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Abstract: In this paper, we propose a design method for a robust adaptive output
feedback control system for uncertain MIMO nonlinear systems with a higher
order relative degree and an uncertain controlled system order. By using a virtual
input filter method, this method allows an adaptive output feedback control of
MIMO nonlinear systems without constructing a state observer in the controller.
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1. INTRODUCTION

It is well known that one can stabilize uncer-
tain nonlinear systems, which satisfy OFEP (out-
put feedback exponentially passive) conditions, by
high-gain output feedback based adaptive controls
with a simple structure and strong robustness
with respect to bounded disturbances (Fradkov
and Hill 1998, Allgower et al. 1997, Fradkov 1996).
The system is said to be OFEP if there exists an
output feedback such that the resulting closed-
loop system is exponentially passive(Fradkov and
Hill 1998). The sufficient conditions for the MIMO
nonlinear system to be OFEP are that (1) the
system has relative degree {1,1,---,1}, (2) the
system is exponential minimum-phase, (3) the
nonlinearities of the system satisfy the Lipschitz
condition and (4) the high frequency gain matrix
of the system is positive definite. Unfortunately,
however the OFEP conditions impose very severe
restrictions on practical applications of the above-
mentioned adaptive schemes because most practi-
cal systems do not satisfy the OFEP conditions,
in particular the restriction of the relative degree.

The backstepping strategy has been recognized
as a powerful design tool for relieving the re-
striction on the relative degree of the controlled
system. Concerning output feedback based adap-
tive controls for SISO systems, adaptive output
feedback controller designs based on backstepping
strategy have been widely developed (Marino and
Tomei 1993, Mizumoto et al. 2003). As for MIMO
systems, a backstepping strategy has been applied
to linear systems (Mizumoto et al. 1996, Ling and
Tao 1997, Takahashi et al. 1999) in order to solve
the problem of the relative degree. The method
proposed by Ling and Tao (1997) is a design
scheme basically for a system with relative de-
gree {r,r,--- ,r}, having the same relative degrees
in each subsystem. This method also requires
information about state variables for designing
the controller and therefore a state observer has
to be designed into the controller. The methods
in Mizumoto et al. (1996) and Takahashi et al.
(1999) can design an adaptive output feedback
controller without an observer and these are di-
rectly applied to m-input m-output systems with



any relative degrees {ry,r2, -+ ,7Tm}. Recently,
the method in Ling and Tao (1997) is extended to
a system with uncertain parametric nonlinearities
(Wu and Zhou 2004). In this method, although
the restriction on the high frequency gain matrix
has been relaxed to be Hurwitz while it had been
assumed in general MIMO cases that the high
frequency gain matrix should be positive definite,
a state observer is still required for designing an
adaptive output feedback controller. This implies
that the order of the controlled system must be
known. Further, since this method is basically a
design strategy for systems with relative degree
{r,r,---,r} having the same relative degrees in
each subsystem, information about an upper tri-
angular interactor polynomial matrix is required
in the case where the system has any relative
degree {ri,ra2, "+ ,Tm}

In this paper, we propose a design method for
an adaptive control system based on high gain
output feedback for uncertain MIMO nonlinear
systems with higher order relative degree and an
uncertain system order. A condition for designing
an adaptive controller for MIMO nonlinear sys-
tems without the use of an interactor matrix will
appear. The use of a virtual input filter (Marino
and Tomei 1993, Mizumoto et al. 2003) will make
it possible to design a controller without a state
observer. This means that the proposed method
can design a controller independent of the order
of the controlled system. The proposed method
can also deal with nonparametric uncertainties
because the proposed method is based on the high
gain output feedback control of OFEP nonlinear
systems.

2. PROBLEM STATEMENT

Consider a nonlinear system which can be repre-
sented by the following canonical form:

2=Az+ BBu+ f,(z,n)

n=q(y,n) + fa(z,m) (1)
y=Cz
with a relative degree:
m
{7‘1, ..77"171"2, ..’7'27 PR ,'r'i7 ..’fri’ e 7T'f, “7Tf} (2)
—— —— —— ——
k1 k2 ki ky

where 27 € R" and nT € R"" are the state
variables, r = ri1ky + rokg + -+ + 77ky. u and
y € R™ are the control inputs and outputs,
respectively, and f,, f, and g are uncertain vector
nonlinear functions. B € R™*™ is an unknown
constant matrix. Without loss of generality, we
assume that 7 < r9 < < 7y and that
A = diag [Aj]j:L_,)m , B = diag {bj} - ,C =
j=1,--m
diag [ch]

i=lm has the following form:

AJ — |:a0 I’r‘ilX’r‘il:l e R’I“iX’I”i’

g1 Ay

b; = [(ﬂ €R", ¢; = Ll)] € R

for l;+1 < j <l;+k; = l;11. The system outputs
Yj» § = 1,---,m, then can be obtained as an
output of the following subsystem:

zj=Ajzj +bjblu+ f;(z,m) 3)
y; = ¢ z;

where z; is a vector element of z such as z =
T 1T T _
[z1,---,2z5L]" and [by,--- , b, = B.

Here, we impose the following assumption on
input coefficient vectors b;.

Assumption 1. Defining the numbers: [; = 0 and
li=ki+ko+---4+ki_qfor i=23,- f, Bj for
li +1<j<I;+ k; = l;41 has the following form:

b? = [bjla bj27 T 7bj,li+k>i707 T 70]

Under this assumption, defining a new variable z}”
by [z, 7z:;]:[zli+17 T ’Zli+ki]T’ the aug-
mented subsystem containing all the subsystems
with relative degree r; associated with the outputs
Y =[Yi,+1, ,Y+k;) = 2]’ can be represented
by

Zi o =z0 40 (4)
r;
= ZAridez:LdH + Z Bliuy + f1!
d=1 =i 2
where u,, = [ulj+1’ulj+7%"'aulj+kj]T7 [(F1 - Frl
=[fu,e1 > Fu,er, ] and
[ar, 414 0 - 0
; 0 ayi24 - :
Ay =| | e
0 A 0 Al tkid

bi+1,41 D142 - big1g 4k

B — bi,+2,0,41 bi42,,42
Tj .

_bli+ki;lj+1 T bli"l‘ki,lj"l‘k?j
Furthermore, we suppose that the system (1)
satisfies the following assumptions.

Assumption 2. The nominal part of the system
(1) is exponentially minimum phase, that is, the
zero dynamics of the nominal system

n=q(0,n) ()
is exponentially stable.
Assumption 3. The uncertain funcion q(y,n) is
globally Lipschitz with respect to (y, n), i.e., there
exist a positive constant L such that

la(yy,m)—aq(ye,mo)| < L1(Hy1—y2||+lln1—n%||))
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for any variables ¥, y5 and 1, n5.
Assumption 4. There exists symmetric positive
definite matrices P, such that

T l
B P+PB =M >0 (7)
forl=my,---,ry.
Assumption 5. The uncertain functions f4, (I =
r1, ---,rf) and f, can be evaluated by

£l < dbyloh(yh)] + dby, +dl§k||77||a (1<k<l)
12l Z (danw;(yl)) + do, ®)

= T1,
with unknown positive constants d., di,, dfy, doy
and known smooth functions q[)k, ¢f7 that have the
following properties for any variables 4} and b

16k (¥ + y5)| < il (s, yb) |+ b (b)) ©
6L (g + yh) | < bl (h, yh) |+ Wb, (b))
with known smooth functions 1!, (4, ), 1/)1177 (yh,

yh) and functions b, (yh), b, (yh) that are
bounded for all bounded variables y).

The control objective is to have the output y track
a bounded reference signal y,,, such as ||y, || < d.,
and (|, [| < dm

3. CONTROLLER DESIGN
3.1 Virtual system

For each subsystem with a relative degree {r;, - -,
r;} given in (4), we introduce the following virtual
input filter:
ST i i ; o
gy = —duptug g, (1<) < —2) (10)
u;i _)\u?;ﬁ—l + Uy,

r;—1 =

with any positive constant A\, where u; € Rk,

The virtual system, which is obtained by consider-
. o VT e T ry Tyt
ing up, = [u}y, ", ul?", w7 as a control
input, can be expressed by the following form with
an apporopriate variable transformation.
y:MOyy+£2+Buf1 +}.1
E=A,§+Miey+ f—Mf, (11)

n=q(y.n) + fo
T rL T T
Whereég—[ Tl 22 y T 2f]T’€ = [£T1 7£T2 9
Erf] and £ = [52?,52?,~~ ,f:;]T. Denoting
mio =1 andmij :'I’i—('f’j—l),j:l,"' ,’i—l
for i =2,---, f, the variables .ﬁ}; are defined as

r;—1
n
rl—z —E B ufl 11—

Z Xry d ’l“,,

I=r1,r;
T4 — TP T4
£mij = Zmy; z : Bl ufJ‘frFmij—l
I=rj s
m;j;—1

T r; Pri—1 ”‘J
_Z X, dZm,;—a — Bry By

and

K =z Z By ufl ritk—1 Zxk‘dz
I=r;,r;

for m;; +1 <k <m;;—1 — 1. Where
Xia = AL+ AT
X::,d-i—l = _)‘X:Z,d + A:i—d (I<d<r—1)
Xzi,l =AM+ X2i+1,1 (12)
X;i,'d+1 = —Axiid + X?—H,d-&-l

2<k<r;—1,1<d<k-1)
Further,

_ T T T _ T T T
flz[ ;17 71’27'”’ :f]Taf:[frlafrzv"'afo]Tv
k—1
; i T priT i
.frl:[.fg 7.f§ 7.f } f;—fk Zxkd k—d
d=1

and
Moy, = x2,1 + My
Mi¢ = x — My(M + x21 + M) + M,

where

Xz,1 = diag[x5ly, X564, - X5
x = diag[x™, x"2, -+, X"’]
B= diag[B” B;; o+, Brl]
0 0
—1 -
a— | BB
0 0 :
0 0 BI,BIl0
r 0 e e (1)
My | VBB
: : 0 :
N:lfBrth -1 ... N:ff 1B7f 1B:;:11 ! 0]
r 0 0]
_ .
i | NE BB
: . 0 :
[N BB e NI B BrZ o
B 0 N N 0 0_
BBy~
My = 0
: BB "o00
i 0 .. 0 0 0]
’l‘i*l
T
X£12 Nlri :[0 7OaIa07“"0]
o= X:j,,3 ’ n-f(lflr)ﬁ1
. _ .7
XTL lri :[0,"',0,[,0,"',0]
Ti,T4 e —

rifl



Furthermore
-Azlf 0 - ... 0
H:f Afff 0
A, = | HDoHZ 4G o
H™ Hi=, A7 0

T Ty Tf
LB e HY LAY

where A7/ is the system matrix of the filter (10)
and 71

Hy} =[N} By B 0 -+ 0]

ro <l <y, r <l <l -1

The uncertain nonlinearity f can be evaluated
from assumption 5 by

If< > (dlllcbl(yl)l) +do + dellnl|  (13)
l:’r’l,“,T’f
with unknown constants d07dl1,d§ and known
functions ¢'(y'), which have the following prop-
erties for any variables y! and yb:

16" (i + )l < llyi 1w (wh, o)+ [wa(yh)] (14)
with a known smooth function +(y},y}) and
functions v (y5) that are bounded for all bounded
yh. Furthermore, since A4, ; 1s a stable matrix,
there exists a positive symmetric matrix P for
any positive matrix Q)¢ such that

1 1T
Py Ay, + AL Py = —Qu,. (15)

Moreover, since the system (1) is exponentially
minimum-phase from assumption 2, there exists
a positive definite function W(n) and positive
constants k1 to k4 such that

P g0, m) < | 2L
sl < W) < ssln@F (16)

from the converse theorem of Lyapunov(Khalil
1996).

Hs@m

3.2 Adaptive controller design
Consider a subsystem with a relative degree
{ri,7i, -+ ,r;} and an output y".
Step1: Defining an error signal between y™ and
the corresponding reference signal y: by v =
y™ — y;i, the error system, v"-system, is given
from (11) that

U7 =Xy Bl BT Y (17)
where B"i = B::leIZ:i_l. For this error system,
we first design a virtual control input a* for the
filter signal u’; as follows:

ajl = —K"v" (18)
K" = (K + Ky + k), (19)
P ok, kP (0) >0 (20)
(21)
(22)

Ky =g

Ti o T ATi2
kpl — pyp'L 11

A A e el Iy

Now consider the following positive definite func-
tion:
me!
W=y Pt s g - (29)
T

where k7", which will be determined later, is an
ideal feedback gain of k7. The time derivative of
Vi is given by
V=[G (0" + yi) + €5 + Bl (@] + o) + fT
FB W ) - g
+ VT P G (VT ) + €5+ B (W
+apy) + T+ BV ) — i)

T

myt . N —_—
+ 70- (k7' = k7)) (07 vl — o7 k7)) (24)
I

where w’ = wu}; — af’. Since [[£]| > (€5
have from (18) that

, We

. T T T . ;
‘/17“1 S — T (KT"L BTZ PT"i =+ P,ILB:ZK:’)V?%

+ 20 P v [+ 251 Pr X, ([
. T ) )

+ 2P ([l 1] + 207 B, Briw?!

+ 20 P [[(dni 97 + dop) [

+2|| P, B ||[lwm |+ 2dp ([P, B ||

+ 2dp | P, w7 || + 2dg (1P |27 1]
+m k| — mG kv )2
Ty T
— Oy — kg (25)
I
Here, from the fact that k7', k;*, k7t > 0 and from

the structure of K™ and assumption 4, it follows
that

T

— v (K" B P, + P BIKT )"
= — (K} + K+ kI M w"
< — (K7 + k)t 4 kpoymg v |2 (26)

Thus, the time derivative of V] can be evaluated
by

VIt <= (mp k™ =) [0 2+ 05 €12+ 5 ]
i Ti
= T (1 = gk — Ky
V1
—m{i kv |+ 2| B, BT [|wh

|P. By B
TiEr 1 Ti-1

o= Ry (27

T4

0

where py’ ~ py are any positive constants and

_ _ Pl (@R D? .
ot =20\ P oy A2 Cln D
P2 P3
7’1‘2 Ty Ty Tik2 T 2
rri =R 4 M0 91 kr (dyi |12 1)
Lo Aoy mg' v’

o =P I(drlIxs | + dy + doi
i — i i— -1
+dy By, Brs )

Ti—1

Step k (2 < k <y — 1): Setting wit y =wfy ;-
aj’ |, the w}’ |-system is given by



-
oy

Wy = T AUy b~ e
T4
_%$WT”—%”)
- ’“ZQ 8a“ N )
8 Usjr1
80121_1

Dy 21 (V™ +yp) + &5 + Bliuy,

B B T (W ey )] (28)
Taking this into consideration, we design a virtual

control input a; for the filter signal ul; as
follows:

Ti __ Ti Ti Ti Ti Ti Ti Ti
Q= Ckflwkfl_wk72+/\’u’f,1_6k71l1/k71wk71
oat’
k—1 T ri12 Ti 1.7
+ Ok (v or k])
I
k—26 i
(8%
k—1 [ [
Sur AUE U ) (29)
j=1 ) )
Wp (o 2 || 20 [ 2
k—1 1 f1 k—1 ayri ay%

where ¢’ ;, €’ |,[; | are any positive constants.

Consider a positive definite function V,*:
1
V=V + 2wk 1ka L (30)

The time derivative of V,/* can be evaluated by

k—
Vkm < - (mgi k?* Jl Z nln ”V

k—1

1
Pyt Y )

]ljj

MEN* = mg &y w72

z

T
Y Sl el

7j=1 J J
meyior o L
— =2 (1= py ) (kY — k)2
n
k—1
— (= —Zc; 4+ Ry
j=2
7%1—1“2
r7 .
+ o+ Z = l w72
(31)
where p:’ is any positive constant and
) i—1—1
L PLBr BT
Uf’ - T
Po
1 :
By = B+ o | +
€1 Llka

T ri—1—11\2 T
B Bl D) AIB?

Ti—1

v

Step r;: In this step we can design an actual
control input u,, as

Up, = Q) (32)

o’ is designed in (29) with & = r;.

Consider the following positive function:

Vn = Vn 1 + 2w7‘ —1Tw7" —1 (33)
The time derivative of V" can be evaluated by
Vi< = (mgt k™ = o) [ 1P+ o 1€
+ v Offﬂ—%ﬂw?—%”f
r;—1
= (e1" = Pl ||* — Z e |?
Ti 1.7 2 Ti—1 2 T
—myq'k, vy ||V 7+ Ry (34)
where
ri—1 ||Xr1 2 ri—1
W =T Y T Tl*’Z nzn
=1 G =1 €
r;—1 drl
U;i = p, Z nlr”
ri—1 B 1—1y2
i B
P an%ln
j=1 J Y
T T 1 T T4
RZ_RI—I—F T4 T (dl”X +d011
de rifl lrzfl

B BT DB

Ti—1

4. MAIN RESULTS

Theorem 1. Under assumptions 1 to 5 on the con-
trolled system (1), all the signals in the result-
ing closed-loop system with a control input u =
[uzl,uz;, -, Tf]T designed in (32) are bounded.
Further, an appropriate choice of controller pa-
rameters makes it possible for the tracking error
v l=ry, - ,T¢, to converge to any given bound
such as

lim [[p']| < 6! (35)

t—o0

Proof : Consider the following positive definite

function: V=V,+V (36)
where V,, = Zl:n’,_ - Vll and
= po&" P, &+ mW(n) (37)

where o and pp are any positive constants to be
determined later. From (15) and (16), the time
derivative of V¢ can be evaluated by

Ve < = (modg — D (ph+ ok + pho + 7))IIEII2

l=ry1,-,rf
— (k1= Y (Ph+ph + phy + p12)) Im)?
l:’l”l,-“,Tf

2
]VW+&
P7

g B
+ 0> L)z+43l

l:’l“l,“,’l“f
/62 ﬂ2
DO TR MR (Y
l=ry,,rf Ps P9



with any positive constants pl6 to pﬁg. Where,
Bo = ||Puy N Miells Br = || Puy II(1 + || Mi]])
B = p1oBo, B3 = p1L1ka, Ba = poSidy
Bs = porkady,, Bs = 2401 de,

)\Q = )\min [QUf]
3 [Bodk, + B (diph s, + do)]?
Re = Z [ 0 Rkl
l:T‘l,'“ J’f plo
ors[Lidy, + di, b,y + doy)”
Plu

and v,, and wén A are positive constants such

that 12 (yy,)'| < Phar, [V2n(yr)'| < Py Since
yl, (I = ri,~,7ry) are bounded, such constants
exist from assumption 5.

Consequently, from (34),(38) and (22
LT DN [ T

I=r1, 1y

), we have

k- ké*)?]
I

— (morq —ve) €] -

-1
= > =l + Y e
j=2

(pak1 —vp)lml* + R

l=ry,--,ry
(39)
where
3
o) = b + ok + TQQ + fi (Il=r1,rp_1)
Pe Pt
rr_ oy P 53
vy = vy +
R 4
_ 63
Ve = Z (Pﬁ"‘ﬂs"‘ﬂlo“‘r“‘%)
l=ry,-,ry pl
! ! ! ! l
Up = Z (p7 + pg + P11 + P12+ v3)
I=rrs
B3
L SRS S
l=ri,,ry l=r1,ryf 4m07rp8 myYrPg

. . A
Finally, setting ph = pi = pg = plo = 5 fQ ; pg =

[N N S
Pr = Py = P11 = P12 =
l 2

cy _ 5 128§ l 1 o
25 MH0 = g[mm +Zl:r1,~,rf ijl %]’/‘1 -

= 2’p5 =

1 2
6 l d£1 r . .
o Dl ey D e@lé] and considering ideal

feedback gains kb
inequality for 7/ >0

which satisfy the following

m%)kll* 2 @é) + VSJAmaw[Pl]v (l =T, ,rf) (40)
the time derivative of V' can be evaluated by
V<—-a,V+R (41)
A
a, = min[y!, o}, Q M 2c4]

2)\maw[ uw]’%’ L

(l=ry,---,rp, 1< <1-1)

It is apparent from (41) that all the signals in the
closed-loop system are bounded. We also obtain
from (41) that

tlim V < R/ay, (42)
From this result, we have
Jim (1] < 2R/ 0y Amaa [P1] (43)

This means that the goal (35) can be achieved for
5! such as 0% > 2R/ Amaz|[Pi]- Tt is also easily
confirmed that an appropriate choice of controller

parameters ensures the control objective (35) for
any 0. |

5. CONCLUSIONS

In this paper, we proposed a design scheme for
a robust adaptive tracking control system for un-
certain MIMO nonlinear systems. The proposed
method can be applied to a system with a higher
order relative degree and unknown system order.
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