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1. INTRODUCTION

Hybrid systems model the interaction between contin-
uous and logic components. Currently, general analy-
sis and control design methods for hybrid systems are
not yet available. For this reason, several authors have
studied special subclasses of hybrid systems for which
control techniques are currently being developed such
as manufacturing systems (Cassandras et al., 2001)
and piecewise affine (PWA) systems (Bemporad and
Morari, 1999; Rantzer and Johansson, 2000).

Model Predictive Control (MPC) is the most suc-
cessful advanced control technology implemented in
industry due to its ability to handle complex sys-
tems with hard input-output constraints. Recently, the
research has focused on developing stabilizing con-
trollers for hybrid systems and in particular for PWA
systems. PWA systems are defined by partitioning
the state space of the system in a finite number of
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polytopes and associating to each polytope a differ-
ent affine dynamic. Several results about stability of
PWA systems and MPC schemes for such systems
can be found in the literature, e.g. (Bemporad and
Morari, 1999; Rantzer and Johansson, 2000; Mignone
et al., 2000; Lazar et al., 2004; Mayne and Rakovic,
2003; Goebel et al., 2004).

One of the first results about the stability of MPC for
PWA systems is obtained in (Bemporad and Morari,
1999), where a terminal equality constraint approach
is presented. This type of constraint is rather restric-
tive. Therefore, in order to guarantee feasibility of
the MPC problem we need a long prediction hori-
zon, which results in computationally demanding opti-
mization problems. A stabilizing terminal set and cost
MPC scheme for PWA systems has been developed in
(Mayne and Rakovic, 2003; Lazar et al., 2004). Stabil-
ity has been guaranteed in (Lazar et al., 2004) using
the LMI framework and by developing an algorithm
for constructing a polyhedral positively invariant set
for the PWL dynamics.



In this paper we derive a stable MPC scheme using the
LMI framework. For the piecewise linear (PWL) dy-
namics we derive LMI conditions that provide a piece-
wise linear feedback controller that stabilizes those
dynamics. We take into account also the piecewise
structure of the system; conservativeness is reduced
by implementing the S-procedure. We derive a stable
MPC scheme with a convex terminal set and the upper
bound of the infinite-horizon quadratic cost is used as
a terminal cost. We present an algorithm for enlarging
this set based on a backward procedure. By enlarging
the terminal set the prediction horizon can be chosen
shorter. Therefore the computational complexity de-
creases, removing some computations off-line.

We define a PWA system as:

x(k + 1) = Aix(k) + Biu(k) + ai, if x(k) ∈ Pi

y(k) = Cix(k) + ci, (1)

where {Pi}i∈I is a partition of R
n into a number

of polyhedral cells (n, nu, ny denotes the number of
states, inputs and outputs). Let I0 ⊆ I (I1 ⊆ I) be the
set of indexes for the cells that contain (do not contain)
the origin in their closure. So ai = 0 for any i ∈ I0.
We assume that the closure of Pi can be written as:
cl(Pi) = {x ∈ R

n : Ẽix ≥ ei} with ei = 0 for
i ∈ I0. We define the infinite-horizon quadratic cost:

J∞(x0, u) =

∞
∑

k=0

xT (k)Qx(k) + uT (k)Ru(k)

with Q = QT ≥ 0, R = RT > 0 and u =
(u(0), u(1), ...) We consider the constraints:

Uc = {u ∈ R
nu : |uj | ≤ uj,max, j = 1, ..., nu} (2)

Xc = {x ∈ R
n : |yj | ≤ yj,max, j = 1, ..., ny}, (3)

with uj,max, yj,max > 0.We define now the problem
that we would like to solve:

Definition 1.1. Problem P Design a feedback con-
troller u = F (x) for system (1) that: (i) limits the
infinite-horizon quadratic cost in a positively invariant
set E , i.e. x(0) = x0 ∈ E ⇒ x(k) ∈ E , for all k ≥
0. (ii) makes the closed-loop asymptotically stable,
i.e. x(∞) = 0. (iii) satisfies the constraints u(k) ∈
Uc, x(k) ∈ Xc for all k ≥ 0 . ♦

2. DETERMINATION OF A CONVEX
INVARIANT SET AND THE CONTROLLER

First we want to derive a local controller that stabilizes
the PWL dynamics of the system (i.e. for all i ∈ I0 for
which ai = 0) and using this controller we construct
also a convex positive invariant set corresponding to
these dynamics. We define the local PWL feedback
controller: u(k) = Fix(k) if x(k) ∈ Pi, and the
piecewise quadratic function:

V (k) = xT (k)P (k)x(k), P (k) = Pi if x(k) ∈ Pi

We want to find Fi, Pi ∈ R
n×n, i ∈ I0, with Pi > 0,

such that the following conditions are fulfilled:

x(∞) = 0,

V (k + 1) − V (k) ≤ −l(x(k), F (k)x(k)), ∀ k ≥ 0,

where l(x, u) := xT Qx + uT Ru. The second condi-
tion can be written as:

xT (Ai + BiFi)
T Pj(Ai + BiFi)x − xT Pix + xT Qx

+ xT FT
i RFix ≤ 0, for all x ∈ Pi, i, j ∈ I0. (4)

The matrix inequalities (4) must be valid only for x ∈
Pi. Using the S-procedure (see e.g. (Jonsson, 2001))
we can rewrite them to be valid on the entire space R

n.
One method (Rantzer and Johansson, 2000) to relax
the matrix inequalities (4) is: find Fi, Pi, Uij , i, j ∈
I0, with Pi > 0 and Uij having all entries non-
negative that satisfy the following matrix inequalities:

(Ai + BiFi)
T Pj(Ai + BiFi) − Pi + Q

+ FT
i RFi + ET

i UijEi ≤ 0, for all i, j ∈ I0. (5)

We define X0 = ∪i∈I0
Pi and we consider an inner

approximation with an ellipsoid of this set:

{x ∈ R
n : xT Hx ≤ 1} ⊆ X0.

In the sequel the symbol * is used to induce a symmet-
ric structure in an LMI. We have:

Proposition 2.1. (i) If the following LMIs:




Pi − Q − ET
i UijEi ∗ ∗

Ai + BiFi Sj 0
Fi 0 R−1



 > 0 (6)

and the following bilinear matrix inequalities (BMIs)

SiPi + PiSi ≤ 2I (7)

have solution Pi, Si, Fi, Uij , i, j ∈ I0, with Pi > 0
and all entries of Uij non-negative, then this is also a
solution of (5).

(ii) We define the set E(ρ) = {x ∈ R
n : xT Pjx ≤

ρ, j ∈ I0}, with ρ > 0. Note that this set is convex
and contains the origin in the interior. If the following
LMIs are satisfied:

[

τjH − Pj 0
0 −τj + ρ

]

≤ 0 (8)

for all j ∈ I0 and with τj > 0, then E(ρ) is a positive
invariant set for the closed-loop system 2 .

(iii) If we require u(k + l) ∈ Uc for all l ≥ 0, once
x(k) ∈ E(ρ) then an additional LMI must be satisfied:
[

Λ − ET
i WiEi Fi

∗ Pi

]

≥ 0 with Λjj ≤ u2
j,max/ρ (9)

for all i ∈ I0 and j = 1, ..., nu, where the matrices
Wi have all entries non-negative.

(iv) If we require y(k+1+ l) ∈ Xc for all l ≥ 0, once
x(k) ∈ E(ρ) then the following additional LMI must
be satisfied:
[

Γ − ET
i ViEi Ci(Ai + BiFi)
∗ Pi

]

≥ 0,Γjj ≤
y2

j,max

ρ

2 If we assume that X0 is a polytope X0 = {x : cT
l

x ≤ 1, l =

1, ..., s}, then the LMI (8) can be replaced with: cT
l

ρP−1

j
cl ≤ 1,

which can be written as LMI (see also (Necoara et al., 2004)).



for all i ∈ I0 and j = 1, ..., ny , where Vi have all
entries non-negative. Note that by taking γ = 1/ρ all
formulas (6)–(2) become LMIs except (7).

Proof: (i) The BMIs (7) imply that

0 < Si ≤ P−1
i if and only if 0 < Pi ≤ S−1

i

(see also (Slupphaug and Foss, 1999)). Applying now
the Schur complement to (6), this leads to:

0 <Pi − Q − ET
i UijEi − (Ai + BiFi)

T S−1
j (∗)

− FT
i RFi ≤ Pi − Q − ET

i UijEi

− (Ai + BiFi)
T Pj(∗) − F T

i RFi

i.e. formula (5).

(ii) It is well-known (Vandenberghe and Boyd, 1996)
that inclusion of ellipsoids

{x : xT Pjx ≤ ρ} ⊆ {x ∈ R
n : xT Hx ≤ 1} ⊆ X0

can be expressed as an LMI (8). Then if x(k) ∈
E(ρ)∩ Pi0 , for some io ∈ I0 then xT (k)Pi0x(k) ≤ ρ
and x(k + 1) = (Ai0 + Bi0Fi0)x(k). Therefore, for
any j ∈ I0 according to (i) we have:

xT (k + 1)Pjx(k + 1) ≤ xT (k)Pi0x(k) ≤ ρ.

So x(k + 1) ∈ E(ρ). By induction we can see that if
x(k) ∈ E(ρ) then x(k + l) ∈ E(ρ) for any l ≥ 0. So
E(ρ) is an invariant set. E(ρ) is convex, because it is
the intersection of ellipsoids (Pi > 0) and it contains
the origin because each ellipsoid contains the origin.

(iii) The constraint on the input (2) is equivalent with
u2

j (k) ≤ u2
j,max. We have E(ρ) ⊆ {x : xT Pix ≤ ρ}

and thus if x(k) ∈ E(ρ) ∩ Pi then

u2
j (k) ≤ max

x(k)∈E(ρ)
(Fix(k))2j ≤ max

xT Pix≤ρ
(Fix)2j

≤ max
xT Pi

ρ
x≤1

(Fix)2j ≤ ‖√ρ(FiP
−1/2
i )j‖2

2

= ρ(FiP
−1
i FT

i )jj = ρ(FiP
−1
i FT

i )jj

≤ ρΛjj ≤ u2
j,max.

Taking Wi with all entries non-negative and applying
the S-procedure, the last inequality translates into:

Λ − FiP
−1
i FT

i − ET
i WiEi ≥ 0

and Λjj ≤ u2

j,max

ρ , which is the LMI (9) using γ = 1
ρ .

(iv) The LMI (2) is derived in the same way. ♦

Remark 2.2 The matrix inequalities (5) can be rewrit-
ten as BMIs by introducing dummy variables. We use
the BMI formulation from Proposition 2.1 because
there are algorithms in the literature (see (Fares et
al., 2001)) for solving BMIs in the form (6)–(7). ♦
Remark 2.3 Using Finsler’s lemma, we can provide
the general solution of the LMIs (5). For a more
detailed discussion about the general solution of the
LMIs (5), the reader is referred to (Necoara et al.,
2004).

♦

If we do not apply the S-procedure for (4), i.e. we
replace the condition “x ∈ Pi“, with x ∈ R

n, then
(4) becomes:

(Ai + BiFi)
T Pj(Ai + BiFi)

− Pi + Q + FT
i RFi ≤ 0 (10)

for all i, j ∈ I0. The matrix inequalities (10) were
solved in (Kothare et al., 1996) for linear systems with
polytopic uncertainty, making a so-called linearizing
change of variables by introducing: Si = P−1

i , Fi =
YiSi. This linearization is also employed in (Lazar et
al., 2004) for the particular case of PWL systems. We
use here another linearization of (4), namely Pi =
S−1

i , Fi = YiG
−1. Using this change of variables we

see that the determination of the control law does not
depend explicitly on the Lyapunov matrices Pi. The
extra degree of freedom introduced by the matrices
G which is not considered symmetric, is incorporated
in the control variable (see (Daafouz and Bernussou,
2001) for more details about this type of linearization).

Proposition 2.4. (i) If the following LMIs in G,Yi, Si









G + GT − Si ∗ ∗ ∗
AiG + BiYi Sj ∗ ∗

Q̄1/2G 0 I ∗
R1/2Yi 0 0 I









> 0 (11)

for all i, j ∈ I0 have a solution then Fi =
YiG

−1, Pi = S−1
i are a solution of (10).

(ii) Let E(ρ) be defined as in Proposition 2.1. If the
following LMIs are satisfied:

[

τjH
−1 − Sj 0
0 −τj + 1/ρ

]

≥ 0 (12)

for all j ∈ I0 and with τj > 0, then E(ρ) is a positive
invariant set for the closed-loop system.

(iii) If we require u(k + l) ∈ Uc for all l ≥ 0, once
x(k) ∈ E(ρ) then an additional LMI must be satisfied:
[

Λ Yi

∗ G + GT − Si

]

≥ 0 with Λjj ≤ u2
j,max/ρ (13)

for all i ∈ I0 and j = 1, ..., nu.

(iv) If we require y(k + 1 + l) ∈ Xc for all l ≥ 0,
once x(k) ∈ E(ρ) then the additional LMIs must be
satisfied:

[

Γ Ci(AiG + BiYi)

∗ G + GT − Si

]

≥ 0 with Γjj ≤ y2
j,max/ρ.

(14)
for all i ∈ I0 and j = 1, ..., ny . Note that taking
γ = 1/ρ all previous formulas become LMIs.

Proof: Basically the proof for (i) uses some matrix
manipulations and the Schur complement (see also
(Daafouz and Bernussou, 2001; Necoara et al., 2004)).
The points (ii)–(iv) can be proved using similar argu-
ments as in Proposition 2.1 (ii)–(iv). ♦
Now we assume that by applying one of the ap-
proaches proposed before (Proposition 2.1 or Propo-



sition 2.4) we obtained Fi, Pi, for all i ∈ I0. Then
we have:

Corollary 2.5. (i) If we consider only the PWL dy-
namics of the system (1), then the PWL feedback
controller u(k) = Fix(k), x(k) ∈ Pi, i ∈ I0

asymptotically stabilizes these dynamics with a region
of attraction X0 and the infinite-horizon quadratic
cost is bounded: J∞(x0) ≤ xT

0 Pix0, for any x0 ∈
Pi, for all i ∈ I0.

(ii) The PWL feedback controller u(k) = Fix(k), x(k) ∈
Pi makes the origin locally asymptotically stable, with
the input and output satisfying the constraints (2)–(3),
and it has a region of attraction E = ∪i∈I0

({x :
xT Pix ≤ ρ}∩Pi), i.e. the feedback controller u(k) =
Fix(k), x(k) ∈ Pi solves locally the Problem P, and
moreover J∞(x0) ≤ ρ, for any x0 ∈ E ∩ Pi.

Proof: It can be easily seen that V (x) = xT Pix,
x ∈ Pi is a piecewise quadratic Lyapunov function for
the closed-loop system: x(k +1) = (Ai +BiFi)x(k),
x(k) ∈ Pi, i ∈ I0. The rest of the proof follows
immediately. ♦

3. MODEL PREDICTIVE CONTROL LAW

3.1 Stable MPC

In the previous section we have found a PWL feedback
controller u(k) = F (k)x(k) that solves Problem P
with a positive invariant set E . In general this set
is small in comparison with Emax, defined as the
largest domain of attraction achievable by a control
law solving problem P. In this section we show the
benefits of MPC applied to solve Problem P.

We consider a prediction horizon N , we assume that
at sample time k the state x(k) is available (i.e. can
be measured or estimated), and we split the infinite-
horizon cost into two parts:

J∞(x(k), u) = JN (x(k)) + J∞(x(k + N)).

From Section 2 we have available Ki, Pi, for all i ∈
I0 and moreover we have obtained an upper bound for
J∞: x(k+N)T Pix(k+N) ≥ J∞(x(k+N)), if x(k+
N) ∈ Pi. The quasi-infinite methods replaces the
second infinite term with its upper bound (Chen and
Allgower, 2000; Kothare et al., 1996). Then at each
sample step k we propose to solve the following
optimization problem which will be called Problem
QI(N ):

J∗(k) = min
uk

k+N−1
∑

j=k

xT (j)Qx(j) + uT (j)Ru(j)+

x(k + N)T P (k + N)x(k + N)

subject to



















uk = (u(k), ..., u(k + N − 1)) ∈ UN
c

equation (1)

(y(k + 1), ..., y(k + N)) ∈ XN
c

hard constraint: x(k + N) ∈ E(ρ),

where P (k + N) = Pi if x(k + N) ∈ Pi.

In the above formulation we detect the standard ingre-
dients for a stable MPC scheme: a terminal cost and
constraint set (see (Mayne et al., 2000)). According to
(Mayne et al., 2000), ideally, the terminal cost should
be the infinite-horizon cost, but in contrast to the linear
case this cannot be computed explicitly due to the
nonlinearity of the system. Therefore, we replace it
with the upper bound that we derived in Section 2.

According to the receding horizon principle, at each
step k we apply to the system only the first sample:

u(k) = FRH,N (x(k)) := u∗
k(1).

Let F(N,x0) be the set of all feasible inputs corre-
sponding to QI(N ) and let ERH(N) be the set of initial
states x0 such that F(N,x0)6=�. Consider the closed-
loop system given by the receding horizon control:

ΣRH

{

x(k + 1) = Aix(k) + BiF
RH,N (x(k)) + ai

y(k) = Cix(k) + ci, if x(k) ∈ Pi.

Proposition 3.1. We assume that we obtained Fi, Pi,
E(ρ) using Section 2. Then we have:

(i) ERH(N) is a positive invariant set for ΣRH and

E(ρ) ⊆ ERH(N), for all N > 0 (15)

(ii) the MPC scheme corresponding to Problem QI(N )
asymptotically stabilizes the system (1) with u(k) =
u∗

k(1). Therefore, this quasi-infinite receding horizon
control solves Problem P.

(iii) ERH(N) ⊂ ERH(N + 1) and limN→∞ ERH(N)
= ∪∞

N=1ERH(N) = Emax.Moreover, if there exists
an N∗ such that ERH(N∗) = ERH(N∗ + 1) then
Emax = ERH(N∗).

Proof: (i) Let x0 ∈ ERH(N) ∩ Pi. Then the optimiza-
tion problem QI(N ) has an optimal solution u∗

0 =
(u(0)∗, ..., u(N − 1)∗) ∈ UN

c , (y(1)∗, ..., y(N)∗) ∈
XN

c . At the next sample step if x(N)∗ ∈ E(ρ) ∩
Pj with j ∈ I0, we have a feasible input: u1 =
(u(1)∗, ..., u(N − 1)∗, Fjx(N)∗) ∈ F(N,Aix0 +
BiF

RH,N (x0) + ai). In conclusion x1 = Aix0 +
BiF

RH,N (x0) + ai ∈ ERH(N). Therefore, (applying
induction) we can prove that ERH(N) is a positively
invariant set for ΣRH. Moreover, for any x0 ∈ E(ρ)
there exists a feasible input sequence for Problem
QI(N ), namely (F (0)x0, ..., F (N − 1)x(N − 1)),
where F (·) ∈ {Fi, i ∈ I0} and thus x0 ∈ ERH(N),
so that E(ρ) ⊆ ERH(N), for all N > 0.

(ii) It can be proved easily using inequalities (4) that:

J∗(k + 1) − J∗(k) ≤ −‖x(k)∗‖2
Q

i.e. the optimal quasi-infinite cost J∗(k) is a Lya-
punov function for the closed-loop system, and due to
the previous inequality we have asymptotic stability.
Therefore, in this way we can solve Problem P with
the feedback controller u(k) = F RH,N (x(k)) and the
positive invariant set ERH(N) .

(iii) Let x0 ∈ ERH(N). Then (u(0), ..., u(N −
1), F (N)x∗(N)) ∈ F(N + 1, x0), so that x0 ∈



ERH(N + 1). Therefore ERH(N) ⊆ ERH(N + 1).
As N → ∞ the Problem QI(N ) becomes an infinite-
horizon model predictive control problem implying
that limN→∞ ERH(N) = Emax.

Moreover, from the equality ERH(N∗) = ERH(N∗ +
1) it follows that there does not exist a state x0 6∈
ERH(N∗) such that with a feasible input u the state
x1 ∈ ERH(N∗). Hence, Emax = ERH(N). ♦

3.2 Enlargement of the terminal set using backward
procedure

The optimization problem QI(N ) that we have to
solve on-line at each sample step k is nonlinear and
non-convex (except in case N = 1 when it is convex),
and the computational time increases with the predic-
tion horizon N . If the terminal set is small, then we
need a long prediction horizon in order to have feasi-
bility for Problem QI(N ). Therefore, the optimization
problem will be computationally intensive. A larger
terminal set is E = ∪i∈I0

({x : xT Pix ≤ ρ} ∩ Pi),
but this is not a convex set (it is a union of convex
sets). In the sequel we develop a method to enlarge the
terminal set based on a backward procedure that can
be done off-line, and thus we can efficiently implement
the stable MPC scheme derived before using a shorter
prediction horizon. So, we move some computations
off-line, resulting in a more efficient on-line imple-
mentation. We consider again only the PWL dynamics
of the system (1). The approach consists of 3 steps:

Step 1 Solve the following convex optimization:

min
G,Yi,Si

−
∑

i∈I

log det Si

subject to LMIs : (11), (13), (14), for all i, j ∈ I0

and define: Fi,1 = YiG
−1, Pi,1 = S−1

i ,

E1 = {x ∈ R
n : xT Pi,1x ≤ 1, i ∈ I0}.

By Proposition 2.4 for any x ∈ E1, the controller
u = Fi,1x, if x ∈ Pi satisfies the input and output
constraints and maintains the trajectory of the closed-
loop system inside E1 converging to the origin.

Step 2 Using the previous terminal set Eprev = {x ∈
R

n : xT Pi,prevx ≤ 1, i ∈ I0}, we construct a new
larger terminal set Enew based on a controller Fi,new,
that steers the system from Enew but not within Eprev

to the last terminal set Eprev, by solving the convex
optimization problem:

min
G,Yi,Si

−
∑

i∈I

log det Si

subject to



















[

G + GT − Si ∗
AiG + BiYi P−1

j,prev

]

> 0

Si ≥ τiP
−1
i,prev, τi ≥ 1

LMIs : (13), (14) for all i, j ∈ I0

Proof: We denote with Pi,new = S−1
i , Fi,new =

YiG
−1. Applying the Schur complement to the first

LMI from the previous optimization problem we have:

Pi,new = S−1
i ≥ (Ai + BiFi,new)Pj,prev(∗)T

i.e. if x0 ∈ (Enew ∩ Pi) \ Eprev and applying the
feedback controller u0 = Fi,newx0 then x1 = (Ai +
BiFi,new)x0 ∈ Eprev. The second LMI is equivalent
with: Eprev ⊆ Enew = {x ∈ R

n : xT Pi,newx ≤
1, i ∈ I0}. The LMIs (13)–(14) guarantee that the
controller u(x) = Fi,newx, if x ∈ Pi satisfies the
input and output constraints. Step 2 is an iterative
procedure, i.e. we repeat it as long as we want, let
us say L times (and we stop when there is no more
increase in the volume of the set Enew). Therefore
we have available a sequence of controllers u =
Fi,lx, if x ∈ (El\El−1)∩Pi, i ∈ I0, l ∈ {1, · · · , L}
where by definition E0 is the empty set.

Step 3 We want to find a piecewise quadratic terminal
cost P (x) = xT Pix if x ∈ Pi such that stability is
guaranteed when we apply the MPC scheme based
on Problem QI(N ) with the terminal set EL. The se-
quence {Pi}i∈I0

is determined solving the following
LMIs, with Ui,j having all entries non-negative:

(Ai + BiFi,l)
T Pj(Ai + BiFi,l) − Pi + Q+

FT
i,lRFi,l + ET

i Ui,jEi ≤ 0 (16)

for all i, j ∈ I0, l ∈ {1, · · · , L} (see the proof of (ii)
of Proposition 3.1 where the condition J∗(k + 1) −
J∗(k) ≤ −l(x(k), u(k)) is implied by the LMIs (16)).

Corollary 3.2. (i) The controller u(x) = Fi,lx, if x ∈
(El \ El−1) ∩ Pi, l ∈ {1, ..., L} solves Problem P .

(ii) EL is positive invariant for the closed-loop system.

(iii) Using EL as a terminal set and the terminal cost
P (x) = xT Pix if x ∈ Pi, with Pi given by (16) in
Problem QI(N ), then Proposition 3.1 still holds.

Proof: It is obvious that this controller stabilizes the
system, because for any x0 ∈ EL in at most L
steps x(L) ∈ E1, and then according to Proposition
2.4 x(L) will converge asymptotically towards zero.
Moreover, this controller fulfills the input and output
constraints. For the last part, we observe that if x0 ∈
El ⊆ EL, then applying this feedback controller we
have (Ai + BiFi,l)x0 ∈ El−1 ⊆ EL. Therefore, EL is
a positive invariant set for the closed-loop system, and
the LMIs (22) guarantee stability for the MPC scheme
corresponding to Problem QI(N ). ♦

Remark 3.3 We can use also polyhedral or union of
polyhedral sets: ∪i∈I0

E(i) with E(i) = {x ∈ R
n :

Hix ≤ hi} ⊆ Pi as a positive invariant terminal
set. In this case Problem QI(N ) becomes a mixed-
integer quadratic programming problem. One way of
obtaining such a union of polyhedral sets is:

{x : xT Pi,L−1x ≤ 1} ∩ Pi ⊆ E(i)

⊆ {x : xT Pi,Lx ≤ 1} ∩ Pi

and then use ∪i∈I0
E(i) as a terminal set, and as

terminal cost P (x) = xT Pi,Lx if x ∈ Pi, where Pi,L

are given by the LMIs (16). Finding such a set E(i) is
an LMI problem (see (Necoara et al., 2004)).
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Fig. 1. Enlargement of ellipsoidal terminal set and the
trajectory corresponding to MPC scheme QI(1).

Example: We consider the following system taken
from (Bemporad et al., 2000):

A1 =

[

0.35 −0.6062
0.6062 0.35

]

, A2 =

[

0.35 0.6062
−0.6062 0.35

]

B1 = B2 =

[

0
1

]

, |x1| ≤ 5, |x2| ≤ 5, |u| ≤ 1,

E1 = [1 0], E2 = [−1 0], Q = I, R = 0.1.

Iterating Step 2 for L = 3 we obtain the following
terminal set (positive invariant set):

E3 = {x ∈ R
2 : xT

[

0.0441 0
0 0.0627

]

x ≤ 1}

and applying then Step 3 we obtain the terminal cost:

P (x) = xT

[

6.7534 0
0 9.2863

]

x.

For N = 1 the optimization problem is feasible for
any x ∈ [−5 5]× [−5 5] (see also Fig. 1). Therefore,
at each step we solve a convex optimization problem.

4. CONCLUSIONS
We have derived stabilization conditions for the class
of PWA systems using the LMI framework. The LMIs
are derived using the piecewise structure of the sys-
tem; therefore, less conservatism is introduced in com-
parison with other approaches. Using the upper bound
of the infinite-horizon quadratic cost as a terminal cost
and constructing also a convex terminal set (ellipsoidal
or polyhedral) we have shown that the quasi-infinite
receding horizon control stabilizes the PWA system.
We have proposed an algorithm based on a backward
procedure to enlarge the terminal set in order to re-
duce the on-line computational complexity by off-line
computations.
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