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Abstract: This paper is concerned with the design of networked control systems
with random network delay in the forward and feedback channels and gives
stability criteria of closed-loop networked predictive control systems. The principle
of the predictor is adopted to overcome the effects of network delay. The necessary
and sufficient conditions on the stability of the closed-loop networked control
system are derived, which provide useful analytical stability criteria. It is shown
that closed-loop system with bounded random network delay is stable if the
corresponding switched system is stable. Copyright (©2005 IFAC
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1. INTRODUCTION

With the development of network technology,
more and more networks (e.g., Internet) have
been applied to distributed control systems, which
are termed networked control systems (NCS)
(Overstreet and Tzes, 1999). Although the net-
works make it convenient to control large dis-
tributed systems, there also exist many control
issues, which are not considered by conventional
control theory, such as network delay and data
dropout, sampling and transmitting methods. To
solve those problems, various methods are devel-
oped, e.g., augmented deterministic discrete-time
model, queuing, optimal stochastic control, per-
turbation, sampling time scheduling, robust con-
trol, fuzzy logic modulation, event-based control,
end-user control adaptation, data packet dropout
analysis, and hybrid systems stability analysis.
But, those methods have put some strict assump-
tions on NCS, e.g., the network time delay is less
than a sampling period. Most of them simply

treated the NCS as a system with time delay,
which ignores NCS features, e.g., random network
delay and data transmission in packets.

The random network delay in the forward channel
in NCS has been studied in (Liu et al., 2004).
But, the random network delay in the forward
and feedback channels makes the control design
and stability analysis much more difficult. This
paper proposes a predictive control scheme for
networked control systems with random network
delay both in the feedback and forward channels
and also provides analytical stability criteria of
closed-loop networked predictive control systems.

2. DESIGN OF NPCS WITH BOTH
FORWARD AND FEEDBACK NETWORK
DELAYS

A networked predictive control scheme for NCS
with random network delay in the forward and



feedback channels is proposed. The main part
of the scheme is the networked predictive con-
troller, which compensates the network delay in
the forward and feedback channels and achieves
the desired control performance. A very important
characteristic of the network is that it can trans-
mit a set of data at the same time. Thus, to avoid
the data dropout, the output data are transmitted
in an overlap sequence form at each time, that is,
each output will be transmitted several times with
other outputs consecutively. Thus, it is assumed
that the output sequence [y¢, Yyi—1, -*, Yt—N]
at time t is packed and sent to the controller
side through the feedback channel. In order to
compensate the network transmission delay in the
forward channel, a network delay compensator is
proposed. The predictive control sequence at time
t, which consists of the future control predictions,
is packed and sent to the plant side through the
forward channel. The network delay compensator
chooses the latest control value from the control
prediction sequences available on the plant side.
The networked predictive control system is shown
in Figure 1.
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Figure 1: The networked predictive control
system

Consider a MIMO (multi-input multi-output) dis-
crete system described in the following state space
form

Tyl — A.’L‘t + But

yr = Cxy (1)

where 2, € R", u; € R™, and y; € R' are the
state, input, and output vectors of the system,
respectively, A € R"*™ B € R"™™ and C €
R™ the system matrices. For the simplicity of
stability analysis, it is assumed that the reference
input of the system is zero.

Assumption 2.1.  The pair (A, B) is completely
controllable, and the pair (A,C) is completely
observable.

Assumption 2.2. The upper bound of the network
delay in the forward channel is not greater than
M (a positive integer).

Assumption 2.3. The upper bound of the network
delay in the feedback channel is not greater than
N (a positive integer).

Assumption 2.4. The number of consecutive data
dropouts in the forward channel and feedback
channel must be less than M and N, respectively.

The state observer is designed as

Tyt = AZyp—1 + Bug + L(ys — CZyp—1)  (2)

where Z;,,; € R"™ and u; € R™ are the one-
step ahead state prediction and the input of the
observer at time t and the matrix L € R™*!, which
can be designed using observer design approaches.

Following the state observer described by (2) ,
based on the output data up to t-k, the state
predictions from time t-k+1 to t are constructed
as

y_pgrjp—k = ATp_pp—p—1 + Bug_p+
L(yt—x — Cp_pjp—p—1)
Ti—proli—k = ATe—pyrje—k + Busri1 (3)

Tyje—p = AZy_1pp—p + Bug

which results in
Typp—p = AP (A - LC)Z¢_kjt—k—1
k

i _ 4
+2Ak ]B'Uftkarj—l +Ak 1Lyt—k ( )

Jj=1

for, k=1,2,3,---, k.

The state prediction from time ¢ + 1 to t + i are
constructed by

Typapp—p = AZy_p + Bugy—p
Typo—k = ATip1)i—k + Bupprji—

(5)

Typifi—r = ATypia)t—k + Bsi_1e—s

In particular, the augmented system without
time-delay, then, u; = Kiy;_1, can be described
as follows:

Trp1p = (A+ BK — LO)Zyp—1 + LCw (6)

Tip1 = Amg + BKZyq
For the case of no network delay, it is assumed
that the state-feedback controller is designed by a
modern control method, for example, LQG, eigen-
structure or pole assignment, H» and H., in the
presence of disturbance, etc. For the case where
there are both the forward network delay i and
feedback network delay k, the control predictions
are calculated by

Upgijt—k = KTppije—r (7)

where the state feedback matrix K € R™*™.
Thus,



Topifp—r = (A+ BK) &4y
= (A+ BR) (A" (A = LOYaoo s
i . (8)
+ ZAk_] Bug_pij1+ A" Ly, )
j=1

As aresult, the output of the networked predictive
control at time ¢ is determined by

Ugt—k = KA1 (A - LC)Z_pjt—p—1+
k

Z KA* I Buy_pyj1 + KA* 'Ly, )

j=1

From equation (9), it is clear that the future
control predictions depend on the state estimation
Zy_p|¢—kr—1 and the past control input up to us—;
and the past output up to y;—j of the system.
Since there exist the forward delay ¢ and feedback
delay k, the control input of the plant is designed
as

Ut = Ut|t—i—k (10)

Combined this predictive controller with net-
worked delay compensator, both the forward and
feedback network delays will be compensated for a
certain amount of time-delay. In the next section,
the analysis of stability of closed-loop system will
be presented under this control scheme.

3. STABILITY CRITERIA OF CLOSED-LOOP
NPC SYSTEMS

With the networked predictive control scheme
proposed in this paper, a very important problem
is to study the stability of the closed-loop sys-
tem. First, the stability of the closed-loop system
with constant network delay is investigated, and
necessary and sufficient condition for the closed-
loop system to be stable is derived. Second, for the
random time delay, the problem is more interest-
ing because this case is closer to the real network
time-delays. In this case, the stability problem of
the closed-loop system is solved using the theory
of switched systems.

3.1 Constant delays in both forward and feedback
channels

In this case,it is assumed that the network delays
7 and k in the forward and feedback channels are
constant. The first result is presented as follows.

Theorem 3.1. For the networked predictive con-
trol systems with constant network delays ¢ and k

in the forward and feedback channels, the closed-
loop system is stable if and only if all eigenvalues
of the following matrix are within the unit circle.

v =
r A 0 0 0 0
M;A* 'L o o ... M;B .- M;AF™?2
0 I 0 0 0
0 0 0 I 0
o 0 0 0 I
LCA*Y  AB LCAB ... LcA't'B ... LoAkti—2p

0 B 0 0 0
0 0 0 0 0

L 0 0 0 0 0
B 0 0 0 7 (11)
k—1 k—1

M; A*1B 0 0 0o M;A*~YA - LO)

0 0 0 0
0 0 0 0 0
0 0 0 -+ 0 0

LoA*i"lB A_Lc o -0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 I 0 ]

where M; = K(A + BK)?,
O € RI+imt(k+it2)n]x[(k+i)m+(k+i+2)n]

Proof The necessary and sufficient condition of
the closed-loop system stability is that its closed-
loop poles are stable. From the predictive control
obtained in the previous section, it is clear that

u = K(A+ BE)' (A* (A - LO)# i _kj1—i—k—1
k
+ Z Ak_jBut_i_k+j_1 + Ak_lLCCUt_i_k)

j=1
then,

Ti41 = A.Z‘t + B’Ltt
= Aw + Bugjp_i_ '
= Az; + BK(A + BK)!(AF 1 x
(A= LC)Z—ipjt—i—k—1+ (12)
k

Z AR I Buy_i g jo1 + AR LC i y,)
j=1
and

Tyt = AByp—1 + Bug + L(ys — Cypp—1)

BE) (A* (A = LO)&1 i p—i—b—1 + (13)
K

Z AkijBut,ikafl + AkilLCI‘t,i,k)

j=1

Let
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Lip1)t Lijt—1 Ti—k—it2lt—k—i+l

Tt—k—it1|t—k—i

rA o -.-0 BM;A*"'LCc 0 -.- BM;B ---
I 0 0 0 0.+ 0
0 0 0 0 0 - 0
0 o I 0 0 - 0
0 o o M;A*"'rc o ... M;B
0 0 0 0 I- 0
0 0 ---0 0 0 1
0 0 0 0 0 - 0
LC 0 --- 0 BM;A*"'LCc 0 ... BM;B
0 0 ---0 0 0 . 0
0 0 0 0 0 0
Lo o 0 0 0 0
BM;A* 2B BM;A*'B 0 0 0 IIy; 7
0 0 0 0 )
0 0 0 ---0 0
0 0 0 0 ---0 0
M;A*=2  m;ARTlB 0 0 -+ 0 Ty
0 0 0 0 ---0 0
0 0 0 0 0 0 (14)
I 0 0 0 ---0 0
BM;A*"2B BM;A*"'B A—LCc 0 --- 0 I3
0 0 I 0 ---0 0
0 0 0 0 -0 0
0 0 0 o ---1 o0 J

where ITy; = BM; AF 1 (A-LC), Iy; = M; AF 1 (A—

LC),U3; = BM;A*1(A— LC). Then, the closed-
loop system can be written as

X(t+1) = A(k) X (t) (15)

By matrix algebraic manipulations, it can be
proved that all eigenvalues of A(k) are within
the unit circle if and only if all eigenvalues of ¥
are within the unit circle. Therefore, the closed-
loop system is stable if and only if all eigenvalues
of matrices (11) are within the unit circle (The
details of the proof are omitted here due to the
limitation of space).

3.2 Random Network Delay

It is assumed that the network delay in the
forward and feedback channels are random but
bounded by M and N respectively, that is, i; €
{0,1,2,---, M}, ks € {0,1,2,---,N}. Then, ¢ and
k in constant case are replaced by i; and ki,
respectively. With the algorithm proposed in this

paper, all predictive output sequence at time t is
packed and sent to the plant side through net-
work. The output networked delay compensator
choose the latest output value from the output
prediction sequences available on the plant side.
The input networked delay compensator chooses
the latest control value from the control prediction
sequences available on the plant side, the control
signal will be obtained every sampling time if the
time-delays are less than the corresponding up
bounds.

Under this control scheme, the closed-loop system
will be a switched linear system, then, the stability
of all eigenvalues of (M + 1) x (N + 1) matrices
will not guarantee that the closed-loop system is
stable, based on the theory of switched system, we
can design the observer gain L and feedback gain
K such that the closed-loop system with random
time-delay is stable (Decarlo et al., 2000).

In order to present the results in this section , for
simplicity, let

A(0,0) =

[ (M4+N+1)n (M+N)m T
e e e
AO---00 0---00 BK 0 -00
I0- 00 0O---00 0 0 - 00
00 - I 0 0 00 0 0 - 00
00 - 00 0 00 K 0 - 00
00 -00 I 00 0 0 - 00

. ; (16)

00---00 0--- 10 0 0 -00
Lco---00 0---00 A+BK—-LC O ---00
00---00 0---00 I 0---00
00---00 0---00 0 0---00
L 00---00 0O---00 0 0-.---I10

€ RI2A(MA+N)+m(M+N)42n]x [2n(M+N)+m(M+N)+2n]

A(Zt,O):
itn
A 0 - M(ig) -0
I 0 o ---0
0 0-- 1 0




(M+N)m 7
———

000 0 - Mig) - 00
0---00 0 -- 0 ---00
0---00 0 -- 0 ---00
0---00 K --- 0 ---00
I---00 0--- 0 .-~ 00

(17)

0---I0 O -~ 0 ---00
0--00 My(ig) -+ 0 ---00
0---00 I -~ 0 ---00
0---00 0 -- 0 ---00
0---00 O --- 0 ---T0]

c R[Qn(M+N)+m(M+N)+2n] X[2n(M+N)+m(M+N)+2n]

where i; = 1,2,---, N¢g.

A11(iy k) Aia(i, k) Avs(l,
A(ig, kt) = | Ao1 (i, ke) Aaa(i, k) Aas(i
Asi (2, ke) Asa(i, ke) Ass(i, ke)

e R[2n(M+N)+m(M+N)+2n] X[2n(M+N)+m(M+N)+2n]

fori=0,1,2,---,M and k; = 1,2,---, N,

(i++ke—1)n
——
A 0---0 BMA*'LC0---00
I 0---0 0 0---00
A (i, ke)) =10 0---0 0 0---00
0 0---171 0 0---00
0 0---0 0 0---00
(0 0---0 0 0---10
c R[n(M+N)+n]><[n(M+N)+n] (19)
r itn
——
0---0 I(1) I(2) I(3) 0 --- 0 0
0---0 0 0 0 0---00
Ai2(ig,ke)=10---0 0 -~ 0 0 0---00
0---0 0 --- 0 0 0---00
0---0 0 --- 0 0O 0---00
| 0---0 0 -+ 0 0 0...00J
e R[n(M—i—N)—i—n]x[m(M—i—N)] (20)

kin
———
00---0TM4)0---00
00---0 0 0---00
As(it, k) =1 00---0 0 0---00
00---0 0 0---00
00---0 0 0---00
(00--0 0 0--00]
c R[n(MJrN)Jrn]X[n(MJrN)Jrn]
421(%, kt) = _
kin
——f—
00---0 M, A='LC 0---00
00---0 0 0---00
00---0 0 0---00
00---0 0 0---00
00---0 0 0---00
| 00---0 0 0--00]

€ R[m(M+N)] X[n(M+N)+n]

A22(it, kt) =

@wn

)

0---0 0 0
0---0 O 0

€ RIM(M+N)]x[m(M+N)]

Aoz (ir, k) =
kin
—

11(9)
0

-00

-00

0--- 0
0--- 0
0--- 0
0--- T

-00

-00

00|

e RIMM+N)]X[n(M+N)+n]

Agq (4, kt)

(23)



(i++ke—1)n
——
LC 0---0 MA*='LC0---00
0 0---0 0 0---00
0 0 0 0 0 00
0 0 0 0 0 00
0 0---0 0 0---00
L 0 0---0 0 0---00]
e R[n(M+N)+n]><[n(M+N)+n] (25)
Az (it, k) =
it n
0---0 Q) 22) --- Q3) Q4) ---00
0---0 0 0o --- 0 0 ---00
0---0 0 0o --- 0 0 ---00
0---0 0 0o --- 0 0 ---00
0---0 0 0O --- 0 0O ---00
(0---0 0 0O --- 0 0 ---00]
€ R(n(M+N)+n)><(mN) (26)
A3 (it, k) =
B (i¢+ke—1)n ]
——
A-LC 0---0 Q(B)0---00
I 0---0 0 0---00

0 0---I 0 0---00 (27)

0 0---0 0 0---00
0 0---0 0 0---10
E_R(n(M—i-N)—i-n)X(n(M—i-N)—i-n) -

where M;, = K(A + BK)i, M,(i;) = BK(A +
BEK)#*~'LC, Ms(iy) = BK(A + BK)"~'(A +
BK — LC), M3('Lt) = LC, M4(’Lt) = A +
BK — LC, II(1) = M;,B, TI(2) = BM;, A* 2B,
(3) = BM;A* 1BII(4) = BM; Ak—1(A —
LC), II(5) = M;AkM='LC, TI(6) = M; AB,
(7) = M;, A*—2B TI(8) = M;, A*—1B, II(9) =
M;, AR=Y(A — LC), Q1) = BKB, Q(2) =
BEKAB,((3) = BK*2AB, ((4) = BK A¥* 1 AB
, Q(5) = BEAM (4 — LO).

Then, the main results in this section can be
stated as follows:

Theorem 3.2. For the networked predictive con-
trol systems with random network delay in both

forward and feedback channels, the closed-loop
system is stable if there exists a positive definite
matrix

Pe R[2n(M+N)+m(M+N)+2n] X[2n(M+N)+m(M+N)+2n]

such that

AT (i, k) PA(ig, k) — P < 0 (28)

for iy = 0,1,2,---,M and k, = 0,1,2,---,N.
Proof. The proof is omitted due to the limitation
of space.

Remark 3.1. Tt can be deduced easily from (28)
that each subsystem is stable. If K and L are
designed previously, then (28) is a set of LMIs.
LMI toolbox can be used to find feasible solution
P (Boyd et al., 1994)

4. CONCLUSION

The design and stability analysis of networked
predictive control systems have been discussed in
this paper. The network delays in in both forward
and feedback channels have been considered in
two cases: the fixed network delay and the random
network delay. For both cases, the stability criteria
have been obtained for networked predictive con-
trol. Particularly, in the case of random network
delay, it has been concluded that the closed-loop
networked predictive control system is stable if
the corresponding switched system is stable. This
gives fundamental results for the design and anal-
ysis of networked control systems.
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