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Abstract: This work is focused on temperature and humidity control problem of
closed newborn incubators. Such incubator promotes a controlled micro-climate,
with small heat transfer between the premature and the environment, leading to
a healthful environment. In this context, a laboratory pilot plant (full scale) was
built to evaluate control algorithms and this plant is presented here. Furthermore,
some identification results based on the use of orthonormal basis functions are
discussed and a control scheme is also proposed. This control law is based on
multiple local models and predictive control ideas. Closed-loop control examples
validates the proposed method. Copyright (©2005 IFAC
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1. INTRODUCTION

From many years, Incubators have been used to
create a comfortable and healthful hygrothermal
environment for neonates. The aim of such device
is to keep the respiratory and transepidermal
water losses to a minimum level and to increase
the body heat storage.

The internal temperature of closed-type incuba-
tors can be completely controlled. This property
avoids a fast fallen in the neonate’s body tem-
perature due to a large difference between the air
and skin temperatures. An appropriate thermal
environment decreases the rate of preterm infants
morbidity and mortality. It has already been re-
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ported a reduction of 22% in such indexes by using
incubators with temperature control (Perlstein et
al. 1976).

Furthermore, another media of heat exchange be-
tween the neonate and its environment is the
water loss through the skin and by respiration.
When the incubator air temperature is constant,
an increase in the air relative humidity (RH)
value reduces the skin cooling and increases the
body heat storage. Air RH values close to 65%
prevents excessive body water loss and improves
the maintenance of body temperature. The evap-
oration rate when the air is at 60% RH is ap-
proximately 40% lower than that observed at a
lower relative humidity (eg, 40%) (Telliez et al.
2001). Therefore, some incubators have active or
passive systems to control the internal humidity.
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In (Amorim 1994) (Bouattoura et al. 1998) (Guler
and Burunkaya 2002), schemes built to deal with
this issue are described.

All these above mentioned factors have great influ-
ence in the thermal balance between the neonate
and its environment, so it is important to keep
the micro-clime inside the incubator constant.
From a control system point of view, an incuba-
tor is a system where the temperature and RH
values are the main controlled variables. In the
present work, an actual pilot plant built to simu-
late the micro-clime found in neonate incubators
is presented. This plant contains actuators and
sensors to control and monitor the relevant sig-
nals. An application of orthonormal basis function
(OBF) (Wahlberg and Makila 1996) in the system
identification procedure is described, the aim is
to predict the system behavior and to obtain a
model for the control algorithm synthesis. In order
to deal with the process operational characteris-
tics, this paper proposes algorithm based on the
Model Based Predictive Control (MBPC) strategy
(Clarke 1994) that uses the multiple model con-
trol concept (Murray-Smith and Johansen 1997).
Models having the OBF structure are used to
compute the prediction equations in the modified
MBPC scheme.

In the next section, some details of the incubator
prototype are presented. In Section 3, important
points related with orthonormal basis modelling
are reviewed. Following, the system identification
procedure using actual data are performed. In
Section 5, the control law is described and, in
Section 6, simulation examples of temperature
and RH closed-loop control illustrate the proposed
algorithm performance. Finally, the conclusions
are addressed.

2. PROCESS DESCRIPTION

In order to research issues related with incubators
temperature and RH control and to test the re-
sults discussed in this paper, a neonatal incubator
prototype was constructed as it is described in this

section. The pilot plant has the following parts:
an acrylic transparent box (50cm height x 80cm
length x 40cm width); a domestic heater, a fan
and a humidifier. The heater is modified to allow
external control in such a way that four power
levels are available, that is: 0, 1, 2, 3 (or off, low,
medium, maximum). The humidifier is based on
ultrasound, so water vapor is produced without
heating generation and then mass transfer is ob-
tained with low influence in the energy transfer
(Guler and Burunkaya 2002). The humidifier is
also modified to allow external control. The same
structure is used, that is, four power levels are
available. The fan is on all the time. Ventilation
ducts connects all the above-mentioned parts and
allow air circulation inside the incubator. Fresh air
supply is provided by the humidifier to guarantee
some air renewal. Moreover, the pressure inside
the incubator is slightly higher than the environ-
ment one. All these procedures makes the thermal
conditions, as far as it is possible, constant inside
the incubator.

The sensors are placed as follows: in the incubator
center (10cm height, i.e., the neonatal approxi-
mately position) and in the incubator output air
duct. The sensors located closed to the output air
duct are those used for control purpose. The third
temperature sensor is used for incubator outside
measurements. Figure 1 contains an incubator
photograph. In this photo, one can notice the
acrylic box, the two inner temperature sensors and
the two humidity sensors (two small black boxes),
the electronic actuator device (it is below the
acrylic box) and the ventilation ducts (they are
behind the incubator). Some orifices are placed in
the incubator’s side to .

The software environment for supervision and dig-
ital control was implemented by using the vir-
tual instrumentation software LabView / National
Instruments. The temperature and RH signal’s
sampling frequency is 0.25 Hz.

3. ORTHONORMAL BASIS FUNCTION FOR
SYSTEM MODELLING

A SISO linear causal dynamic system, with finite
memory, can be described by its impulse response
h(k). If h(k) has finite memory, it can be rep-
resented by a series of orthonormal functions, as
follows:

h(k) = ZQ‘@(’@ (1)

where { ¢;(k) }52, is a base of orthonormal func-
tions and ¢; is the i-th series coefficient. Assume
that ®;(z) is the Z transform of ¢;(k) and [;(k) is
the output of ®;(z) when the input signal is u(k).
By using this definitions, the model output y(k),



when the series is truncated in n terms, is given
by:

n

y(k) = Z cili(k) = "l(k) (2)

where the vectors I(k) and ¢ are composed by the
l;(k) signals and ¢; coefficients.

Although different orthonormal basis can be used
in such a context, the present work is focused on
the Laguerre basis (Wahlberg and Makila 1996)
since it represents a good tradeoff between the
model quality and the a priori information re-
quired to build the basis. The model based on
Laguerre basis (Laguerre Model) can be expressed
by state equations as follows:

Uk+1) = Alk) +bu(k —7) (3)

The matrix A and the vector b have constant coef-
ficients which depends only on the model order n
and on the selected pole p, which characterizes the
Laguerre basis. 7 is an approximate knowledge of
the time delay.

The parametric identification of model (2) have
been discussed by several authors in the literature
(see, for instance, (den Hof et al. 2000)). These
works highlights some properties and advantages
of such system modelling approach. Some of them,
closely related with the present work, are de-
scribed below. A quite practical advantage is the
low a priori information required in the identifica-
tion procedure, only an approximation of the time
delay and the dominant time constant is need. In
the multiple models case, the use of Laguerre basis
with a constant pole makes smooth the model
transitions, since the state vector is the same for
all models in set of valid models (the changes
occurs only in the ¢; coeflicients). The complexity
of the model can be changed by small changes
in the model parameters, i.e, just augmenting the
series terms. The main drawback of such structure
is the lost of some physical insights such as the
ones found in the poles and zeros of a transfer
function representation.

4. MULTIPLE MODELS SYSTEM
IDENTIFICATION

In this section, an identification procedure for the
incubator described in Section 2 is performed and
a set of linear models is computed. The humidifier
is shut of during the temperature data acquisition
experiments and RH initial value is 53%. However,
during the humidity data acquisition, the internal
temperature is kept close to 36.5°C, due to the
presence of a standard PID controller.

By means of some step response experiments for
temperature and RH, it can be notice that the
process has time delay of approximately 2 sample
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Fig. 2. Actual and model responses to a pulse
input signal with magnitude 2.

times (8 seconds). Therefore, in this section, the
model’s structure is given by equations (2) and
(3) with 7 = 2.

The choice of a Laguerre basis pole is based on
the system dominant time constant. It is made by
measuring the system step response and by using
a least square type algorithm to approximate the
process with a first-order plus dead-time model
(see (Bi et al. 1999)). For steps having amplitude
of (1, 2 and 3), the identified continuous-time pole
is (1.99x 1073, 2.33x 1073 and 2.5 x 10~2), which
justifies the choice of 0.99 for the Laguerre basis
pole. Although some interesting results can be
obtained by using a single linear model, the incu-
bator discussed here is a non-linear process. De-
pending on the control signal intensity, it presents
different open-loop behavior. Assume that a pulse
shape input signal (magnitude 2) is applied to the
system. The k-step ahead prediction of a Laguerre
model with p = 0.99 and n = 6 approximates this
pulse response as shown in Figure 2. The curves
(actual and model response) are very close to each
other and the MSE (Mean Square Error) of this
approximation is 3.2245 x 1073. As a sake of com-
parison, the output signal of the first-order plus
dead-time model used to calculate the Laguerre
pole presents an MSE of 1.7797.

The coefficients of the above mentioned Laguerre
model are:

{ci}o_, = {0.5961, 0.09045, 0.09278,
0.02105, 0.006112, 0.004059}

By means of the same procedure, but with input
signals (pulse shape) having magnitude 1 and 3,
one can obtain two others local linear Laguerre
models (pole 0.99 and 6 functions). The unit step
responses of each model are depicted in Figure 3.
It can be notice that each model has different
dynamics behavior (mainly in the gain), meaning
that the process dynamic changes as a function of
the input signal. The Laguerre coefficients of the
two others models are given by:
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Fig. 3. Laguerre models response to a unit step.
{e:}_; = {0.9589, 0.2322, 0.2405, 0.1772,
0.07796, 0.1151}
{e;}8_, = {0.5959, 0.1170, 0.1264, 0.05595,
0.03289, 0.01728}

(for magnitude 1)

(for magnitude 3)

In following, the same procedure for RH signal
are presented. The choice of the Laguerre basis
pole is also based on approximating the process
with a first-order plus dead-time model, and one
can obtains the value 0.96 for the pole equal. As
discussed before, three local Laguerre models can
be obtained by applying pulses of magnitude 1,
2 and 3. The k-step ahead prediction by using
the Laguerre model with p = 0.96 and n = 6
approximates the actual level 2 pulse response
as shown in Figure 4. The MSE between the
actual and model responses is 3.03047 x 10~1. The
output of the first-order plus dead-time model
used to calculated the Laguerre pole presents a
MSE of 1.3477, so an improvement in the model
approximation is obtained.

The Laguerre coefficients of the three identified
models are given in following and its unit step
responses are presented in Figure 5.

{c;}5_, = {2.6674, 1.3863,—0.8263, 0.5674,
—0.5333, 0.3074}
{c;}5_, = {3.6306, 0.5409,—0.3008, 0.2608,
—0.1496, 0.1046}
{c;}8_, = {2.5873, 0.2080, —0.0439, 0.1299,
—0.1082, 0.0560}

(7)

(for magnitude 1)

(for magnitude 2)

(for magnitude 3)

5. AN APPROACH FOR PREDICTIVE
CONTROL BASED ON MULTIPLE MODELS

Model based predictive controllers (MBPC) are
defined by the following main steps: first, a model
is used to compute the predicted process output.
Next, a cost function related with the system

90

a @ ~
S 3 =)
T T T

relative humidity [%]

IS
S
T

30

20 | 1 | I | 1
[ 200 400 600 800 1000 1200 1400
time [seconds]

Fig. 4. Actual and model responses to a pulse
input signal with magnitude 2.
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Fig. 5. Laguerre Models response to a unit step.

closed loop performance is defined and then this
cost function is minimized in relation to a set of
future control signals. Finally, the first of these
control signals is applied to the process, i.e. the
receding horizon strategy.

Several MBPC algorithm have been proposed
based on this scheme and the main difference
is the strategy used to implement each step de-
scribed above (Clarke 1994). On the other hand,
multiple models based control has been receiving
much attention since is represents an alternative
to deal with complex process. The main idea is to
decompose a complex control system into a finite
set of feasible and simple (or treatable) control
solutions, and then to integrate all these solutions
into a specific control strategy (Murray-Smith and
Johansen 1997). In this way, multiple local models
can be viewed as a field of non linear identification
and control.

Following, an MBPC algorithm is proposed. It
is characterized by using multiple local Laguerre
models, as the ones discussed in the previous
section. This control solution is focused on the
incubator problem described in the section 2, since
the control signal is quantized in quite large steps.



Before presenting the control law, lets us recall
the usual cost function of MBPC controllers:

Ny
Te =D 0k + jlk) — w(k + j)*+
e (10)
> AAGP(k + k)
j=0

where IV, and NV, define the prediction and control
horizon, respectively; A is a weighting in the
control signal; u(k + j|k) is the optimal control
signal at time k+ j computed at time k; Au(k) =
u(k)—u(k—1) and §(k+j|k) is the process output
prediction at time k + j, computed at time k, by
using the model composed by equations (2) and
(3). The control law is obtained by minimizing
the cost function (10) in relation to Awu(-). In this
scheme, the optimization problem has analytical
solution. In the constrained case, the problem has
numerical solution.

Here, it is assumed that the process are described
by M local models, each one represented by I
where I = 0,1,...,M — 1. Tt is also assumed
that each feasible value for u(k) is associated with
a local model (this is the case of the incubator
described in this paper, see Section 2), i.e., u(k) €
{ur}¥ ;. Therefore, each feasible ur is also asso-
ciated with a different prediction equation, since
there is a set of prediction equations related with
the set of process local models, that is:

{gr(k+jlk): T=01,...,M—1}  (11)

The model associated with the situation uy = 0
varies in time and is considered equal to the one
used in the previous sampling time.

Therefore, the cost function becomes:

Ny
Tk =Y @1k + jlk) —w(k + )
j=l1 Nuo1 (12)

+ ) AAu)
=0

where u; = u(k—1)+ Auy. In this case, there is a
finite set of feasible values of u; and the optimal
one should be found in this set. So, the control
law is now given by:

I = mi

n JIk
I€[0,1,...,M—1]

(13)

S.a

Au(k+jlk) =0 Yj=N,,...,N,

Therefore, at each sampling time k, an optimal
uy value related with the solution of problem (13)
is computed and this value is made equal to the
control signal wu(k). Constraints in the control
signal and control signal increment are handled by
the feasible set of u(k) values. As for limitations
in the output signal, a set of constraints can be
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Fig. 6. Temperature controller performance.

added in problem (13) as it is usual in MBPC
algorithm.

6. SIMULATION CLOSED-LOOP CONTROL
EXAMPLE

In this section, the temperature and RH control
systems performance for the incubator described
Section 2 are analyzed through a simulation exam-
ple. The problem is to heat the incubator in order
to keep the internal temperature around 36°C
and to increase the internal RH until the 60%
level. Available control signals for the heater and
humidifier are integer numbers within the interval
[0,3]. Thus, as described before, three Laguerre
models for the incubator temperature and RH can
be identified (see equations (4) to (9)). Two sets of
multiple local models are built using these models
and are used in the MBPC law described in the
previous section. The temperature controller pa-
rameters are: Ny =1, N, =3, N, = 1 and A = 0;
and the RH controller parameters are: Ny = 1,
Ny, = 6, N, = 1 and A = 0. The prediction
horizon in the latter case is bigger than the former
one due to the presence of slightly non-minimum
phase behavior in one humidity model.

In order to evaluate the control laws in a simula-
tion environment, the temperature and RH pro-
cess dynamics are modelled by using a non-linear
Hammerstein structure. The linear part of this
structure is assumed equal to the linear Laguerre
model computed by using the level 2 pulse data.
The memoryless non-linear part is computed in
such a way that the Hammerstein model has the
same steady state gain of the three local mod-
els when the input is equal to the pulse level
used in the identification phase. Therefore, the
memoryless non-linear part of the Hammerstein
temperature model is:

v(k) = 0.6946u>(k — 2) — 3.3068u?(k — 2)

+4.8351u(k — 2) 14
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where v(k) is the signal that connects the output
of the model non-linear part and the input of
the model linear part. As for the RH model, one
obtains:

v(k) = —0.2172u3(k — 2)

15
+0.7784u?(k — 2) + 0.3121u(k — 2) 15

Figure 6 contains the temperature controller be-
havior. The situation described here is the heat-
ing phase from the environment temperature and
the regulatory control around to 36°C. During
60 seconds after time 600 seconds, it is assumed
that the incubator is opened for some reason
and so the internal temperature fells down. It
can be notice a good recovering to the steady
state value. The main advantage of the proposed
control law is the regulatory behavior, with small
deviations around the steady state value (within
[35.8,36.15]°C during the interval [400,600] sec-
onds and within [35.9,36.25]°C after 950 seconds).

Figure 7 contains the RH controller behavior.
The situation described here is the humidification
phase from the external value and the regulatory
control around 60%. The temperature control is
adjusted at 36°C. It can also be notice that the
control law is able to keep the internal humidity
around the steady state value with small devia-
tions around the steady state value (within the
interval [58.7,60.1]% after 200 seconds).

The results show that both closed loop behavior
are good, considering the actuator limitations,
validating the control algorithm scheme.

7. CONCLUSIONS

This work has focused on temperature and RH
control of neonatal incubators. In this context, a
full scale pilot plant for tests was built and was
presented here. In order to perform model based
control synthesis, an identification procedure for
the incubator was performed.

By defining a Laguerre basis, two sets of local lin-
ear models, i.e., temperature and RH models, were
obtained. Therefore, a strategy that uses multiple
models ideas and is based on the MBPC scheme
was proposed. Simulation control examples were
performed by assuming a Hammerstein structure
for the process dynamics. The identification and
control results illustrates the use and validity of
such methods.

Although such control approach was proposed
to the incubator problem, it could be applied
to other process having similar characteristics.
Future works will be focused on real-time control
implementation.
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