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Abstract: This paper proposes a method in order to render passive nonlinear affine-in-
control discrete-time systems. The methodology is based onthe discrete-time version
of the speed-gradient (SG) algorithm. For the application of the SG algorithm, quasi-
V-passive and feedback quasi-V-passive systems are introduced. Two kinds of feedback
laws rendering the system locally quasi-V-passive are obtained: a dynamic one and a static
one. The passification methodology is applied to two examples. Some frequency-domain
properties of the feedback transformed system are highlighted for the linear example
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1. INTRODUCTION

Passive systems present highly desirable properties
which may simplify the system analysis and control
design (Hill and Moylan, 1980). This fact impels
to transform a system which is not passive into a
passive one. The action of rendering a system pas-
sive by means of a state feedback is known asfeed-
back passivity. Systems which can be rendered pas-
sive are regarded as feedback passive systems. Several
results concerning feedback passivity and feedback
dissipativity in the nonlinear discrete-time setting are
reported in the literature. Necessary and sufficient
conditions have been proposed in (Byrnes and Lin,
1994) and (Navarro-López and Fossas-Colet, 2002)
for the feedback losslessness and feedback passivity
cases, respectively, for multiple-input multiple-output
(MIMO) affine-in-input nonlinear discrete-time sys-
tems with the restriction of considering storage func-
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tionsV such thatV( f (x)+g(x)u) is quadratic inu. In
these works, the feedback passivity problem is based
on the properties of the relative degree and zero dy-
namics of the non-passive system and the approach
is inherited from the continuous-time case (Byrnes
et al., 1991). These results have been recently ex-
tended in (Navarro-López and Fossas-Colet, 2004) to
general systems without requiringV( f (x,u)) to be
quadratic inu. The feedback dissipativity property is
treated for single-input single-output (SISO) nonlinear
discrete-time systems of general form in (Navarro-
López, 2002; Navarro-Lópezet al., 2002).

The problem of feedback passivity for continuous-
time nonlinear systems is solved by means of the SG
algorithm, for example, in (Fradkov, 1991; Fradkov
et al., 1995). The discrete-time version of the SG
methodology is given in (Fradkov and Pogromsky,
1998).

In the present paper, the feedback passivity problem
is considered for MIMO nonlinear discrete-time sys-
tems which are affine in the input. A class of passive
systems regarded as quasi-V-passive systems is used.



A method for aforementioned systems to be rendered
locally feedback quasi-V-passive is proposed and use
is made of the SG algorithm in its discrete-time ver-
sion. Two kinds of solutions are obtained, and they are
illustrated in two examples.

The paper is organized as follows. Section 2 gives
the basic definitions to use in the sequel. Section 3
presents the discrete-time version of the SG algorithm
which will be adapted so as to achieve local feedback
quasi-passivity of nonlinear discrete-time systems. In
Sections 4 and 5, the feedback passivity methodology
is illustrated by means of two examples: a discrete-
time model of the DC-to-DC buck converter and an
academic nonlinear discrete-time system. The validity
of the passifying controls given will be analyzed for
each example. The motivation of including a linear
example (the buck converter) is to interpret the results
in the frequency domain, and the interest in including
the nonlinear example is illustrating the technique for
a more general example. For the linear example, an
interpretation of the passified system properties in the
frequency domain is given in Section 6. Conclusions
are presented in the last section.

2. BASIC DEFINITIONS

Let a system of the form,

x(k+1) = f (x(k))+g(x(k))u(k), (1a)

y(k) = h(x(k))+J(x(k))u(k), (1b)

where f (x), g(x), h(x), J(x) are smooth maps and
f (x) ∈ X ⊂ ℜn, g(x) ∈ G ⊂ ℜn×m, h(x) ∈ Y ⊂ ℜm,
J(x) ∈ J ⊂ ℜm×m, x∈ X , u∈ U ⊂ ℜm, k∈ Z+ =
{0,1,2, · · ·}. All considerations are restricted to an
open set ofX ×U containing(x,u), havingx as an
isolated fixed point off (x) + g(x)u with u constant,
i.e., f (x)+g(x)u = x.

A positive definiteC 2 functionV : X → ℜ such that
V(0) = 0⇐⇒ x = 0 is addressed as storage function.
AnotherC 2 function denoted bys(y,u) with s : Y ×
U → ℜ is addressed as supply function. For the
passivity cases(y,u) = yTu. A C 2 functionφ : X ×
U → ℜ, such thatφ(·,u) is positive for eachu∈ U ,
with φ(0,0) = 0, is regarded as a dissipation rate
function in the sense proposed in (Hill and Moylan,
1980; Navarro-Lópezet al., 2002).

The application of the SG method gives rise to two
types of feedback control laws. Letα : X ×U → U
be a smooth function. A static state feedback control
law u = α(x,v) is regular if for all (x,v) ∈ X ×U
it follows that ∂α

∂v is invertible. Let β : X × U ×
U → U be a smooth function. A dynamic feed-
back control lawu(k+1) = β (x(k),u(k),v(k)) is reg-
ular if ∂β

∂v is invertible for all (x,u,v) ∈ X ×U ×
U . System (1) withu = α(x(k),v(k)) or u(k+ 1) =
β (x(k),u(k),v(k)) is referred as thefeedback trans-
formedsystem.

In order to use the SG algorithm for passifying pur-
poses, the following definitions are introduced, which
are based on the passivity definiton in the nonlinear
discrete-time setting given in (Byrnes and Lin, 1994;
Navarro-Lópezet al., 2002).

Definition 1. System (1) with storage functionV(x)
and supply functions(y,u) = (h(x)+J(x)u)Tu is said
to be locally quasi-V-passive if there exists a dissipa-
tion rate functionφ and a constant∆ ≥ 0 such that,

V( f (x)+g(x)u)−V(x)−s(y,u)+

+ φ(x,u) ≤ ∆, ∀(x,u) ∈ X ×U
(2)

Definition 2. Consider system (1). Assume that there
exists a storage functionV(x) and consider a sup-
ply function s = yTv. The system is said to be lo-
cally feedback quasi-V-passive if there exists a regular
static state feedback control law of the formu(k) =
α(x(k),v(k)) or a regular dynamic feedback control
law of the formu(k+ 1) = β (x(k),u(k),v(k)), with v
as the new input, such that the feedback transformed
system is locally quasi-V-passive.

3. THE SG ALGORITHM AND THE LOCAL
FEEDBACK PASSIVITY PROBLEM

The SG method, see (Fradkov, 1991), is based upon
the achievement of a specified control goal by means
of some goal functionQ. The discrete-time version
of the SG algorithm is proposed in (Fradkov and
Pogromsky, 1998).

Consider system (1). The SG method is formulated as
finding a control lawu(k) which ensures the control
objective

Q(x(k+1)) ≤ ∆, whenk> k∗ (3)

with some nonnegative functionQ and a threshold
value∆ > 0. Substituting (1a) into (3), the following
goal function is obtained,

Qk(u) = Q( fk(x(k),u)) (4)

The following control algorithm is proposed (Fradkov
and Pogromsky, 1998):

u(k+1) = u(k)− γ(k)∇uQk(u(k)) (5)

whereγ(k) ≥ 0, ∀k. The partial derivative ofQ with
respect tou is denoted by∇uQk(u(k)).

The SG method in the discrete-time setting and its
applicability conditions are based upon the following
theorem:

Theorem 3.(Fradkov and Pogromsky, 1998) Consider
control algorithm (5). LetQ be a nonnegative function
and∆ a positive constant. Suppose that:

A1 There existsε∗ > 0 and a vectoru∗ such that the
following inequalities are satisfied:

Qk(u
∗) ≤ ε∗ < ∆, k = 0,1,2, . . . (6)



A2 For all admissible inputsu, the inequalityQk(u)≤
∆ implies the fullfilment of one of the following
conditions,

(u∗−u)T∇uQk(u)≤ ε∗−∆ < 0, (7)

(u∗−u)T∇uQk(u)≤ Qk(u
∗)−Qk(u) < 0 (8)

A3 For anyρ > 0 and anyk = 0,1,2, . . . there exists
κ(ρ) > 0 such that the following inequalities are
satisfied,

|∇uQk(u)|2 ≤ κ(ρ) (9)

as long as|u−u∗| ≤ ρ andQk(u) > ∆.
A4 The gain coefficientsγ(k) in the proposed control

(5) are chosen as follows

γ(k) = γcδ (k)|∇uQk(u(k))|−2 (10)

where (if condition (7) is satisfied)

0< γc < 2(∆− ε∗) , δ (k)=

{

1, i f Qk(u(k)) ≥ ∆,

0, otherwise

or (if condition (8) is satisfied)

0 < γc < 2

(

1−
ε∗

∆

)

,

δ (k) =

{

Qk(u(k)), i f Qk(u(k)) ≥ ∆,

0, otherwise

Then, for anyu0 there exists a numberk∗ such
that the goal inequality (3) is fulfilled andu(k) is
constant fork≥ k∗.

In (Fradkov and Pogromsky, 1998), it is established
that the SG algorithm (5) can be rewritten as

u(k) = −γcs∇u(k)Q(x(k)) (11)

i.e., u(k) is explicitly obtained from∇uQk(u(k)), and
γcs is a positive constant.γcs is chosen in such a way
to assure the asymptotic stability of the fixed point of
the controlled system obtained with (11).

Now, the discrete-time version of the SG algorithm
is adapted to propose a method in order to render
systems of the form (1) locally feedback quasi-V-
passive. For this purpose, the following control goal
is considered,

Qd(x,u,v) = V( f (x)+g(x)u)−V(x)−yTv+ φ(x,u)
(12)

Proposition 4.Let a system of the form (1). Consider
V(x) ands= (h(x)+J(x)u)Tv as the storage function
and the supply rate function, respectively. Consider
a control goal functionQd as defined in (12) with
the dissipation rate functionφ such that makesQd

be nonnegative. Let∆ and ε∗ be positive constants
such that∆ andε∗ are close to zero, andu∗ ∈ U is
a constant vector. Assume that assumptions A1, A3
and condition (8) of Theorem 3 are satisfied, then the
system is locally feedback quasi-V-passive by means
of two control laws, such as:

(1) A dynamic feedback:

u(k+1) = u(k)− γ(k)∇uQd,k(u(k))

γ(k) = γcδ (k)|∇uQd,k(u(k))|−2

0 < γc < 2

δ (k) =

{

Qd,k(u(k)), i f Qd,k(u(k)) ≥ ∆
0, otherwise

(13)

(2) A static feedback:

u(k) = −γcs∇u(k)Qd(x(k)) (14)

with γcs a positive constant ensuring the asymp-
totic stability of the fixed point of the controlled
system.

Proof The proof follows the same arguments as the
ones given for Theorem 3 in (Fradkov and Pogrom-
sky, 1998) withε∗ << ∆. It is concluded that there
exists k∗ for which Qd,k(u(k)) ≤ ∆ for all k ≥ k∗.
ConsideringQd as defined in (12), inequality (2) is
satisfied and, consequently, the feedback transformed
system with (13) is locally quasi-V-passive. As it is es-
tablished in (Fradkov and Pogromsky, 1998), control
(13) can be written as (14).

The passifying methodology shown, in its two ver-
sions, will be applied to passify two examples in the
next two sections. An analysis of the constants appear-
ing in the controls will be made. The conditions under
which the SG algorithm can be applied will be also
verified. Although the feedback passivity methodol-
ogy is applicable to MIMO systems, the examples are
SISO for the sake of simplicity in computations.

4. LINEAR EXAMPLE. THE DISCRETIZED
BUCK CONVERTER MODEL

Consider a discrete-time model of a normalized aver-
aged DC-to-DC buck converter derived in (Navarro-
Lópezet al., 2002):

x(k+1) = Ax(k)+Bu(k), (15a)

y(k) = Cx(k)+Du(k) (15b)

with,

A =

(

a −b
b c

)

B =

(

(−a+1)γb+b
−bγb−c+1

)

C = (0, 1) D = 1

where u ∈ [0,1], x = (x1, x2)
T , x1 is a normalized

current,x2 a normalized voltage,γb the normalized
load, anda, b, c, constants related to physical pa-
rameters, witha= 0.9406416964,b= 0.3254699438,
c= 0.8255706942,γb = 0.353553,η = 13.25192, ob-
tained for a sampling period ofT = 0.3535533906.

The system is not passive and the goal is to render
it locally quasi-V-passive having as storage function



V = η
2 (x2

1 + x2
2) and as supply functions= yTv, with

y = x2 + u. Function φ(x,u) is chosen in order to
collect the positive terms ofV(x(k+1)), and takes the
following form:

φ(x,u) = ηµ
{

x2
1(a

2 +b2)+x2
2(b

2 +c2)+u2[

γ2
b(1−

−a)2+b2(1+ γ2
b)+ (−c+1)2]

}

(16)

with µ a positive constant. Letx1 ∈ [0,γbρ ], x2 ∈ [0,ρ ],
u,v∈ [0,1], andρ > 1.

The control goal function for the example is:

Qd(x1,x2,u,v) = auu2 +bu(x1,x2,v)u+cu(x1,x2,v),
(17)

where

au = η
[(

1
2

+ µ
)

[γ2
b(1−a)2+b2(γ2

b +1)+

+(−c+1)2]+ γb(bc−ab)

]

bu(x1,x2,v) = η
{

[γb(−a+1)+b](ax1−bx2)+

+(−γbb−c+1)(bx1 +cx2)

}

−v

cu(x1,x2,v) = η
{(

1
2

+ µ
)

[x2
1(a

2 +b2)+x2
2(b

2+

+c2)]+ (bc−ab)x1x2−
1
2
(x2

1 +x2
2)

}

−

−x2v

For the application of the SG algorithm for feedback
passivity purposes, it is necessary to assure that the
function Qd is positive, which will be achieved by
means of choosing the adequate value of the parameter
µ . In addition, conditions of Theorem 3 must be
checked.

First, let examine the positiveness ofQd. A way of
assuring the positiveness ofQd is by means of assuring
that Qd is a positive function for all the candidates
for local minima. The candidates for local minima
are the critical points ofQd and the local minima
existing in the domain of definition ofQd(x1,x2,u,v),
i.e., [0,γbρ ] × [0,ρ ] × [0,1] × [0,1]. Examining Qd,
it can be noticed thatQd is positive for a value of
µ and ahead, then, the worst case to search is the
greatest value ofµ , among all the cases examined,
for which Qd becomes positive. The first candidate
to be a relative minimum ofQd is the critical point
x = (x1,x2,u,v)T = (0,0,0,v)T , with v a constant. A
sufficient condition for this is that the Hessian matrix
of Qd (H) at x is positive definite. The real symmetric
matrix H is positive definite if all eigenvalues are
positive, which is achieved forµ > µ1 = 0.296853.
Furthermore, the study of the positiveness ofQd is
necessary for other local minima candidates. By an-
alyzing the domain of functionQd, a lower bound of
µ (µ2) can be found for whichQd is positive at all the

candidates for local minima. The worst case is pre-
sented forx = (0,ρ ,1,1) with ρ = 1, and the critical
value ofµ is given byµ2 = 0.276418. The value ofµ
is chosen asµ > max(µ1,µ2). It is concluded thatQd

is positive forµ > µ1 = 0.296853 (see Figure 1).
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Fig. 1. Qd is positive depending on the value ofµ .
Representation ofQd with x1 ∈ [0,γbρ ], x2 ∈
[0,ρ ], ρ = 20: (i) with u = 1, v = 0.5, µ = 0.05;
(ii) with u = 1, v = 0.5, µ = 0.3.

Second, assumptions A1, A3 and condition (8) must
be verified. From the fact that forµ > 0.296853 it
follows thatQd > 0 andQd has a relative minimum
at x = 0, u = 0 with v = v a constant, and due to the
increasing nature ofQd in the domain considered, the
conditions appearing in A1 and (8) are met. On the one
hand, the condition to verify in A1 is met due to the
fact thatQd is positive with a relative minimum at(x=
0,u = 0,v), then a constant 0< ε∗ < ∆ can be always
found and a controlu∗ for which Qd is smaller and
then the control goal (3) is achieved, indeed, thisu∗

can beu∗ = 0 consideringx1, x2, v fixed near to zero.
On the other hand, condition (8) is met considering
u∗ = 0. This condition takes the following form:

−(2auu
2 +buu) ≤−(auu2 +buu) < 0 (18)

which is always met. For the condition of assumption
A3 that ∇uQ(u) = 2auu+ bu must be bounded, the
property of uniform continuity in a set can be con-
sidered (Marsden and Hoffman, 1998). Then, controls
(13), (14) can be applied and two passifying control
schemes are obtained:

(1) From (13), a dynamic passifying control:

u(k+1) = u(k)− γ(k)

[

2auu(k)+

+bu(x1(k),x2(k),v(k))

]

γ(k) = γcδ (k)

∣

∣

∣

∣

2auu(k)+bu(x1(k),x2(k),v(k))

∣

∣

∣

∣

−2

0 < γc < 2

δ (k) =

{

Qd,k(u(k)), i f Qd,k(u(k)) ≥ ∆,

0, otherwise
(19)

(2) From (14), a static passifying control:

u(k) = −
γcsbu(x1(k),x2(k),v(k))

1+2γcsau
(20)

with γcs a positive constant ensuring the fixed
point of the controlled system to be asymptoti-



cally stable. If control (20) is applied to (15), a
linear system is obtained:

x(k+1) = Ax(k)+Bv(k)

y(k) = Cx(k)+Dv(k)
(21)

with matricesA, B,C, D depending on the system
parameters and the constants,µ , η , γcs. Matrix
A of the quasi-V-passified system (21) depends
on the constantsµ andγcs. These constants will
be chosen in order to have the eigenvalues ofA
with modulus less than 1, and it is concluded that
µ > 0.296853 andγcs > 0.

5. A NONLINEAR EXAMPLE

Let consider a nonlinear discrete-time system ex-
tracted from (Sira-Ramírez, 1991):

x1(k+1) =
[

x2
1(k)+x2

2(k)+u(k)
]

cos[x2(k)]

x2(k+1) =
[

x2
1(k)+x2

2(k)+u(k)
]

sin[x2(k)]

y(k) = x2
1(k)+x2

2(k)+u(k)

(22)

The goal is to render system (22) locally quasi-V-
passive with a storage functionV = x2

1+x2
2 and with a

supply functions(y,v) = yv. Functionφ(x,u) is chosen
in order to collect the positive terms ofV(x(k+1)):

φ(x,u) = µ
[

(x2
1 +x2

2)
2 +u2+x2

1+x2
2

]

(23)

with µ > 0. Supposex1, x2 ∈ [−ρx,ρx], u∈ [−ρu,ρu],
v ∈ [−ρv,ρv], with ρx, ρu, ρv positive constants. The
control goal function takes the following form,

Qd(x1,x2,u,v) = u2(1+ µ)+2u(x2
1+x2

2)+ (x2
1+x2

2)
[

(1+ µ)(x2
1+x2

2)+ µ −1

]

−yv

(24)

FunctionQd will be assured to be positive in all can-
didates for local minima in the domain of definition
of Qd by means of the value ofµ . Two groups of
local minima have to be analyzed: the critical points
of Qd and other candidates for minima in the domain
[−ρx,ρx]× [−ρx,ρx]× [−ρu,ρu]× [−ρv,ρv]. Follow-
ing the same procedure as the one given for the linear
example, it is concluded thatQd becomes positive
for µ > 1. In addition, with thisµ , the critical point
(x1,x2,u,v) = (0,0,0,v), with v a constant, is assured
to be a relative minimum ofQd (see Figure 2).

Second, the conditions of Proposition 4 are verified.
From the fact that forµ > 1, it follows that Qd is
a positive function with a relative minimum at(x =
0,u = 0,v = v), the condition appearing in A1 is met,
for u∗ = 0 andx1, x2, v fixed near to zero and condition
(8) is met. Condition (8) takes the form:

−

[

2u2(1+ µ)+2u(x2
1+x2

2)−uv

]

≤

−

[

u2(1+ µ)+2u(x2
1+x2

2)−uv

]

< 0
(25)
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Fig. 2. Representation ofQd: (i) with x1,x2 ∈ [−2,2],
v= 0, µ = 0.06,u=−2; (ii) with x1,x2 ∈ [−5,5],
v = 0, µ = 10,u = 2.

which is always met. For the condition of assumption
A3 that∇uQd(u) = 2u(1+ µ)+ 2

(

x2
1 +x2

2

)

− v must
be bounded, the property of uniform continuity in a set
is applied (Marsden and Hoffman, 1998). Therefore,
two passifying controls are obtained:

(1) A dynamic feedback:

u(k+1) = u(k)− γ(k)

{

2u(k)(1+ µ)+

+2
[

x2
1(k)+x2

2(k)
]

−v(k)

}

γ(k) = γcδ (k) |2u(k)(1+ µ) +

+2
[

x2
1(k)+x2

2(k)
]

−v(k)
∣

∣

−2

δ (k) =

{

Qd,k(u(k)), i f Qd,k(u(k)) ≥ ∆,

0, otherwise

(26)

with µ > 1 and 0< γc < 2.
(2) A static feedback:

u(k) = −
γcs

[

2x2
1(k)+2x2

2(k)−v(k)
]

1+2γcs(1+ µ)
(27)

with µ > 1 andγcs > 0 ensuring the asymptotic
stability of the fixed point of the controlled sys-
tem. Applying control (27) to system (22), the
following locally quasi-(V,s)-passive system is
obtained:

x(k+1) = f [x(k)]+g[x(k)]v(k)

y(k) = h[x(k)]+J[x(k)]v(k)
(28)

with x = (x1,x2)
T . A way to ensure the local

asymptotic stability of the fixed point of system
(28) is by assuring that the linearized system
around the fixed point has poles with modulus
less than 1, and this is assured for anyµ > 1 and
γcs > 0.

6. A NOTE ON THE FREQUENCY-DOMAIN
CHARACTERISTICS OF QUASI-V-PASSIVE

SYSTEMS

Passive systems exhibit special features in the fre-
quency domain. Passivity, for linear systems, is equiv-
alent to positive realness of a transfer function. The
same is for the discrete-time case. Positive realness of



a transfer function can be identified via the Nyquist
diagram which is confined in the right-hand side half
of the Nyquist plane. In addition, discrete positive real
transfer functions do not have poles with modulus
greater than one, and their poles lying on|z| = 1 are
simple with positive real residues.

The example of the buck passified by means of the
SG-based feedback passivity method can be used for
giving a first step in analyzing the implications of
quasi-V-passive systems in the frequency domain. The
example can illustrate the properties of the Nyquist
of a quasi-V-passive system. The Nyquist plot of the
non-passive original system can be compared with the
quasi-V-passive system obtained after the feedback
passivity control scheme (20) is applied. The pulse
transfer function for the state-space description (15)
with y = x2 +u is:

Gb(z) =
z2−1.707z+0.9394
z2−1.766z+0.8825

(29)

and for the passified system (21):

Gb(z) =
0.07794(z2−1.766z+0.8825)

z2−1.763z+0.8789
(30)

The Nyquist plots of (29) and (30) are depicted in
Figure 3. The Nyquist of the quasi-V-passive system
lies on the right-hand side half plane, but it does
not touch the axisRe[G(ejω)] = 0. The Nyquist plot
begins atRe[G(ejω)] = ∆.
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Fig. 3. (i) Nyquist diagram for the exact discretized
model of the buck converter withy = x2 +u; (ii)
Nyquist diagram for the passified buck converter
by means of the SG-based feedback passivity
method.

7. CONCLUSIONS

The discrete-time version of the SG algorithm has
been used in order to render passive MIMO nonlinear
discrete-time systems which are affine in the input.
A subclass of passive systems have been introduced
regarded as quasi-V-passive systems. Two kinds of
passifying feedback laws have been obtained derived
from the application of the SG method: a dynamic one
and a static one. The feedback passivity methodology
proposed is based on the establishment of the input
u which satisfies the basic passivity equality, which
is interpreted as a goal function. Two SISO examples
have illustrated the methodology. Some comments on

the frequency-domain implications of linear quasi-V-
passive systems have also been pointed out.

An alternative way of designing the parameters ap-
pearing in the passifying controls may be given, as
well as, a more detailed study of the influence of these
controller parameters in the system response.
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