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Abstract: This paper focuses on the problem of reliable H∞ control for a class of
switched nonlinear systems with actuator failures among a prespecified subset of
actuators. In existing works, the reliable H∞ design methods are all based on a
basic assumption that the never failed actuators must stabilize the given system.
But when actuators suffer ”serious failure”– the never failed actuators can not
stabilize the given system, the standard design methods of reliable H∞ control do
not work. Based on the switching technique, the problem can be solved by means of
switching among subsystems or finite candidate controllers.Copyright c©2005 IFAC
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1. INTRODUCTION

In recent years, considerable attention has been
paid to switched systems (Branicky, 1998; Liber-
zon, 2003; Liberzon & Morse, 1999; Sun et al.,
2004; Zhao & David, 2004). Switched systems
are one of important kinds of hybrid systems.
A switched system consists of a number of sub-
systems, either continuous-time or discrete-time
dynamic systems, and a switching law, which or-
chestrates the switching between the subsystems.
The applications in computer disc drives (Gollu
& Varaiya, 1989), some robot control systems
(Jeon & Tomizuka, 1993), the cart-pendulum sys-
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tems (Zhao & Spong, 2001), and other engineer-
ing systems indicate that switched systems have
extensive practice background. Therefore, it has
both theoretical significance and practical value
to study switched systems.
On the other hand, since failures of control com-
ponents often occur in real world, classical H∞
control methods may not provide satisfactory per-
formance, even drive the closed-loop system un-
stable. To overcome this problem, reliable H∞
control has made great progress recently (Veil-
lette, 1992; Yang, Wang & Soh, 2001; Yang, Lam
& Wang, 1998). In particular, Yang et al. (2001)
presented a methodology for the design of reliable
H∞ controller for the case of sensor failures and
actuator failures. Yang et al. (1998) solved the
reliable H∞ control problem for affine nonlinear
systems by using the Hamilton-Jacobi inequal-



ity approach. However, these reliable H∞ design
methods are all based on a basic assumption that
the never failed actuators must stabilize the given
system. This assumption is obviously somehow
unpractical. In other words, actuators may suffer
”serious failure”– the never failed actuators can
not stabilize the given system. In this case, the
standard design methods of reliable H∞ control
do not work.
This paper studies the problem of reliable H∞
control where actuators suffer ”serious failure”.
We assume either a system can be switched among
finite subsystems, or a system controller can
be switched among finite candidate controllers.
Based on the multiple Lyapunov function tech-
nique, a sufficient condition for the switched non-
linear systems to be asymptotically stable with
H∞-norm bound is derived for all admissible actu-
ator failures. Furthermore, as a direct application,
a hybrid state feedback strategy is proposed to
solve the standard H∞ control problem for nonlin-
ear systems when no single continuous controller
is effective. Finally, a numerical example illus-
trates the effectiveness of the proposed approach.

2. PROBLEM FORMULATION

Consider switched nonlinear systems described by
the state-space model of the form:

ẋ = fσ(x) + gσ(x)uσ + pσ(x)wσ

z =
(

hσ

uσ

)
(1)

where σ : R+ → M = {1, 2, · · · ,m} is the switch-
ing signal to be designed, x ∈ Rn is the state,ui =
(ui1, · · ·uimi

)T ∈ Rmi and wi = (wi1, · · ·wiqi
)T ∈

Rqidenote the control input and disturbance in-
put of the i-th subsystem respectively, z is the
output to be regulated. Further, let fi(x) ∈
Rn, gi(x) = (gi1(x), · · · gimi

(x)) ∈ Rn×mi , pi(x) =
(pi1(x), · · · piqi

(x)) ∈ Rn×qi , hi(x) = (hi1(x), · · ·
hipi(x))T ∈ Rpi , fi(0) = 0, hi(0) = 0, i =
1, 2, · · · ,m.
We adopt the following notations from (Branicky,
1998) for system (1). In particular, a switching
sequence is expressed by

∑
= {x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · ,

|ij ∈ M, j ∈ N}
in which t0 is the initial time, x0 is the initial
state, (ik, jk) means that the ik -th subsystem is
activated for t ∈ [tk, tk+1). Therefore, when t ∈
[tk, tk+1), the trajectory of the switched system
(1) is produced by the ik-th subsystem. For any
j ∈ M ,

Σt(j) = {[tj1 , tj1+1), [tj2 , tj2+1), · · · [tjn
, tjn+1)

· · · , σ(t) = j, tjk
≤ t < tjk+1, k ∈ N} (2)

denotes the sequence of switching times of the
j-th subsystem, in which the j-th subsystem is
switched on at tjk

and switched off at tjk+1.
We classify actuators of a given system into two
groups. One is a set of actuators susceptible to
failures, denoted by Θi ⊆ {1, 2, · · · ,mi}, i ∈ M .
The other is a set of actuators robust to failures,
denoted by Θ̄i ⊆ {1, 2, · · · ,mi} −Θi, i ∈ M . For
ωi ⊆ Θi, introduce the decomposition

gi(x) = gωi
(x) + gω̄i

(x),

where

gωi
(x) =(δωi

(1)gi1(x), δωi
(2)gi2(x), · · · ,

δωi
(mi)gimi

(x))

with δωi
defined by:

δωi(k) =
{

1, k ∈ ωi

0, k /∈ ωi.

When actuator failures occur corresponding to
ωi ⊆ Θi the resulting system can be described
by

ẋ = fi(x) + gω̄i(x)uω̄i + pi(x)wi

zω̄ =
(

hi(x)
uω̄i

)
(3)

The following inequalities are obvious and will be
used in the sequel:

gωi
(x)gT

ωi
(x) ≤ gΘi

(x)gT
Θi

(x),

gΘ̄i
(x)gT

Θ̄i
(x) ≤ gω̄i

(x)gT
ω̄i

(x).

Now, the reliable H∞ control problem for the
switched system (1) is stated as follows:
Let a constant γ > 0 be given. For actuator
failures corresponding to any ωi ⊆ Θi, find a
continuous state feedback controller ui = ui(x)
for each subsystem, and a switching law i = σ(t)
such that:
(1) The closed-loop system is asymptotically sta-
ble when wi = 0.
(2) The output z satisfies ‖z‖2 ≤ γ‖wi‖2 under
the zero initial condition.
Definition(Isidori & Astolfi, 1992). Suppose f(0) =
0 and h(0) = 0. The pair {f, h} is said to be
detectable if x(t) is any integral curve of ẋ = f(x),
then h(x(t)) is defined for all t ≥ 0 and h(x(t)) ≡ 0
for all t ≥ 0 implies lim

t→∞
x(t) = 0.

Remark 1. In the existing standard reliable con-
trol problem, the condition that (f, gΘ̄) is a stabi-
lizable pair requisite. This strong condition is no
longer needed here for switched systems. In fact, if
(fj , gΘ̄j

) is a stabilizable pair for any j ∈ M , then
we can design state feedback controller for the j-th
subsystem that makes the system (1) stabilizable
with an H∞ -norm bound γ, and thus the problem
becomes trivial.



3. MAIN RESULTS

This section gives a condition for the reliable H∞
control problem to be solvable, and designs con-
tinuous controllers for subsystems and a switching
law.
Theorem 1: Let a constant γ > 0 be given.
Suppose that

(1) The pair {fi, hi} is detectable.
(2) There exist functions βij(x)(i, j ∈ M) (ei-
ther all nonnegative or all nonpositive) and
radiully unbounded, positive smooth functions
Vi(x), Vi(x(0)) = 0, i ∈ M satisfying the partial
differential inequalities

∂Vi

∂x
fi +

1
4

∂Vi

∂x
(

1
γ2

pip
T
i − gΘ̄i

gT
Θ̄i

)
∂T Vi

∂x
+ hT

i hi

+
m∑

j=1

βij(Vi − Vj) ≤ 0, i ∈ M (4)

Then, the hybrid state feedback reliable con-
trollers

ui = ui(x) = −1
2
gT

i (x)
∂T Vi

∂x
(x), i = 1, 2, · · ·m

(5)
and the switching law

i = arg max
i∈M

{Vi(x)} (6)

solve the reliable H∞ control problem.

proof: Consider actuator failures corresponding
to any ωi ⊆ Θi, since the control input ui(x) is
applied to the plant only through normal actua-
tors, it follows that in system (3)

ui = uω̄i(x) = −1
2
gT

ω̄i
(x)

∂T Vi

∂x
(x)

Without loss of generality, suppose βij ≥ 0. For
any fixed i ∈ M , if xT (Vi − Vj)x ≥ 0,∀j ∈ M for
x ∈ Rn, we have

∂Vi

∂x
fi +

1
4

∂Vi

∂x
(

1
γ2

pip
T
i − gΘ̄i

gT
Θ̄i

)
∂T Vi

∂x
+ hT

i hi ≤ 0.

(7)

Obviously, for ∀x ∈ Rn\{0}, there certainly is an
i ∈ M such that xT (Vi − Vj)x ≥ 0,∀j ∈ M . For
any i ∈ M , let

Ωi = {x ∈ Rn|xT (Vi − Vj)x ≥ 0,∀j ∈ M}, (8)

then
m⋃

i=1

Ωi = Rn\{0}. Construct the sets Ω̄1 =

Ω1, · · · , Ω̄i = Ωi−
i−1⋃

j=1

Ω̄j , · · · , Ω̄m = Ωm−
m−1⋃

j=1

Ω̄j .

Obviously, we have
m⋃

i=1

Ω̄i = Rn\{0}, and Ω̄i

⋂
Ω̄j = φ, i 6= j.

When x(t) ∈ Ω̄i, the time-derivative of Vi(x(t))
along the trajectory of the system (3) is given by

V̇i(x(t)) =
∂Vi

∂x
(fi + gω̄i

uω̄i
+ piwi)

=
∂Vi

∂x
(fi + piwi + giui − gωi

uωi
)

≤ ∂Vi

∂x
(fi + piwi + giui)

+
1
4

∂Vi

∂x
gωi

gT
ωi

∂T Vi

∂x
+ uT

ωi
uωi

≤ ∂Vi

∂x
(fi + piwi + giui)

+
1
4

∂Vi

∂x
gΘig

T
Θi

∂T Vi

∂x
+ uT

ωi
uωi

=
∂Vi

∂x
(fi + piwi)+ ‖ ui +

1
2
gT

i

∂T Vi

∂x
‖2

− uT
ω̄i

uω̄i
− 1

4
∂Vi

∂x
gΘ̄i

gT
Θ̄i

∂T Vi

∂x
. (9)

When wi = 0, substituting (5) into (9) and
noticing (7), we have

V̇i(x(t)) ≤ ∂Vi

∂x
fi − uT

ω̄i
uω̄i

− 1
4

∂Vi

∂x
gΘ̄i

gT
Θ̄i

∂T Vi

∂x

≤ − 1
4γ2

∂Vi

∂x
pip

T
i

∂T Vi

∂x
− hT

i hi − uT
ω̄i

uω̄i

≤ 0.

Observe that any trajectory satisfying V̇i(x(t)) =
0 for all t ≥ 0 is necessarily a trajectory of

ẋ = fi(x) + gω̄i
(x)uω̄i

such that x(t) is bounded and hi(x(t)) ≡ 0 for
all t ≥ 0. The detectability of {fi, hi} gives
lim

t→∞
x(t) = 0. Thus, the closed-looped system

(1) and (5) is asymptotically stable by LaSalle’s
invariance principle (Lasalle, 1976).
In the following, we show that the overall L2-
gain from wi to zω̄ is less than or equal to
γ. We suppose x(0) = 0, and without loss of
generality, assume that the first subsystem (σ =
1) is activated at the initial time, i.e. tk1 = t0 = 0.
Now we introduce

J =
∫ T

0

(‖ zω̄(t) ‖2 −γ2 ‖ wi(t) ‖2)dt.

According to the switching sequence (2), when
T ∈ [tk, tk+1)

J ≤
k−1∑

j=0

(
∫ tj+1

tj

(‖ hij (t) ‖2 + ‖ uω̄ij
(t) ‖2

− γ2 ‖ wij
(t) ‖2 +V̇ij

(t))dt

− (Vij
(x(tj+1))− Vij

(x(tj)))) +
∫ T

tk

(‖ hij
(t) ‖2

+ ‖ uω̄ij
(t) ‖2 −γ2 ‖ wij (t) ‖2 +V̇ij (t))dt

− (Vik
(x(T ))− Vik

(x(tk))).



Note that

V̇ij (t)+ ‖ hij (t) ‖2 + ‖ uω̄ij
(t) ‖2 −γ2 ‖ wij (t) ‖2

≤ ∂Vij

∂x
(fij

+ pij
wij

+ gij
uij

)

+
1
4

∂Vij

∂x
gΘij

gΘij

T ∂T Vij

∂x
+ ‖ hij (t) ‖2 + ‖ uij

(t) ‖2 −γ2 ‖ wij (t) ‖2

=
∂Vij

∂x
fij

+
1

4γ2

∂Vij

∂x
pij

pT
ij

∂T Vij

∂x

− 1
4

∂Vij

∂x
gΘ̄ij

gT
Θ̄ij

∂T Vij

∂x
+ hT

ij
hij

+

‖ uij
+

1
2
gT

ij

∂T Vij

∂x
‖2 − ‖ γwij

− 1
2γ

pT
ij

∂T Vij

∂x
‖2 .

(10)

Substituting(5)into(10), we have

V̇ij
(t)+ ‖ hij

(t) ‖2 + ‖ uω̄ij
(t) ‖2 −γ2 ‖ wij

(t) ‖2

≤ −γ2 ‖ wij −
1
γ2

pT
ij

∂T Vij

∂x
‖2

≤ 0.

Then

J ≤ −
k−1∑

j=0

(Vij (x(tj+1))− Vij (x(tj)))

− (Vik
(x(T ))− Vik

(x(tk)))
= −(Vi0(x(t1))− Vi0(x(t0)) + Vi1(x(t2))
− Vi1(x(t1)) + · · ·+ Vik−1(x(tk))
− Vik−1(x(tk−1)))− Vik

(x(T )) + Vik
(x(tk)).

Note that

Vσ(tk−1)(tk) = Vσ(tk)(tk).

Therefore

J ≤ Vi0(x(t0))− Vik
(x(T ))

= −Vik
(x(T ))

≤ 0.

Remark 2. The reliable H∞ control problem for
switched nonlinear system is solved by Theorem 1.
When M = {1} switched system (1) degenerates
into a regular nonlinear system and the H∞
control problem becomes the standard reliable
H∞ control problem for nonlinear systems (Yang
et al., 1998).
Remark 3. For the switched linear system

ẋ = Aix + Biu + Diw,

z = Cix,

(4) turns to be the matrix inequalities

PiAi + AT
i Pi + Pi(γ−2DiD

T
i − ε−1BΘ̄i

BT
Θ̄i

)Pi

+ CT
i Ci +

m∑

j=1

βij(Pi − Pj) < 0, i ∈ M,

where Pi is positive definite matrix, βij are either
all nonnegative or all nonpositive constants. In
particular, if j = 1, the Riccati inequality follows.

4. HYBRID RELIABLE H∞ CONTROL FOR
NONLINEAR SYSTEMS

In engineering, a continuous reliable H∞ con-
troller for a nonlinear system may not exist or
may be sometimes too complex to implement.
Thus, in some control problems, control actions
are decided by switching between finite candidate
controllers. We try to use this methodology to
solve the standard reliable H∞ control problem
for nonlinear systems.
Consider the following nonlinear system

ẋ = f(x) + g(x)u + p(x)w

z =
(

h(x)
u

)
(11)

where x ∈ Rn is the state, u and w denote
the control input and disturbance input respec-
tively, z is the output to be regulated,f(x) ∈
Rn, g(x) = (g1(x), · · · gm(x)) ∈ Rn×m, p(x) =
(p1(x), · · · pq(x)) ∈ Rn×q, h(x) = (h1(x), · · ·
hp(x))T ∈ Rp, f(0) = 0, h(0) = 0.
Suppose that we have exist finite candidate con-
trollers for system (11). When actuator failures
occur, none of the individual controller makes the
system stabilizable. In particular, we consider the
following class of candidate state feedback con-
trollers:

ui = ui(x) = −1
2
gT (x)

∂T Vi

∂x
(x), (12)

i = 1, 2, · · ·m,

where Vi will be specified later.
Theorem 2 Let a constant γ > 0 be given.
Suppose that
(1) The pair {f, h} is detectable.
(2) There exist functions βij(x)(i, j ∈ M)(either
all nonnegative or all nonpositive) and radiully
unbounded, positive smooth functions Vi(x),
Vi(x(0)) = 0, i ∈ M satisfying the partial differ-
ential inequalities

∂Vi

∂x
f +

1
4

∂Vi

∂x
(

1
γ2

ppT − gΘ̄gT
Θ̄)

∂T Vi

∂x
+ hT h

+
m∑

j=1

βij(Vi − Vj) ≤ 0, i ∈ M (13)

Then, for actuator failures corresponding to any
ωi ⊆ Θi, the hybrid state feedback reliable con-
troller (12) with the switching law (6) solve the
reliable H∞ control problem.
proof. Substituting the designed controllers (12)
into the system (11) results in a switched nonlin-
ear system. Then, applying the theorem 1 gives
the result.
remark 4. Partial differential inequalities (13)
are much easier to satisfy than the Hamilton-

Jacobi inequality because the term
m∑

j=1

βij(Vi−Vj)

is added which may change sign when x varies.



In particular, if j = 1, (13) degenerate into the
Hamilton-Jacobi inequality.

5. EXAMPLE

In this section, we present an example to illustrate
the effectiveness of the proposed design method.
Consider the following nonlinear switched system:

ẋ = fi(x) + gi(x)ui + pi(x)wi

z =
(

hi

ui

)
, i = 1, 2,

(14)

where
f1(x) = −3x3, p1(x) = x, h1(x) = h2(x) = x2,
g1(x) =

(
3 x2

)
, f2(x) = −3x3 + x, p2(x) = 1,

g2(x) =
(
x2 2

)
,Θ1 = {1},Θ2 = {2}.

It is easy to check that {fi, hi} is detectable, but
(fi, gΘ̄i

) is not a stabilizable pair, the reliable H∞
control problem is solvable via switching between
subsystems. Now, consider

V1(x) = x2, V2(x) = x4, x ∈ Rn.

Both V1 and V2 are globally positive definite and
V1(0) = V2(0).
Let γ = 1, β1(x) = 3x2, β2(x) = 5x2, then

∂V1

∂x
f1 +

1
4

∂V1

∂x
(

1
γ2

p1p
T
1 − gΘ̄1

gT
Θ̄1

)
∂T V1

∂x
+ hT

1 h1

+ β1(V1 − V2)

= 2x(−3x3) + x2(x2 − x4) + x4 + 3x2(x2 − x4)

= −x4 − 4x6

≤ 0

∂V2

∂x
f2 +

1
4

∂V2

∂x
(

1
γ2

p2p
T
2 − gΘ̄2

gT
Θ̄2

)
∂T V2

∂x
+ hT

2 h2

+ β2(V2 − V1)

= 4x3(−x3 + x) + 4x6(1− x4) + x4 + 5x2(x4 − x2)

= −3x6 − 4x10

≤ 0.

So the controllers

u1 = −1
2
gT
1 (x)

∂T V1

∂x
(x) =

(−3x
−x3

)
,

u2 = −1
2
gT
2 (x)

∂T V2

∂x
(x) =

(−2x5

−4x3

)
.

and design the switching law by

i = arg max
i∈M

{Vi(x)}, i = 1, 2.

Then, the reliable H∞ control problem with γ = 1
is solved.

6. CONCLUSIONS

We have considered the problem of reliable H∞
control for switched nonlinear systems. In partic-

ular, attention is concentrated on actuators suffer-
ing ”serious failures”, which has not been consid-
ered in previous reliable works. Based on switch-
ing strategy, we design controllers and switching
law such that the problem of reliable H∞ con-
trol is solved. Moreover, a hybrid state feedback
strategy is proposed to solve the standard H∞
control problem for nonlinear systems when no
single continuous controller is effective. Finally, a
numerical example illustrates the effectiveness of
the proposed approach.
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