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Abstract: This paper proposes a method in order to rendesivgasonlinear affine-in-
control discrete-time systems. The methodology is basetherdiscrete-time version

of the speed-gradient (SG) algorithm. For the applicatibthe SG algorithm, quasi-
V-passive and feedback quaéipassive systems are introduced. Two kinds of feedback
laws rendering the system locally quasipassive are obtained: a dynamic one and a static
one. The passification methodology is applied to two exam@eme frequency-domain
properties of the feedback transformed system are higleligfor the linear example
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1. INTRODUCTION tionsV such thaV (f(x) + g(x)u) is quadratic iru. In
these works, the feedback passivity problem is based
Passive systems present highly desirable propertiessn the properties of the relative degree and zero dy-
which may simplify the system analysis and control namics of the non-passive system and the approach
design (Hill and Moylan, 1980). This fact impels s inherited from the continuous-time case (Byrnes
to transform a system which is not passive into a et al, 1991). These results have been recently ex-
passive one. The action of rendering a system pastended in (Navarro-Lépez and Fossas-Colet, 2004) to
sive by means of a state feedback is knowrfeesl-  general systems without requiring(f(x,u)) to be
back passivity Systems which can be rendered pas- quadratic inu. The feedback dissipativity property is
sive are regarded as feedback passive systems. Severgkated for single-input single-output (SISO) nonlinear
results concerning feedback passivity and feedbackdiscrete-time systems of general form in (Navarro-
dissipativity in the nonlinear discrete-time setting are [ 6pez, 2002; Navarro-Lopes al., 2002).
reported in the literature. Necessary and sufficient . .
conditions have been proposed in (Byrnes and Lin, The probllem of feedba_ck passivity for continuous-
1994) and (Navarro-Lépez and Fossas-Colet, 2002)t|me nonllnear systems is solved by means of the SG
for the feedback losslessness and feedback passivinf90rithm. for example, in (Fradkov, 1991; Fradkov
cases, respectively, for multiple-input multiple-output et al, 1995). _The_ d|sc_rete-t|me version of the SG
(MIMO) affine-in-input nonlinear discrete-time sys- methodology is given in (Fradkov and Pogromsky,
tems with the restriction of considering storage func- 1998).
In the present paper, the feedback passivity problem
* This paper has been done in the context of IMP project D.00334 IS ConSId,ered for MIM_O nonl,mear discrete-time sy_s-
“Optimizacion de la Toma de Decisiones en Escenarios 3I” and tems which are affine in the input. A class of passive
LAFMAA project under CONACYT grant. systems regarded as qu&spassive systems is used.




A method for aforementioned systems to be renderedin order to use the SG algorithm for passifying pur-

locally feedback quasdi-passive is proposed and use poses, the following definitions are introduced, which

is made of the SG algorithm in its discrete-time ver- are based on the passivity definiton in the nonlinear
sion. Two kinds of solutions are obtained, and they are discrete-time setting given in (Byrnes and Lin, 1994;

illustrated in two examples. Navarro-Lopezt al,, 2002).

The paper is organized as follows. Section 2 gives
the basic definitions to use in the sequel. Section 3
presents the discrete-time version of the SG algorithm
which will be adapted so as to achieve local feedback
guasi-passivity of nonlinear discrete-time systems. In
Sections 4 and 5, the feedback passivity methodology V(f(x) +9(x)u) = V(x) —s(y,u)+
is illustrated by means of two examples: a discrete- +o(x,u) <A, Y(Xu) e 2 xU
time model of the DC-to-DC buck converter and an

academic nonlinear discrete-time system. The validity Definition 2. Consider system (1). Assume that there
of the passifying controls given will be analyzed for exists a storage functio¥ (x) and consider a sup-
each example. The motivation of including a linear ply functions = y'v. The system is said to be lo-
example (the buck converter) is to interpret the results cally feedback quasi-passive if there exists a regular
in the frequency domain, and the interest in including static state feedback control law of the forrtk) =

the nonlinear example is illustrating the technique for a(x(k),v(k)) or a regular dynamic feedback control
a more general example. For the linear example, anlaw of the formu(k+ 1) = B(x(k),u(k),v(k)), with v
interpretation of the passified system properties in theas the new input, such that the feedback transformed
frequency domain is given in Section 6. Conclusions system is locally quasi-passive.

are presented in the last section.

Definition 1. System (1) with storage functiovi(x)
and supply functioms(y,u) = (h(x) +J(x)u)"uis said
to be locally quasW-passive if there exists a dissipa-
tion rate functionp and a constark > 0 such that,

)

3. THE SG ALGORITHM AND THE LOCAL
5. BASIC DEFINITIONS FEEDBACK PASSIVITY PROBLEM

The SG method, see (Fradkov, 1991), is based upon

the achievement of a specified control goal by means

x(k+1) = f(x(k)) + g(x(k))u(k), (1a) of some goal functiorQ. The discrete-time version
y(K) = h(x(K)) 4+ J(x(K))u(K), (1b) of the SG algorithm is proposed in (Fradkov and

Pogromsky, 1998).
where f(x), g(x), h(x), J(x) are smooth maps and

f(x) € 2 cO"g(x) e cO™ h(x)e® cO™, Consider system (1). The SG method is formulated as

Let a system of the form,

Jx)e ZcO™Mxe 2, ue cOMke % = finding a control lawu(k) which ensures the control
{0,1,2,---}. All considerations are restricted to an oObjective

open set _ot%” X % containing(X, ), _having>‘< as an Q(x(k+ 1)) < A, whenk> K* 3)
isolated fixed point off (x) + g(x)u with T constant, . . .

ie., f(X)+g(X)u=x. with some nonnegative functio and a threshold

- o _ valueA > 0. Substituting (1a) into (3), the following

V(0) = 0 <= x=0is addressed as storage function.

Anotheré? function denoted by(y,u) with s: % x Qi(u) = Q(fk(x(k),u)) 4)

% — O is addressed as supply function. For the The following control algorithm is proposed (Fradkov
passivity case(y,u) = y'u. A €2 function@: 2" x and Pogromsky, 1998):

% — 0O, such thatp(-,u) is positive for eachu € 7,

with @(0,0) = 0, is regarded as a dissipation rate u(k+1) = uk) — y(k) DuQi(u(k)) ®)
function in the sense proposed in (Hill and Moylan, wherey(k) > 0, Vk. The partial derivative of) with
1980; Navarro-Lopeet al., 2002). respect tal is denoted byJ,Qk(u(k)).

The application of the SG method gives rise to two The SG method in the discrete-time setting and its
types of feedback control laws. Let: 2" x % — % applicability conditions are based upon the following
be a smooth function. A static state feedback control theorem:

law u = a(x,v) is regular if for all (x,v) € & x %

it follows that %—‘j,’ is invertible. Letf : 2 x % x Theorem 3.(Fradkov and Pogromsky, 1998) Consider
% — % be a smooth function. A dynamic feed- controlalgorithm (5). LeQ be a nonnegative function
back control lawu(k+ 1) = B(x(k),u(k),v(k)) isreg- ~ andA a positive constant. Suppose that:

ular if ‘2—6 is invertible for all (x,u,v) € 2 x % x
% . System (1) withu = a(x(k),v(k)) or u(k+1) =
B(x(k),u(k),v(k)) is referred as thdéeedback trans-
formedsystem. Qu(u) <€" <A k=0,1,2,... (6)

Al There exist€* > 0 and a vectou* such that the
following inequalities are satisfied:



A2 For all admissible inputs, the inequalityQy (u) <
A implies the fullfilment of one of the following
conditions,

(U —u)T OuQk(u) < "= A <0, @
(u* — u)T OuQk(u) < Q(U") — Q(u) <0 (8)
A3 For anyp >0 and anyk=0,1,2,... there exists

K(p) > 0 such that the following inequalities are
satisfied,

|0uQi(u)* < k(p)

as long asu— u*| < p andQk(u) > A.
A4 The gain coefficientg(k) in the proposed control
(5) are chosen as follows

V(k) = ye8 (k)| DuQi(u(k))
where (if condition (7) is satisfied)

1, ifQ(u(k)) >

0, otherwise

9)

(10)

A

)

O<y<2(h—¢%),0(Kk) = {
or (if condition (8) is satisfied)

8*
O<y <2 (1 K) ,
0, otherwise
Then, for anyup there exists a numbet® such

that the goal inequality (3) is fulfilled and(k) is
constant fok > k*.

A

)

In (Fradkov and Pogromsky, 1998), it is established
that the SG algorithm (5) can be rewritten as

u(k) = —yesy( Q(x(k))

i.e.,u(k) is explicitly obtained fronT],Qk(u(k)), and
Yes IS @ positive constant,s is chosen in such a way
to assure the asymptotic stability of the fixed point of
the controlled system obtained with (11).

(11)

Now, the discrete-time version of the SG algorithm

(1) A dynamic feedback:
u(k+1) = u(k) — y(k)DuQq k(u(k))
| 2

y(K) = 3 (K)[OuQq k(u(k))
0<%<2

5(k) = {Qd,k<u<k>>,_ if Qa(u(k)) > A
0, otherwise
(13)
(2) A static feedback:
u(k) = —Yesy( Qa(x(k)) (14)

with yes a positive constant ensuring the asymp-
totic stability of the fixed point of the controlled
system.

Proof The proof follows the same arguments as the
ones given for Theorem 3 in (Fradkov and Pogrom-
sky, 1998) withe* << A. It is concluded that there
exists k* for which Qq(u(k)) < A for all k > k*.
ConsideringQq as defined in (12), inequality (2) is
satisfied and, consequently, the feedback transformed
system with (13) is locally quasi-passive. As itis es-
tablished in (Fradkov and Pogromsky, 1998), control
(13) can be written as (14).

The passifying methodology shown, in its two ver-
sions, will be applied to passify two examples in the
next two sections. An analysis of the constants appear-
ing in the controls will be made. The conditions under
which the SG algorithm can be applied will be also
verified. Although the feedback passivity methodol-
ogy is applicable to MIMO systems, the examples are
SISO for the sake of simplicity in computations.

4. LINEAR EXAMPLE. THE DISCRETIZED
BUCK CONVERTER MODEL

Consider a discrete-time model of a normalized aver-

is adapted to propose a method in order to renderaged DC-to-DC buck converter derived in (Navarro-

systems of the form (1) locally feedback qu¥si-

passive. For this purpose, the following control goal

is considered,

Qa(x,u,v) =V (f(x)+g(x)u) —yTV+p(xu)
(12)

—V(x)

Proposition 4. Let a system of the form (1). Consider
V(x) ands= (h(x) +J(x)u)Tv as the storage function

and the supply rate function, respectively. Consider

a control goal functiorQy as defined in (12) with
the dissipation rate functiop such that make§)y
be nonnegative. LefA and €* be positive constants
such thatA ande* are close to zero, and. € % is

a constant vector. Assume that assumptions Al, A3
and condition (8) of Theorem 3 are satisfied, then the

system is locally feedback quagipassive by means
of two control laws, such as:

Lépezet al, 2002):

x(k+ 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k)

o

(15a)
(15b)

)

whereu € [0,1], x = (x1,%)", X1 is a normalized
current,x, a normalized voltagey, the normalized
load, anda, b, c, constants related to physical pa-
rameters, witta = 0.9406416964h = 0.3254699438,
c=0.8255706942y, = 0.353553) = 13.25192, ob-
tained for a sampling period df = 0.3535533906.

with,

a-—b
b c
(0,1)

(—a+1)w+b
—by—c+1
1

.

C =

The system is not passive and the goal is to render
it locally quasiV-passive having as storage function



V = 1(x2 +x3) and as supply functios= yv, with
y = X2 + u. Function @(x,u) is chosen in order to
collect the positive terms &f (x(k+ 1)), and takes the
following form:

P(x,u) = nu{x%(a2 +0?) +33(0%+ ) + U [yE(1-

—a)?+b*(1+ ) + (—c+ 1) }
(16)

with u a positive constant. Leg € [0, yp], X2 € [0, p],
u,v e [0,1], andp > 1.

The control goal function for the example is:

Qu (X1, %2, U, V) = ayu? + by (X1, Xa, V)U + €y (X1, X2, V),
(17)
where

A= |(G+H) 0B- a2+ B OR + )+
+(—Cc+1)? + yp(bc— ab)]
bu(X1,X2,V) = r){ (W(—a+1)+b](ax. —bx)+
+ (—ywb—c+1)(bxg + ch)} -V
%@m%Wn{(%HQpa¥+waaw+

4 CZ)] + (bC— ab)X1X — %(X%JFX%)}

— XoV

For the application of the SG algorithm for feedback
passivity purposes, it is necessary to assure that the

function Qq is positive, which will be achieved by

candidates for local minima. The worst case is pre-
sented foix = (0,p,1,1) with p = 1, and the critical
value ofu is given byfi, = 0.276418. The value qf

is chosen agl > max(fi;, H,). Itis concluded thaQy

is positive forp > 11, = 0.296853 (see Figure 1).

<z
<z
108 '0.0.’.0..# 2=
T .... <z
Q, 200 IS S e
3

Fig. 1. Qq is positive depending on the value gf
Representation 0y with x; € [0,%pP], X2 €
[0,p], p = 20: (i) withu=1,v= 0.5, u = 0.05;
(i) with u=1,v=0.5,u=0.3.

Second, assumptions Al, A3 and condition (8) must
be verified. From the fact that fqu > 0.296853 it
follows thatQq > 0 andQq has a relative minimum
atx = 0, u= 0 with v=v a constant, and due to the
increasing nature dPy in the domain considered, the
conditions appearing in Al and (8) are met. Onthe one
hand, the condition to verify in Al is met due to the
fact thatQyq is positive with a relative minimum gk =
0,u=0,v), then a constant & £* < A can be always
found and a control* for which Qq is smaller and
then the control goal (3) is achieved, indeed, thiis
can beu* = 0 consideringy, Xz, v fixed near to zero.
On the other hand, condition (8) is met considering
u* = 0. This condition takes the following form:

—(2a,u? 4+ byu) < —(ayu?+byu) < 0 (18)

which is always met. For the condition of assumption

means of choosing the adequate value of the parameteA3 that 0,Q(u) = 2a,u+ b, must be bounded, the

U. In addition, conditions of Theorem 3 must be
checked.

First, let examine the positiveness @fi. A way of
assuring the positiveness@yf is by means of assuring
that Qq is a positive function for all the candidates
for local minima. The candidates for local minima
are the critical points ofQy and the local minima
existing in the domain of definition dg(x1,X2,u,Vv),
i.e., [0,wp] x [0,p] x [0,1] x [0,1]. Examining Qq,

it can be noticed tha@Qy is positive for a value of

u and ahead, then, the worst case to search is the
greatest value oft, among all the cases examined,
for which Qg becomes positive. The first candidate

to be a relative minimum oy is the critical point
X = (x1,%,u,v)T = (0,0,0,v)", with v a constant. A

sufficient condition for this is that the Hessian matrix

of Qq (H) atx s positive definite. The real symmetric
matrix H is positive definite if all eigenvalues are
positive, which is achieved fom > [i; = 0.296853.
Furthermore, the study of the positiveness@f is

necessary for other local minima candidates. By an-

alyzing the domain of functioyq, a lower bound of
u (f,) can be found for whicl@y is positive at all the

property of uniform continuity in a set can be con-

sidered (Marsden and Hoffman, 1998). Then, controls
(13), (14) can be applied and two passifying control
schemes are obtained:

(1) From (13), a dynamic passifying control:
ukk+1) =u(k) — y(k) [Zauu(k)wL
#0050 v00)|

)
v&)wawﬂz%mm+tmuﬂm»@w»wm>

O<y<2
am{%ummprwww»zm
0, otherwise
(19)
(2) From (14), a static passifying control:
U(k) _ chbu(X]_(k),Xz(k),V(k)) (20)

1+ 2y.ay
with ys a positive constant ensuring the fixed
point of the controlled system to be asymptoti-



cally stable. If control (20) is applied to (15), a
linear system is obtained:

x(k+1) = Ax(k) +Bv(K)
y(k) = Cx(k) + Dv(k)

with matricesA, B, C, D depending on the system
parameters and the constamts,n, yes. Matrix

A of the quasiV-passified system (21) depends
on the constantg andys. These constants will
be chosen in order to have the eigenvalues of
with modulus less than 1, and it is concluded that
U > 0.296853 andes > 0.

(21)

5. ANONLINEAR EXAMPLE

Let consider a nonlinear discrete-time system ex-
tracted from (Sira-Ramirez, 1991):

1(k+1) = E(K) +53(K) + u(k)] coslx(K)]
o(k+1) = [i( ) +x3(k) + u(k)] sin[x(k)]  (22)
y(k) =5 (k) + Xz(k) +u(k)

The goal is to render system (22) locally qu¥si-
passive with a storage functidh= x2 4-x3 and with a
supply functiors(y, v) = yv. Function@(x, u) is chosen
in order to collect the positive terms @f{x(k+ 1)):

P(xU) = K[ +X)*+ U X +x5]  (23)
with pt > 0. Supposet, X2 € [—px, Px], U € [—pu, Pul,

€ [—pv, pv], With px, pu, pv positive constants. The
control goal function takes the following form,

Qa (X1, %2, U, V) = UA(1+ [) + 2u(XE + X3) + (X5 + X3)

L+ 0E+X8) +u—1| —yv
(24)

FunctionQq will be assured to be positive in all can-
didates for local minima in the domain of definition
of Qg by means of the value ofi. Two groups of
local minima have to be analyzed: the critical points
of Qg and other candidates for minima in the domain

[=Px, Px] X [—Px; x| > [—Pu, pu] X [—pv, pv]. Follow-

ing the same procedure as the one given for the linear

example, it is concluded tha)y becomes positive
for u > 1. In addition, with thisu, the critical point
(x1,%X2,u,v) = (0,0,0,V), with vV a constant, is assured
to be a relative minimum d®y (see Figure 2).

Second, the conditions of Proposition 4 are verified.
From the fact that fou > 1, it follows thatQq is

a positive function with a relative minimum @x =

0,u = 0,v=V), the condition appearing in Al is met,
for u* = 0 andxy, X, vfixed near to zero and condition
(8) is met. Condition (8) takes the form:

- {Zuz(lnL ) 4 2u(E +x3) — uv] <
(25)
- {u2(1+ 1) +2u(X +x3) — uv} <0

Fig. 2. Representation @y: (i) with x1,% € [—2,2],
v=0, u =0.06,u=—2; (ii) with x3,x € [-5,5],
v=0,u=10,u=2

which is always met. For the condition of assumption
A3 that 0,Qq(u) = 2u(1+ p)+ 2 (x2 +x3) — v must

be bounded, the property of uniform continuity in a set
is applied (Marsden and Hoffman, 1998). Therefore,
two passifying controls are obtained:

(1) A dynamic feedback:
u(k+1) =u(k) — y(k){Zu(k) (14+p)+

[x (K) +x3( K] - v(k)}

y(K) = ved(K) [2u(k) (1+ p) +
+2X(K) +x3(k)] — v(k)|72
5(K) = {Qd,k( ( ))7- if Qax(u(k)) > A,
0, otherwise
(26)
with > 1 and 0< y < 2.
(2) A static feedback:
C Ves[28(K) + 238(K) — v(K)]
(k) =~ 1+ 2yes(1+ p) &

with ¢ > 1 andys > 0 ensuring the asymptotic
stability of the fixed point of the controlled sys-
tem. Applying control (27) to system (22), the
following locally quasi{V,s)-passive system is
obtained:

X(k+1) =
y(k)=h

[(ﬂ gix(k)lv(k)

hix(k)] +J[x(K)}v(k)

with x = (x1,%2)T. A way to ensure the local
asymptotic stability of the fixed point of system
(28) is by assuring that the linearized system
around the fixed point has poles with modulus
less than 1, and this is assured for any 1 and

Yes > 0.

(28)

6. ANOTE ON THE FREQUENCY-DOMAIN
CHARACTERISTICS OF QUASN-PASSIVE
SYSTEMS

Passive systems exhibit special features in the fre-
guency domain. Passivity, for linear systems, is equiv-
alent to positive realness of a transfer function. The
same is for the discrete-time case. Positive realness of



a transfer function can be identified via the Nyquist the frequency-domain implications of linear qu¥si-
diagram which is confined in the right-hand side half passive systems have also been pointed out.

of the Nyquist plane. In addition, discrete positive real
transfer functions do not have poles with modulus
greater than one, and their poles lying jah= 1 are
simple with positive real residues.

An alternative way of designing the parameters ap-
pearing in the passifying controls may be given, as
well as, a more detailed study of the influence of these
controller parameters in the system response.

The example of the buck passified by means of the

SG-based feedback passivity method can be used for
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