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Abstract: A novel decentralized variable structure neural control approach for large-scale
uncertain systems is developed using Recurrent High Order Neural Networks (RHONN).
It is assumed that each subsystem belongs to a class of block-controllable nonlinear
systems whose vector fields includes interconnections terms. The interconnection terms
are bounded by nonlinear functions. A decentralized RHONN structure and the respective
learning law, are propposed in order to approximate on-line the dynamical behaviour of
each nonlinear subsystem. The control law, which is able to regulate and to track the
desired reference signals, is designed using the well known variable structure theory.
The stability of the whole system is analyzed via the Lyapunov methodology. The
applicability of proposed decentralized identification and control algorithm is illustrated
via simulations as applied to stabilize an interconnected double inverted pendulum.
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1. INTRODUCTION

The decentralized control approach often arises from
the high dimension of the system to be controlled,
the physical inability for subsystem information ex-
change, the lack of computing capabilities required
for a single central controller and the uncertainty in
measuring parameters values within a large-scale sys-
tem [Lunze,1992]. A good example for such large-
scale systems is a multiarea power system with several
power generating-units. It distributes electrical power
over a wide geographical area and supplies many
smaller and larger enterprises or privates homes with
energy. Voltages and power flows at many different
points have to be controlled. Obviously, no precise
uniform model can be set up and no unique controller
can be implemented for such a system. As a second
example let consider a system of coupled water reser-
voirs whose levels have to be controlled so as to ensure

sufficient reserves of water and, simultaneously, pre-
vent the reservoirs from overflowing after a period of
rain. Here, the difficulties of the control problems re-
sult from the complexity of the dynamical interactions
between the reservoirs and the uncertainties concern-
ing the amount of outflow to the consumer and inflow
from the environment. Other examples of large-scale
systems are traffic systems with complex dynamical
behavior but relatively few measurement data and con-
trol inputs, large space structures with many different
components, ecological systems with a large number
of entities in close interactions, or coupled distillations
columns and reactors in the chemical industry, steel-
rolling mills, flexible manufactory systems, or gas dis-
tribution networks [Lunze,1992]. All these examples
illustrate either the lack of centralized information,
or the lack of a centralized computing facility. These
facts motivate the design of decentralized controllers,
using only local information while guaranteeing sta-



bility for the entire system. A detailed review for the
development of decentralized adaptive control theory
for large-scale dynamical systems is given in [Jiang,
1999]. The present paper introduces a new approach
for decentralized control theory, introducing decen-
tralized RHONN structures based on [Kosmatopoulos,
1997], which are able to identify the dynamical be-
haviour of subsystems with only local information and
can deal with uncertainties in the absence of matching
conditions, as have been demonstrated [Benitez, et al.,
2003]. The Variable Structure Control Theory (VSC)
is used to obtain a robust control law which guarantees
tracking and rejects disturbances.

2. A CLASS OF DECENTRALIZED SYSTEMS

The considered large-scale system is constituted of
nonlinear subsystems in the Nonlinear Block Controlla-
ble Form with Disturbance Term (NBC) [Loukianov,
1998]. The block q for the ith (1 ≤ i ≤ N) subsystem
is represented as follows
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reflect the interaction between the ith and kth sub-
system, are bounded by nonlinear functions γirk and
enter the system as not matching condition distur-
bances, fir and Bir are smooth and bounded func-
tions, fir (0) = 0 and Bi (0) = 0. The integers
ni1 ≤ ni2 ≤ . . . ≤ nir defines the different subsystem
structures, and

Pr
q=1 niq = ni.

3. DECENTRALIZED NEURAL NETWORK

In this section we extend the recurrent neural network
developed in [Benitez, 2003, and references within]
to the decentralized control problem; additionally, we
present the decentralized recurrent neural network
which is able to identify (1).

For the large-scale plant, described by (1), there exists
a decentralized RHONN block controllable structure
as follows
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where x =
£
x1Ti x2Ti · · · xrTi

¤T is the ith block
neuron state with the same properties than (1); L is the
number of high order connections, L0 is the number
of fixed parameters w0, which depends on the plant
structure and are incorporated to the neural network
model in order to obtain a block controllable structure,
{I1p, I2p, ..., Irp} is a collection of no ordered subsets
of {1p, 2p, ...,m + n}, A is a diagonal matrix with
positive entries, w are the adjustable weights of the
neural network, d are no negative integers, Ψ is a
nonlinear function of the state x and/or the input u,
and Z is a vector defined as
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where Si (·) ∈ [−1, 1]; α, β and γ are positive cons-
tants. If the following vector is introduced for the ith
subsystem
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then, system (3) can be simplified as

ẋij =−aijxij + wT
i ρi (xi, ui) + w0Ti ψi (x, u)xj+1

j = 1, ..., r − 1 (5)

In (5), the jth state of each neuron for the ith subsys-
tem is characterized by x, and ψ denotes a nonlinear
function of x or u which are designed according to the
plant structure.

Remark 1. It is worth to notice that (3) does not con-
sider the interconection terms.

3.1 On-Line Learning Law

The decentralized identification and control scheme
proposed is based only on local information available
for each subsystem. Hence, the learning law is develo-
ped for the subsystem i as follows.

Based on the results presented in [Kosmatopoulos,
1997], [Sanchez, 2000], we assume that there exists
a decentralized RHONN which fully describes (1),
thereby the plant model can be described by

χ̇i = −Aiχi + w∗Ti ρi (χi, ui) + νi (t) (6)
where w∗ ∈ RLir and the modelling error νi (t) is
given by

νi (t) = fi (χi) +Bi (χi)ui + Γi1k (χ̄k) (7)
+Aiχi − wT

i ρi (χi, ui)

The modeling error term νi (t) can be made arbitrary
small selecting appropriately the number L of high
order connections [Kosmatopoulos et al., 1995]. The
optimal unknown weights vector w∗ is defined as
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Since each subsystem (1) can be written according to
(6), two possible models for (5) can be used:

• Parallel model
ẋij = −aijxij + wT

i ρi (xi, ui) + w0Ti ψi (x, u)
(8)

• Series-Parallel model
ẋij = −aijxij + wT

i ρi (χi, ui) + w0Ti ψi (χ, u)
(9)

In this paper we use the Series-Parallel one.

3.2 On-Line Weight Update Law

In this subsection, a learning law is developed consi-
dering the case where the modeling error term is zero,
i.e., νi (t) = 0. From (6), for the jth state, we establish

χ̇ij =−aijχij + w∗Tij ρij , (10)
i= 1, .., N,

j = 1, ..., niq

and considering (8) or (9) then
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where wi is the estimated of the unknown vector w∗i .
In this case the state error eij , xij − χij satisfies

ėij =−aijeij + φTijρij (12)
i= 1, .., N,

j = 1, ..., niq

with φij = wT
ij −w∗ij . The following theorem establi-

shes the learning law which is able to on-line adjust the
weights for neural network (11) as well as the stability
and convergence properties.

Theorem 1. Consider the RHONN model given by
(11) whose weights are adjusted according to

ẇij = −eijΞ−1ij ρij (13)

where Ξ−1ij is a symmetric positive definite matrix,
then for i = 1, ..., N and j = 1, ..., niq

(a) eij , φij ∈ L∞
(b) limt→∞eij (t) = 0

The proof is given in [Rovithakis, 2000].

3.3 Robust Updating Weight Law

For the case where the modelling error is not zero
[Rovithakis, 2000], the solutions of differential equa-
tions (13) may become unbounded, even if the mo-
delling error is bounded. Therefore, the learning law
(13) has to be modified in order to avoid the parameter
drift problem. The learning laws given by (13) are
modified as follows
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with q ≥ 1, σij0 andMij positive constants.



4. CONTROL LAW

Once, the large-scale system is modelled by the pro-
posed neural identifier, we proceed to develop the res-
pective control law.

4.1 Block Control Algorithm

A sliding surface and a discontinuous control law is
designed for the system (5) considering the state xq+1i ,
q = 3, ..., r − 1 as a fictitious control vector in the
block q. This procedure is described in the next steps
[Loukianov, 1998]

Step 1 Assume that ni1 = ni2 and define the vector
error as

z1i = x1i − δi (15)
where δi is a smooth and bounded reference signal.
The dynamics for (15) in the trajectories of (5) are

ż1i =−aixi + wT
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+w0Ti ψi (x, u)x2 − δ̇i

If the fictitious control x2i is selected as
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where k is a constant positive, then, the first block is
transformed in the new coordinates z1i , z2i as follows

ż1i = −ki1z1i + z2i (18)

The vector z2i is obtained using (17) as
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Step 2 Taking the derivative of (19) we obtain
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The fictitious control for (21) is x3i and the proce-
dure is successive for the remainder of the blocks
until the true control ui is obtained in the rth block

żri = fir − ξirui (22)

where the rank of ξir = nir and fir is a bounded
function. The discontinuous control action is ap-
plied as

ui = Ui0sign (z
r
i ) (23)

4.2 Stability Analysis

Let define

Bi = {fir ∈ Rnir | kfirk < �i} (24)

as a ball of radius �. Setting Ui0 in (23) as

U0i >
(�i + αi0)

ξir
(25)

with αi0 a positive constant. Let consider the candi-
date Lyapunov function vi = 1

2z
T
irzir, whose deriva-

tive in the trajectories of (22) are obtained as

v̇i = zTir (fir − ξirUi0sign (zir)) (26)

Taking into account the following identities

zT sign (z) = kzk1 ≥ kzk2
and substituting them in (26), we obtain

v̇i ≤ kzirk kfirk− ξirU0i kzirk (27)
v̇i ≤− kzirk (− kfirk+ ξirUi0)

If (24) holds and using (25) in (27) the derivative of
the Lyapunov function is simplified as

v̇i ≤ − kzirkαi0
Consequently, the closed loop asymptotic stability is
guarantee for (22) and the sliding motion occurs on the
manifold zri = 0 in a finite time, then the tracking error
(15) will tends asymptotically to zero in accordance
with (18). Moreover, the composite Lyapunov function

candidate for the large-scale system V =
NP
i=1

vi whose

derivative

V̇ ≤ − kzirk
NX
i=1

αi0

is negative defined, guarantees the stability for the
global interconnected system.

5. TWO CONNECTED PENDULUM EXAMPLE

In this section, we present an illustrative benchmark
example for the identification and control scheme ap-
plied to a two inverted pendulums connected by a
spring, which is a classical large-scale testbed for non-
linear decentralized control [Spooner, 1999], [Gavel,
1989], [Nardi, 2001].

5.1 Description

Each pendulum is positioned by a torque input ui
applied to a servomotor at its base. It is assumed that,
for the ith controller (i = 1, 2) , the only available
measuraments are χi1 and χ̇i1 (angular position and
rate).

The equations which describe the motion of each
pendulum are defined by



χ̇i1 = χi2 (28)
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(30)

i= 1, 2

where χi1 is the angular displacement of the pendu-
lums from the vertical. The parameters are as follows

m1 2
m2 2.5
J1 0.5
J2 0.625
k 100
r 0.5
l 0.5
g 9.81
b 0.4

Table 1: Double inverted pendulum parameters

For the plant dynamics (28)-(30), we propose the
decentralized neural network identifiers, according to
the series-parallel model (9) as

ẋi1 = xi2

ẋi2 =−ai2xi2 + wi21si (χi1) (31)

+wi22si (χi2) +
ui
Ji

i= 1, 2

The goal is to track desired reference signals, which
is achieved by designing a control law based on the
sliding mode technique. Consider the reference signal
as δi, for i = 1, 2, then the control error is given by

zi1 = xi1 − δi (32)

whose dynamics are obtained using (31) as

żi1 = xi2 − δ̇i (33)

Introducing new dynamics for (33) as

żi1 = −ki1zi1 + zi2 (34)

the dynamics for new variables zi2 is obtained as

żi2 = fi2 +
1

Ji
ui (35)

where

fi2 =−ai2xi2 + wi21si (χi1) + wi22si (χi2) (36)
−δ̈i − k2i1zi1 + ki1zi2

Then, the control action is proposed, for each pendu-
lum (i = 1, 2), as

ui = −Ui0sign (zi2) (37)

5.2 Simulation results

This subsection presents the respective simulation re-
sults. Fig.1 display the regulation case with a 10N−m
torque disturbance applied at 3 sec. Fig.2 and Fig.3
shows the control law.

Fig. 1. Regulation

Fig. 2. Control action for controller 1

Fig. 3. Control action for controller 2
Figs. 4-6 displays different reference signals and the
respective tracking. In Fig. 4, a sine reference for both
pendulums is tracked, Fig. 5 shows the tracking for
a sine and cosine references for positions χ11 and
χ21 respectively. Finally, a more complex behaviour



is displayed in Fig. 6, where χ11 is kept fixed whereas
χ21 tracks a sine signal.

Fig. 4. Tracking for a sine reference

Fig. 5. Tracking for a sine and cosine reference signal

Fig. 6. Tracking for constant and sine refereces

6. CONCLUSIONS

A decentralized identification and control scheme is
proposed which is able to identify each subsystem
dynamics for a double inverted pendulum. The sliding

mode control law forces the closed loop trajectory to
converge and to stay in the sliding manifold, which
guarantees that the tracking error is zero. Moreover,
simulations illustrates that the scheme proposed pre-
serves stability and presents good performance.
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