a fault. Any fault variable
wi, which is isolable, may be written (see, e.g.,
(Fliess et al., 2005a; Fliess et al., 2005b)):

wi = g(t, y, ẏ, · · · , y(j), u, u̇, · · · , u(k), Θ)

where g is a nonlinear function of its arguments.
Uncertain parameters play a crucial rôle. It is
moreover often difficult to distinguish the effect
of a fault from the contributions of uncertain
parameters and other perturbations. We propose
here to carry out a suitable combination of pa-
rameter estimation and residual generation. To
this purpose, we assume, based on the fast nature
of our methods, that only a short time interval
is dedicated to the computations leading to pa-
rameter estimations. Naturally, it is assumed that
faults do not occur during this short interval of
time. Lastly, to prevent the amplification of high
frequency noises, a special method, based also on
algebraic results, is used to estimate the succes-
sive time derivatives of input and output signals.
A residual ri corresponding to wi may then be
written:

ri = g(t, y, · · · , [y(j)]e, u, · · · , [u(k)]e, [Θ]e) (1)

where

• [Θ]e is the vector of parameter estimations,
• [u(k)]e and [y(j)]e are the on-line estimations

of input and output time derivatives.

The next section explains the conditions under
which the proposed method is applicable.



3. PARAMETER ESTIMATION AND FAULT
DIAGNOSIS

Using techniques stemming from differential alge-
bra and by resorting to the procedures introduced
in (Fliess and Sira-Ramı́rez, 2004c) for the esti-
mation of time derivatives of measured signals 2 ,
our method allows to obtain efficient and easily
computable parameter estimation and residuals.

Remark 3.1. Note that the connections of differ-
ential algebra with computer algebra have already
been exploited in nonlinear fault diagnosis by
(Zhang, et al., 1998; Staroswiecki and Comtet-
Varga, 2001; Diop and Martinez-Guerra, 2001).

3.1 Estimation of the derivatives

Consider a real-valued time function x(t) which is
assumed to be analytic on some interval t1 ≤ t ≤
t2. Assume for the sake of simplicity that x(t) is
analytic around t = 0 and introduce its truncated
Taylor expansion

x(t) =

N
∑

ν=0

x(ν)(0)
tν

ν!
+ O(tν+1)

Approximate x(t) in the interval (0, ε), ε > 0, by a

polynomial xN (t) =
∑N

ν=0 x(ν)(0) tν

ν! of degree N .
The usual rules of symbolic calculus in Schwartz’s
distributions theory (Schwartz, 1966) yield

x
(N+1)
N (t) = x(0)δ(N)+ẋ(0)δ(N−1)+· · ·+x(N)(0)δ

where δ is the Dirac measure at 0. From tδ =
0, tδ(α) = −αδ(α−1), α ≥ 1, we obtain the
following triangular system of linear equations
for determining estimated values [x(ν)(0)]e of the
derivatives 3 x(ν)(0):

tαx(N+1)(t) = tα
(

[x(0)]eδ(N) + [ẋ(0)]eδ(N−1)

+ · · · + [x(N)(0)]eδ

)

α = 0, . . . , N

(2)

The time derivatives of x(t) and the Dirac mea-
sures and its derivatives are removed by integrat-
ing with respect to time both sides of equation (2)
at least N times:

∫ (ν)

τα
1 x(N+1)(τ1) =

∫ (ν)

τα
1

(

[x(0)]eδ(N)

+[ẋ(0)]eδ(N−1) + . . .

+[x(N)(0)]eδ

)

ν ≥ N, α = 0, . . . , N

(3)

2 Compare with the recent study (Moussaoui, Brie et al.,
2005) via analytic methods. It might be appropriate here to
recall that the reference (Fliess and Sira-Ramı́rez, 2003a)
contains to the best of our knowledge perhaps the first
closed-loop identification scheme for continuous-time linear
systems, which has already been validated by numerous
concrete case-studies.
3 Those quantities are linearly identifiable (see (Fliess and
Sira-Ramı́rez, 2003a) and (Fliess et al., 2004a)).

where
∫ (ν)

=
∫ t

0

∫ τν−1

0
. . .

∫ τ1

0
. A quite accurate

value of the estimates may be obtained with a
small time window [0, t]. Only valid after a small
time interval, in practice, the derivative estima-
tions need to be reset when the validity of the ap-
proximation becomes questionable. Discussions on
calculation resettings are given in (Sira-Ramı́rez
and Fliess, 2004).
Moreover the iterated integrals are low pass filters.
They are attenuating high frequency noises, which
are usually dealt with in a statistical setting (see
(Fliess et al., 2003b) for more details).

3.2 Parameter estimations

Parameter estimations are carried out using an
extension of the algebraic methods introduced
for linear systems in (Fliess and Sira-Ramı́rez,
2003a). In this method only a short interval of
time is required to accurately accomplish param-
eter estimations. Nevertheless, we assume that
during this short time interval the system operates
in a fault free manner. We thus consider that
the condition w = 0 is valid in an open time
interval. For the sake of simplicity, we assume that
this time interval exists at the beginning of the
operation of the system.
Assume that the unknown parameters Θ =
(θ1, · · · , θr) satisfy some natural algebraic identi-
fiability conditions (Diop and Fliess, 1991a; Diop
and Fliess, 1991b). Then, for ι = 1, · · · , r,

θι = Υι(t, y, · · · , y(j), u, · · · , u(k)) (4)

where Υι is a nonlinear function of its arguments.
An accurate estimate [θι]e of θι is obtained by
replacing in equation (4) the derivatives of the
control and output variables by their estimated
values:

[θι]e = Υι(t, y, · · · , [y(j)]e, u, · · · , [u(k)]e)

3.3 Fault diagnosis

Equation (1) demonstrates that an excellent fault
indicator may be obtained in the same way, i.e.,
via accurate estimates of the derivatives of the
control and output variables, which provide more-
over estimates of the unknown parameters.

4. APPLICATION TO THE
THREE-TANK-SYSTEM

4.1 Process description

The three tank system model depicted in figure
1 is written using the well known “mass balance”
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Fig. 1. The three-tank-system

equations. The system can be conveniently repre-
sented as in (AMIRA, 1996) by











S dL1

dt
= q1 − q13

S dL2

dt
= q2 + q32 − q20

S dL3

dt
= q13 − q32

where qij represents the water flow rate from tank
i to j, i, j = 1, 2, 3, which, according to Torricelli’s
rule is given by

qij = µi.Sp.sign(Li − Lj).
√

2g|Li − Lj |
Notice that q20 represents the outflow rate with

q20 = µ2.Sp.
√

2gL2

The full system model is then obtained as follows






























































ẋ1 = −C1sign(x1 − x3)
√

|x1 − x3

+(u1 + w1)/S

ẋ2 = C3sign(x3 − x2)
√

|x3 − x2|

−C2sign(x2)
√

|x2|

+(u2 + w2)/S

ẋ3 = C1sign(x1 − x3)
√

|x1 − x3|

−C3sign(x3 − x2)
√

|x3 − x2|

y1 = x1

y2 = x2

y3 = x3

where xi(t) is the liquid level in tank i and Ci =
(1/S).µi.Sp.

√
2g. The two control signals u1(t),

u2(t) are, respectively, the input flow q1(t) and
q2(t). We assume the possible existence of actua-
tor faults, denoted by w1 and w2, which perturb
the behavior of the system. These actuator faults
must be detected and isolated. We additionally
assume that the model of the system is not exactly
known. Indeed, the output flow coefficients µi are
regarded as uncertain constant coefficients.

4.2 Control

The system, although non-differentiable, may be
regarded as a flat hybrid system 4 . Indeed, the
system has four possible state locations. In each
location a differentiable model is obtained. The
state space regions corresponding to such loca-
tions are x1 ≥ x3 or x1 < x3 and x2 ≥ x3 or

4 For an excellent overview of flatness (Fliess et al., 1995),
see the recent book by (Sira-Ramı́rez and Agrawal, 2004).

x2 < x3, the resulting models are all flat with flat
outputs given by x1 and x3.

Synthesizing the four possible control input
parametrization, in terms of x∗

1 = F1 and x∗
3 = F3,

into a unique expression, we may obtain the fol-
lowing nominal open loop control

u∗

1 = S

(

Ḟ1 + C1sign(F1 − F3)
√

F1 − F3

)

and

u∗

2 = S

(

ẋ∗

2 − C3sign(F3 − x∗

2)
√

|F3 − x∗

2|

+C2sign(x∗

2)
√

|x∗

2|

)

where

x∗
2 = εF3

−ε
(

−Ḟ2+C1sign(F1−F3)
√

|F1−F3|

C3

)2

and

ε =

{

+1 if F3 > x∗
2

−1 if F3 < x∗
2

The loop is closed via a nonlinear extension (see,
also, (Hagenmeyer and Delaleau, 2003a; Hagen-
meyer and Delaleau, 2003b)) of the classic PI
controller:

u1 = u∗

1 + SC1sign(y1 − y3)
√

|y1 − y3|

−SC1sign(F1 − F3)
√

|F1 − F3|

−P1Se1 − P2S
∫

e1

u2 = u∗

2 − SC3sign(y3 − y2)
√

|y3 − y2| + SC2

√

|y2|

+SC3sign(F3 − x∗

2)
√

|F3 − x∗

2| − SC2

√

|x∗

2|

−P3Se3 − P4S
∫

e3

where ei = yi − F ∗
i is the tracking error. For the

gain coefficients set P1 = P3 = 2.10−2, P2 = P4 =
2.10−4.

4.3 Fault diagnosis

We use the method of section 3.1 to estimate the
first time derivatives of the output [ẏi]e.

4.3.1. Estimation of uncertain coefficients The
unknown outflow coefficients are estimated via

[µ1]e = −(S[ẏ1]e−u1)

Spsign(y1−y3)
√

2g|y1−y3|

[µ2]e = −(S[ẏ1]e+S[ẏ2]e+S[ẏ3]e−u1−u2)

Spsign(y2)
√

|y2|

[µ3]e = −(S[ẏ1]e+S[ẏ3]e−u1)

Spsign(y3−y2)
√

2g|y3−y2|

After a short period of time has elapsed, the
previous estimates of the constant values of the



µ’s become available for the implementation of our
control and detection schemes.

4.3.2. Fault diagnosis The fault variables are
estimated via the following equations

[w1]e = S[ẏ1]e

+[µ1]cSpsign(y1 − y3)
√

2g|y1 − y3|

−u1

[w2]e = S[ẏ2]e

−[µ3]cSpsign(y3 − y2)
√

2g|y3 − y2|

+[µ2]cSpsign(y2)
√

2g|y2| − u2

Thus residuals ensuring faults diagnosis are r1 =
[w1]e and r2 = [w2]e.

4.4 Simulation results

The known system parameters are:






S = 0.0154m

Sp = 5.10−5m

g = 9.81m.s−2

The nominal values of the parameters µ1 = µ3 =
0.5, µ2 = 0.675 are used only to compute the
nominal references trajectories.
The system behavior, both in the fault free case
and in the faulty case can be compared from figure
2. Estimations of the outflow are presented in
figure 3. The real coefficients, obtained from our
computations, are naturally slightly different from
the nominal coefficients:

[µ1]real = µ1 ∗ (1 + 0.33)
[µ2]real = µ2 ∗ (1 − 0.33)
[µ3]real = µ3

At time t = 500Te
5 , the last estimations of those

coefficients are utilized for residual synthesis

[µ1]c = 0.6836
[µ2]c = 0.4339
[µ3]c = 0.4819

As shown in figure 4, fault occurrence and its
corresponding discrimination is easily realized.
Note that the behavior of residuals at time t =
500Te is changing: this is due to the fact that the
nominal value of µi is being used before t = 500Te.

5. CONCLUSION

We were able, thanks to our approach, to deter-
mine robust residuals for fault diagnosis, which
are working in closed loop and are valid for un-
certain nonlinear systems. Those methods, which
are also important in signal processing (Fliess et
al., 2004a), will be essential for building a gen-
eral theory of fault tolerant control (see (Fliess et
al., 2005b) for a preliminary study).

5 Te denotes the sampling period.
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(d) Measured outputs

Fig. 2. Fault free case (a-b) and faulty case (c-d)
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Fig. 3. Parameters
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